Again $\quad \sin a=\frac{\sin b \sin A}{\sin B}$ by I.
and

$$
\left.\begin{array}{rlrl}
\cos a & =\frac{\cos A}{\sin B} \quad \text { by II. } \quad \text { Divide } \\
\therefore \quad \tan a & =\tan A \sin b \\
\text { so } \quad \tan b & =\tan B \sin a
\end{array}\right\} \quad . \quad-\quad-\quad-\quad 6 .
$$

Note on Napier's Rules.

By Professor John Jack.
Denote the parts

$$
\begin{array}{cccccc}
b & \mathrm{~A} & c & \mathrm{~B} & a & \text { of } \triangle \mathrm{ABC} \quad \text { (Fig. 9) } \\
1 & 2 & 3 & 4 & 5 &
\end{array}
$$

by
then the parts corresponding of the $\triangle \mathrm{BEF}$, namely,
will be denoted by $\begin{array}{lllll}\frac{\pi}{2}-c, & \mathrm{~B}, & \frac{\pi}{2}-a, & \frac{\pi}{2}-b, & \frac{\pi}{2}-\mathrm{A} \\ \frac{\pi}{2}-3, & 4, & \frac{\pi}{2}-5, & \frac{\pi}{2}-1, & \frac{\pi}{2}-2 .\end{array}$
Now a third \triangle can similarly be derived from this second, a fourth from the third, and a fifth from the fourth. But when the process is applied to the fifth, the first \triangle is obtained. Hence only 5Δ s can be obtained, which are the following :-

1	2	3	4	5
$\frac{\pi}{2}-3$	4	$\frac{\pi}{2}-5$	$\frac{\pi}{2}-1$	$\frac{\pi}{2}-2$
5	$\frac{\pi}{2}-1$	2	3	$\frac{\pi}{2}-4$
$\frac{\pi}{2}-2$	3	4	$\frac{\pi}{2}-5$	1
$\frac{\pi}{2}-4$	$\frac{\pi}{2}-5$	$\frac{\pi}{2}-1$	2	$\frac{\pi}{2}-3$
1	2	3	4	5

where the mid-column contains the hypotenuse, the two next to it contain the angles, and the extreme columns the sides of the several right-angled triangles.

41

Now assume cos hypotenuse = product of cosines of sides

$$
=\text { product of cotangents of angles } ;
$$

that is sine complement of hypotenuse
= product of cosines of sides
$=$ product of tangents of complements of angles.
Now change the 2nd, 3rd, and 4th columns to complements and we have

1	$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$	$\frac{\pi}{2}-4$	5
$\frac{\pi}{2}-3$	$\frac{\pi}{2}-4$	5	1	$\frac{\pi}{2}-2$
5	1	$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$	$\frac{\pi}{2}-4$
$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$	$\frac{\pi}{2}-4$	3	1
$\frac{\pi}{2}-4$	5	1	$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$

where, taking any horizontal line,
sine of mid column = product of tangents of adjoining columns
$=$ product of cosines of extreme columns ;
and this proves completely Napier's rules, for each horizontal line contains Napier's parts in the same (cyclic) order.

