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Abstract. Let X be a closed, symplectic 4-manifold. Suppose that there is either a
symplectic or an anti-symplectic involution σ : X → X with a 2-dimensional compact,
oriented submanifold � as a fixed point set.

If σ is a symplectic involution then the quotient X/σ with b+
2 (X/σ ) ≥ 1 is a

symplectic 4-manifold.
If σ is an anti-symplectic involution and � has genus greater than 1 representing

non-trivial homology class, we prove a vanishing theorem on Seiberg-Witten invariants
of the quotient X/σ with b+

2 (X/σ ) > 1.

If � is a torus with self-intersection number 0, we get a relation between the
Seiberg-Witten invariants on X and those of X/σ with b+

2 (X), b+
2 (X/σ ) > 2 which was

obtained in [21] when the genus g(�) > 1 and � · � = 0.

2000 Mathematics Subject Classification. 53D05, 57M12, 57M50, 57R17, 57R57,
57S25.

1. Introduction. Let X be a closed, oriented Riemannian 4-manifold and let
L → X be a complex line bundle satisfying c1(L) = w2(TX) mod 2. Then there is
a principal Spinc(4)-bundle ξ → X associated to L. We say ξ is a Spinc-structure
associated to L. Let W±(ξ ) be (± 1

2 )-twisted spinor bundles associated to ξ. The
determinant bundle det W± is isomorphic to L.

Let A(L) be the set of all Riemannian connections on L. The gauge group
G(L) of all bundle automorphisms on L acts on A(L) × �(W+(ξ )) by g(A, ψ) =
(A − 2g−1dg, gψ), for all g ∈G(L) and (A, ψ) ∈A(L) ×�(W+(ξ )).

For a unitary connection A ∈ A(L) and a positive spinor field ψ ∈ �(W+(ξ )) the
Seiberg-Witten equations are defined by

{
F+

A = q(ψ),

DAψ = 0,

where DA : �(W+(ξ )) →�(W−(ξ )) is the Dirac operator associated with A and q :
C∞(W+(ξ )) →�+

X (i�) is a quadratic map defined by q(ψ) = ψ ⊗ ψ∗ − ||ψ ||2
2 Id.

Let M(ξ ) be the moduli space of the gauge equivalence classes of all solutions of
the Seiberg-Witten equations. Then M(ξ ) is compact by [16].
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We consider perturbed Seiberg-Witten equations:
{

F+
A + iδ = q(ψ),

DAψ = 0,

where δ is a real valued, self-dual 2-form on X .
Then the perturbed moduli space Mδ(ξ ) is a smooth manifold with its dimension

dimMδ(ξ ) = 1
4 {c1(L)2[X ] − (2χ (X) + 3Sign(X))}. If the metric on X is chosen so that

the perturbed Seiberg-Witten equations admit no reducible solutions, then Mδ(ξ ) is
compact. If dimMδ(ξ ) = 2d, then the Seiberg-Witten invariant is defined by∫

Mδ(ξ )
c1(Mδ(ξ )0)d,

the integral of the maximal power of the Chern class of the circle bundle
Mδ(ξ )0 →Mδ(ξ ), where Mδ(ξ )0 is the framed moduli space.

If dimMδ(ξ ) is odd or negative then the Seiberg-Witten invariant is defined to be
zero. For details, see [23].

In general, there are infinitely many elements c1(L) ∈ H2(X ; �) satisfying
c1(L) = w2(TX) mod 2. Each such element induces a Spinc-structure on X. However
there are only finitely many elements in H2(X ; �) such that their Seiberg-Witten
invariants are non-zero. Such an element in H2(X ; �) is called a basic class. Hence
the set of basic classes is finite. Furthermore X is said to have simple type if all basic
classes satisfy c1(L)2[X ] = 2χ (X) + 3σ (X).

Using the Seiberg-Witten invariants, Taubes [23] proved the non-trivialness of
the Seiberg-Witten invariants on symplectic 4-manifolds with b+

2 > 1. In Section 2,
we consider a symplectic involution σ over a closed symplectic 4-manifold X with
a symplectic structure ω. We show that if the symplectic involution σ has a 2-
dimensional, compact, oriented submanifold as a fixed point set, then the quotient
X/σ with b+

2 (X/σ ) ≥ 1 is a closed symplectic 4-manifold.
If a closed, oriented Riemannian 4-manifold X has a basic class, it gives a minimal

genus bound for the embedded surface, called the adjunction inequality.

THEOREM 1.1. (Adjunction Inequality [16,19]). Let X be a smooth 4-manifold with
b+

2 (X) > 1 and a basic class L, and let �X be an embedded connected oriented surface
with �X ·�X ≥ 0 and [�X ] �= 0 ∈ H2(X ; �). Then we have an inequality

−χ (�X ) ≥ �X ·�X + |c1(L)[�X ]|.
Ozsváth and Szabó [20] extended Theorem 1.1 for a 4-manifold X of Seiberg-

Witten simple type with b+
2 (X) > 1 and g(�X ) > 0 and �X · �X < 0.

Related with a symplectic 4-manifold, there is a Akbulut’s conjecture [15] (Problem
4.104) that if an anti-symplectic involution σ acts on a simply-connected, closed,
symplectic 4-manifold X (that is, σ ∗ω = −ω for a symplectic structure ω) with a 2-
dimensional smooth surface as a fixed point set, then X/σ = r�P2
s�P̄2 or nS2 × S2,

for some r, s, n, ∈ �.
Akbulut [1] showed that if σ is a complex conjugation over a complex algebraic

surface X with a real algebraic surface as a fixed point set then X/σ = r�P2
s�P̄2 or
nS2 × S2 for many cases.

In Section 3, we consider an anti-symplectic involution σ over a symplectic 4-
manifold X with a 2-dimensional compact submanifold as a fixed point set. By using
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Theorem 1.1, we show that if the fixed point set contains a Riemann surface with
genus greater than 1 representing non trivial homology class in H2(X/σ ; �), then the
quotient X/σ with b+

2 (X/σ ) > 1 has a vanishing Seiberg-Witten invariant.
Let X ′ be a closed, smooth, oriented 4-manifold with a smoothly embedded 2-

torus T2 with self-intersection number 0 and let π : X → X ′ be a double cover branched
along T2. In Section 4, we prove a relation between the Seiberg-Witten invariants on X
and those of X ′ when b+

2 (X), b+
2 (X ′) > 2. Ruan and Wang [21] proved the same results

when the genus of the fixed point set is greater than 1 and the fixed point set has self-
intersection number 0. In particular, if σ : X → X is an anti-symplectic involution on
a closed symplectic 4-manifold X whose fixed point set is a torus with self-intersection
number 0, we get a relation between the Seiberg-Witten invariants on X and those of
X/σ.

In Section 5, we calculate Theorem 4.7 for some cases.

2. Seiberg-Witten invariant of the quotient manifold under a symplectic involution
with a 2-dimensional fixed point set. Let X be a closed symplectic 4-manifold with
a symplectic structure ω. A smooth map σ : X → X is a symplectic involution if and
only if σ ∗ω = ω and σ 2 = Id on X.

PROPOSITION 2.1. Let X be a closed symplectic 4-manifold with a symplectic structure
ω. Suppose that σ : X → X is a symplectic involution with a 2-dimensional, compact,
oriented submanifold �. Then � is a symplectic submanifold.

Proof. By definition, J is a ω-compatible almost complex structure if and only
if ω(v, Jv) > 0, for all v �= 0 ∈ TX , and ω(Jv, Jw) = ω(v,w), for all v, w ∈ TX. It is
known that the set of all ω-compatible almost complex structures is not empty and
contractible. Then we can find a ω-compatible metric g such that g(v,w) = ω(v, Jw)
and ω is self-dual with respect to g.

Let T� and N� be, respectively, the tangent and normal complex line bundles of �

in X . The induced map σ∗ on TX |� = T� ⊕ N� satisfies σ∗|T� = Id and σ∗|N�
= −Id.

Then σ acts as an isometry over TX |� for the ω-compatible metric g. Indeed, for
all v1, v2 ∈ T� and w1, w2 ∈ N�, g(vi, wj) = 0, i, j = 1, 2, and

σ ∗g(v1, v2) = g(σ∗v1, σ∗v2) = g(v1, v2),

σ ∗g(w1, w2) = g(σ∗w1, σ∗w2) = g(−w1,−w2) = g(w1, w2).

Then we have

g(Jσ∗v,w) = ω(σ∗v,w) = σ ∗ω(σ∗v,w) = ω(v, σ∗w) = g(Jv, σ∗w)

= σ ∗g(Jv, σ∗w) = g(σ∗Jv,w), for all v,w ∈ TX |�.

Thus g(Jσ∗v,w) = g(σ∗Jv,w), for all v,w ∈ TX |� , and J ◦ σ∗ = σ∗ ◦ J on TX |�.

Then for all v ∈ T�, Jv ∈ T� and so T� is a complex vector space.
For any non zero v ∈ T�, we have Jv ∈ T� and ω(v, Jv) = g(v, v) > 0. Thus the

restriction of ω on � is a symplectic structure on �. �
PROPOSITION 2.2. Let X be a closed symplectic 4-manifold with a symplectic structure

ω. Suppose that σ : X → X is a symplectic involution with a 2-dimensional compact,
oriented submanifold � as a fixed point set. Then the quotient X/σ with b+

2 (X/σ ) ≥ 1 is
a closed symplectic 4-manifold.
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Proof. Let π : X → X/σ be the projection and the image of the fixed point set
π (�) =�′. Then by [24] and [5], the quotient X/σ is a closed, smooth 4-manifold.

By [4], there is a σ -invariant tubular neighborhood N(�) of � in X such that the
restriction π |N(�) : N(�) → π (N(�)) = N(�′) is a double covering with the branch set
�′ that is locally π (z, v) = π (z,−v) = [z, v], for all z ∈ � and v in the normal fiber.

Since σ ∗ω = ω, the σ -invariant symplectic form ω on X defines naturally a
symplectic form ω′ on X/σ by ω′(v′, w′) = ω(v,w) if π∗(v) = v′, π∗(w) = w′ for all
v,w ∈ TX.

Indeed, for all x′ ∈ �′ ⊂ X/σ, the tangent space Tx′X ′ = Tx′�′ ⊕ N�′ |x′ and locally
ω′ = dx′

1dx′
2 + dx′

3dx′
4, where x′ = (x′

1, x′
2) and (x′

3, x′
4) is a coordinate of the normal

fiber. Then there is an element x ∈ � ⊂ X such that π (x) = x′, TxX = Tx� ⊕ N�|x and
locally ω = dx1dx2 + dx3dx4.

Let v = (v1, v2), w = (w1, w2) ∈ TxX = Tx� ⊕ N�|x and π∗v = v′, π∗w = w′. Then
σ∗(v1, v2) = (v1,−v2) and we have

ω(v,w) = (dx1dx2 + dx3dx4)(v,w) = dx1dx2(v1, w1) + dx3dx4(v2, w2),

σ ∗ω(v,w) = ω(σ∗v, σ∗w) = ω((v1,−v2),

(w1,−w2)) = dx1dx2(v1, w1) + dx3dx4(−v2,−w2) = dx1dx2(v1, w1) + dx3dx4(v2, w2).

Thus ω′ is well-defined on �′ ⊂ X/σ. The other case x ∈ X/σ − �′ is clear since
σ ∗ω = ω. Thus we have completed the proof.

EXAMPLE 2.3. [7]. Let X = S2 × S2 be the symplectic 4-manifold with the standard
product symplectic form ω = ω1 + ω2, where ω1 and ω2 are the standard symplectic
forms on S2.

The involution σ : X → X is given by σ (x, y) = (y, x). Then σ is clearly a
symplectic involution and its fixed point set is the diagram (X) = S2. Then the
quotient X/σ = �P2 is symplectic. �

3. Seiberg-Witten invariant of the quotient manifold under an anti-symplectic
involution with a 2-dimensional fixed point set. Let X be a closed symplectic 4-
manifold with a symplectic structure ω. A smooth map σ : X → X is an anti-symplectic
involution if and only if it satisfies σ ∗ω = −ω and σ 2 = Id on X. If X is a Kähler surface
then σ is anti-symplectic if and only if σ is anti-holomorphic; that is, σ∗ ◦ J = − J ◦ σ∗
for the complex structure J on X. For an example of an anti-holomorphic involution,
we can consider a complex conjugation over a complex algebraic surface.

From now on suppose that there is an anti-symplectic involution σ : X → X with
a 2-dimensional, compact submanifold Xσ as a fixed point set. Then we have the
following result.

LEMMA 3.1. Each connected, oriented 2-dimensional component � ⊂ Xσ is a
Lagrangian surface.

Proof. Since σ is anti-symplectic, σ ∗ω = −ω and so σ ∗ω|� = −ω|�. However, over
the fixed point set �, we have

σ ∗ω|� = ω|σ (�) = ω|�.

Thus ω|� = 0 and � is a Lagrangian surface in X. �
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PROPOSITION 3.2. For an anti-symplectic involution σ , we have σ∗ ◦ J = −J ◦ σ∗ for a
ω-compatible almost complex structure J as long as σ is an isometry for the ω-compatible
metric g.

Proof. Let g be a ω-compatible metric such that g(v,w) = ω(v, Jw), for all
v,w ∈ TX , and ω is self-dual with respect to g.

Since σ is anti-symplectic and acts as an isometry for the ω-compatible metric g,
we have

g(Jσ∗v,w) = ω(σ∗v,w) = −σ ∗ω(σ∗v,w) = ω(−v, σ∗w) = g(−Jv, σ∗w)

= σ ∗g(−Jv, σ∗w) = g(−σ∗Jv,w), for all v,w ∈ TX.

Thus we have J ◦ σ∗ =−σ∗ ◦ J on TX. �
LEMMA 3.3. Each connected, oriented 2-dimensional component � ∈ Xσ satisfies

χ (�) +� ·� = 0.

Proof. Let J be the ω-compatible almost complex structure and g be the compatible
metric.

Over TX |� = T� ⊕ N�, the induced map σ∗ acts as σ∗|T� = Id and σ∗|N�
= −Id

where T� and N� are the tangent and normal complex line bundle of � in X ,
respectively. Then σ acts as an isometry on TX |� for the ω-compatible metric g.

Indeed, for all v1, v2 ∈ T� and w1, w2 ∈ N�, g(vi, wj) = 0, for i, j = 1, 2, and

σ ∗g(v1, v2) = g(σ∗v1, σ∗v2) = g(v1, v2),

σ ∗g(w1, w2) = g(σ∗w1, σ∗w2) = g(−w1,−w2) = g(w1, w2).

By Proposition 3.2, we have J ◦ σ∗ = −σ∗ ◦ J on TX |� and so J is an orienta-
tion reversing isomorphism J : Tx� → N�|x, for each x ∈ �. Thus we have χ (�) =
−� ·�. �

THEOREM 3.4. Let (X, ω) be a symplectic 4-manifold and σ : X → X be an anti-
symplectic involution with a 2-dimensional compact submanifold as a fixed point set.
If the fixed point set contains a Riemann surface � with genus g(�) ≥ 2 and 0 �= [�] ∈
H2(X : �), then the quotient manifold X/σ with b+

2 (X/σ ) > 1 has a vanishing Seiberg-
Witten invariant.

Proof. Let π : X → X/σ be the projection map and π (�) =�′. By [5] and [24], we
have �′ ·�′ = 2� ·�.

If the quotient X/σ has a Seiberg-Witten basic class L then, by Theorem 1.1, we
have

|c1(L)[�′]| + �′ ·�′ ≤ −χ (�′). (1)

By Lemma 3.3, χ (�) +� ·� = 0 and so the equation (1) implies that

|c1(L)[�′]| + 2� · � + χ (�) = |c1(L)[�′]| + � · � ≤ 0.

Then we have

|c1(L)[�′]| ≤ −� · �. (2)
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Since g(�) ≥ 2, we have � ·� =−χ (�) > 0 and so equation (2) yields a contradiction.
Thus there is no Seiberg-Witten basic class over X/σ. �

REMARK 3.5. Let X be a closed, smooth, almost complex 4-manifold with
an almost complex structure J. Assume that σ : X → X is an anti-holomorphic
involution with a 2-dimensional, compact submanifold as a fixed point set. Then,
since J ◦ σ∗ = −σ∗ ◦ J on TX, we have an orientation reversing isomorphism J :
Tx� → N�|x, for all x ∈ �.

With the same conditions on � as in Theorem 3.4, the quotient X/σ with
b+

2 (X/σ ) > 1 has a vanishing Seiberg-Witten invariant. �

4. Relationship between Seiberg-Witten invariants on X and X ′ when g(�) = 1
and � · � = 0. Let X ′ be a closed smooth 4-manifold and π : X → X ′ be a double
branched cover along a surface �′. Ruan and Wang [21] established a formula between
the Seiberg-Witten invariants on X and X ′ with b+

2 (X ′), b+
2 (X) > 1 when �′ has genus

greater than 1 and �′ ·�′ = 0. Suppose that H2(X ; �) has no 2-torsion. Let π−1(�′) = �

and Y0 be the complement of a tubular neighborhood of �′.

THEOREM 4.1. [21]. Let π : X → X ′ be a double cover branched along a surface �′

with genus greater than 1, [�′]2 = 0, and such that b+
2 (X ′), b+

2 (X) > 1. Suppose that ξ

is a Spinc-structure on X ′ satisfying c1(det ξ ) · [�′] ≤ 0, and the virtual dimension of the
Seiberg-Witten moduli space and the adjunction term, |c1(det ξ )[�′]| + �′ ·�′ + χ (�′)
both vanish. Moreover let ξ̃ be a Spinc-structure on X whose determinant bundle is
det ξ̃ = π∗(det ξ ) ⊗ PD[�]−1 and whose restriction to Ỹ 0 = π−1(Y0) is the pull-back of
ξ |Y0 . Then the following equality holds:

SWX (ξ̃ ) = SWX ′(ξ ) + kξ (X ′, �′) mod 2,

where kξ (X ′, �′) = �[γ ]∈K∗
Y
SWc(ξ |Y ⊗ γ ) is an invariant of the triple (X ′, �′, [�′]

2 ) and
c = c1(det ξ )2 − 2χ (�′).

Ruan and Wang proved Theorem 4.1 by using the relative Seiberg-Witten
invariants formula [19]. Their idea is to rewrite the Seiberg-Witten invariants on X and
X ′ in terms of relative Seiberg-Witten invariants and relate the relative Seiberg-Witten
invariants using the Seiberg-Witten theory with a �2-action. Under the conditions of
Theorem 4.1, all finite energy solutions of the Seiberg-Witten moduli space defined
over the cylindrical end space are irreducible. They exclude the case in which �′ is a
torus, because here we have reducible solutions of the Seiberg-Witten equations over
the cylindrical extensions of the complement of T2.

In Section 4, we prove a formula between the Seiberg-Witten invariants of X and
X ′ when the genus of �′ is 1 and �′ ·�′ = 0 by using [18] and [21].

Assume that X ′ is a closed, smooth, oriented 4-manifold with a smoothly
embedded 2-torus T2 with self-intersection number 0. Then X ′ is diffeomorphic to
a 4-manifold Y ∪φ(D2 × T2), where Y is a smooth, compact, oriented 4-manifold with
boundary ∂Y ∼= T3, φ : ∂(D2 × T2) → ∂Y is an orientation reversing diffeomorphism
and D2 is a disk in �2 with ∂D2 ∼= S1. We identify X ′ = Y ∪φ(D2 × T2).

By Hirzebruch [14], if [T2] = 2a, a ∈ H2(X ′; �), then there is a branched double
cover π : X → X ′ along [T2]. Then X is a closed, oriented, smooth 4-manifold with
a smoothly embedded torus T̃2 = π−1(T2) with self-intersection number 0 and X is
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diffeomorphic to Ỹ ∪ψ (D2 × T̃2), where Ỹ is an unramified 2-fold cover of Y with
∂Ỹ =π−1(∂Y ) and ψ : ∂(D2 × T̃2) → ∂(Ỹ ) is an orientation reversing diffeomorphism.

Suppose that b+
2 (Y ), b+

2 (Ỹ ) > 1. Since b+
2 (X ′) = b+

2 (Y ) + 1 and b+
2 (X) = b+

2 (Ỹ ) + 1,

we have b+
2 (X ′), b+

2 (X) > 2.

Let γ̃ be a representative of the homology class ψ∗[∂D2 ×{pt}] ∈ H1(∂Ỹ ; �).
Suppose that γ̃ ∈ ker(ĩ∗), where ĩ∗ : H1(∂Ỹ ; �) → H1(Ỹ ; �) is induced from the inclu-
sion ĩ : ∂Ỹ → Ỹ .

Then we can fix a b̃ ∈ H2(Ỹ , ∂Ỹ ; �) such that the boundary ∂ b̃ = γ̃ and
π∗γ̃ = γ = φ∗(2[∂D2 ×{pt}]) ∈ ker(i∗). Thus there exists π∗b̃ = b ∈ H2(Y, ∂Y ; �) such
that ∂b = γ , where i∗ : H1(∂Y ; �) → H1(Y ; �).

Let ξ be a Spinc-structure over X ′ with determinant bundle det ξ = L and
the restriction ξ |D2 × T2 of ξ to D2 × T2 is trivial. Take Y0 = X ′\(D2 × T2) and
Ỹ 0 = π−1(Y0).

LEMMA 4.2. In the same situations as above, there exists a Spinc-structure ξ̃ on X
whose restriction to D2 × T̃2 is trivial, det ξ̃ = L̃ ∼= π∗L ⊗ PD−1[T̃2] and ξ̃ |Ỹ 0

∼= π∗(ξ |Y0 ).

Proof. For the existence of the Spinc-structure ξ̃ with determinant bundle
π∗L ⊗ PD−1[T̃2] and π∗ξ |Y0

∼= ξ̃ |Ỹ0
, see Proposition 5.11 [21]. We only check that

ξ̃ |D2 × T̃2 is trivial.
The subspace D2 × T̃2 is a symplectic 4-manifold with a symplectic structure

ω = dx1dx2 + dy1dy2, where (x1, x2) ∈ T̃2 and (y1, y2) ∈ D2 are coordinates. Then the
positive spinor field W+(ξ̃ ) and the determinant bundle L̃ over D2 × T̃2 can be
decomposed by

W+(ξ̃ )|D2×T̃2 = E ⊗ (II ⊕ K∗
D2×T̃2 ), L̃|D2×T̃2 = E2 ⊗ K∗

D2×T̃2 ,

for some complex line bundle E → D2 × T̃2, where KD2×T̃2 is the canonical class and
II is a trivial line bundle over D2 × T̃2.

Since L|D2×T2 is trivial and L̃|D2×T̃2 = π∗L|D2×T̃2 ⊗ PD−1[T̃2]|D2×T̃2 , L̃|D2×T̃2 is
trivial and 2c1(E) = c1(KD2×T̃2 ).

Because

c1(KD2×T̃2 )[D2 × T̃2] = −c1(T(D2 × T̃2))[D2 × T̃2] = −(χ (T̃2) + T̃2 · T̃2) = 0,

W+(ξ̃ )|D2×T̃2 and L̃|D2×T̃2 are all trivial, where T(D2 × T̃2) is the tangent bundle of
D2 × T̃2. Since W+(ξ̃ ) = ξ̃ ×Spinc(4)�

2, we conclude that ξ̃ |D2×T̃2 is trivial. �
From now on let ξ |Y0 = ξ0, ξ̃0 = π∗(ξ0), det(ξ0) = L0, and det(ξ̃0) = L̃0. Denote

Ỹ ′ = Ỹ ∪T3 T3 × [0,∞) = cl(Ỹ 0) ∪T3 T3 × [0,∞). Fix a flat metric h̃ on T3 and a
corresponding cylindrical end metric g̃ on Ỹ ′ such that g̃ = h̃ + dt2 near the end of
Ỹ ′, t ∈ [0,∞).

Since ξ̃0|T3 is trivial, ξ̃0 is a Spinc-structure on Ỹ ′. Over the space A(L̃0) ×
�(W+

Ỹ ′(ξ̃0)), we define Seiberg-Witten equations. For any compactly supported, real-
valued, smooth, self-dual two-form ζ̃ ∈ �+2(Ỹ ′; �), let MỸ ′ (ξ̃0, g̃, ζ̃ ) be the moduli
space of all finite energy solutions of the perturbed Seiberg-Witten equations by the
action of the gauge group, where the energy of a pair (A, ψ) is defined by

∫
Ỹ ′ |FA|2dvol.

Then, by [18], there is a continuous map ∂̃∞ and a covering map p̃

MỸ ′(ξ̃0, g̃, ζ̃ )
∂̃∞−→ χ0(T3)

p̃−→ χ (T3),
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where χ (T3) is the moduli space of the 3-dimensional Seiberg-Witten equations for
the trivial Spinc-structure and a flat metric over T3 and χ0(T3) is a covering space of
χ (T3) defined in Section 2 [18].

By Lemma 2.3 [18], there is a unique singular point θ̃ = (θ̃0, 0) ∈ χ (T3) such that
ker Dθ̃0

�= 0 and MỸ ′ (L̃0, g̃, ζ̃ ) has singularities induced from θ̃ and it is a compact
manifold with boundary, the boundary mapping to the singular point θ̃ .

Let CỸ be the set of isomorphism classes of Spinc-structures ξ̃0 on the space
Ỹ = cl(X\(D2 × T̃2)) such that ξ̃0|∂Ỹ is trivial. By [18], p̃−1(θ̃) is in one-to-one
correspondence with the set r̃−1(ξ̃0), where r̃ : CỸ ,∂Ỹ → CỸ is the forgetful map. For
the set CỸ ,∂Ỹ , see [18].

By definition [18], the Spinc-structure ξ̃ ′ ∈ ∧+(ξ̃ ) if and only if ξ̃ ′ ∈ r̃−1(ξ̃0) and for
all points in T̃2,

〈c1(L̃), b̃ + [D2 × pt]〉 < 〈c1(det ξ̃ ′), b̃〉.
Then the relative Seiberg-Witten invariant SWỸ ′(ξ̃0) over Ỹ ′ is defined by

SWỸ ′(ξ̃0) = �ξ̃ ′∈∧+(ξ̃ )
(MỸ ′(ξ̃0, g̃, ζ̃ ) ∩ D̃ ∩ ∂̃−1
∞ (θ̃ ξ̃ ′));

that is the sum of the counting numbers of a smooth, compact, zero-dimensional
manifold MỸ ′(ξ̃0, g̃, ζ̃ ) ∩ D̃ ∩ ∂̃−1

∞ (θ̃ ξ̃ ′), where θ̃ ξ̃ ′ ∈ p−1(θ̃) is the element corresponding
to ξ̃ ′ ∈ r̃−1(ξ̃0).

REMARK 4.3. D̃ is a geometric representative of µ̃(pt)
d̃
2 that is similar to the

geometric representative defined in the Donaldson invariant and µ̃ is a map

µ̃ : H0(Ỹ ′; �) → H2(MỸ ′ (ξ̃0, g̃, ζ̃ ); �)

defined by µ̃(pt) = c1(�), where � = π∗(L̃0) is the bundle over MỸ ′ (ξ̃0, g̃, ζ̃ ) × Ỹ ′,
π : MỸ ′(ξ̃0, g̃, ζ̃ ) × Ỹ ′ → Ỹ ′ is the projection map and d̃ is given by
d̃ = 1

4 (c1(L̃0)2 − 2χ (Ỹ ) − 3Sign(Ỹ )). �
Since X is a 2-fold branched cover of X ′, there is an involution σ : X → X

with a fixed point set T̃2. Then σ acts freely over Ỹ ′ and there are involutions
τ̃ : ξ̃0 =π∗ξ0 → ξ̃0 and τ = det τ̃ : L̃0 → L̃0 induced from the involution σ∗ on the
orthonormal frame bundle of Ỹ ′. Then we have an involution

τ ∗ : MỸ ′(ξ̃0, g̃, ζ̃ ) → MỸ ′(ξ̃0, g̃, ζ̃ )

and a �2-invariant moduli space MỸ ′(ξ̃0, g̃, ζ̃ )�2 , which is the fixed point set of τ ∗ and
is independent of the choice of τ.

PROPOSITION 4.4. The maps ∂̃∞ and p̃ are �2-equivariant. Furthermore the singular
point θ̃ ∈χ (T3)�2 .

Proof. Every Spinc-structure ξ� × T3 → � × T3 is a pull back from a Spinc-
structure ξT3 on T3. From the embedding Spinc(3) → Spinc(4) sending (q, x) to
(q, q, x), we have an identification between the positive and negative spinor spaces
W+(ξ� × T3 ) ∼= W−(ξ� × T3 ) ∼= π∗ξT3 .

Let det ξ�×T3 = L�×T3 and det ξT3 = LT3 . Then there is a gauge transformation g :
� × T3 → S1 such that for all connections A ∈A(L�×T3 ), g(A) has no dt-component,
t ∈ �, which is said to be in temporal gauge. Then the Seiberg-Witten equations over
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� × T3 can be written as the gradient flow equations. The critical points of the gradient
flow equation are solutions of 3-dimensional Seiberg-Witten equations over T3.

Thus if we consider a �2-invariant solution of the Seiberg-Witten equations over
� × T3, then it induces a �2-invariant solution of the 3-dimensional Seiberg-Witten
equations over T3. Thus we have the restrictions of ∂̃∞ and π̃ such that

MỸ ′ (ξ̃0, g̃, ζ̃ )�2
∂̃∞−→ χ0(T3)�2

p̃−→ χ (T3)�2 .

If there is a u �= 0 in ker Dθ̃0
, then h(u) �= 0, for all h ∈ �2, because h is an involution.

Since the Dirac operator DA is �2-equivariant, Dh(θ̃0)h(u) = h(Dθ̃0
u) = 0, for all h ∈ �2.

Thus there is a h(u) �= 0 such that h(u) ∈ ker Dh(θ̃0). Since θ̃ = (θ̃0, 0) is the unique point
such that ker Dθ̃0

�= 0, we conclude that, for all h ∈ �2, h(θ̃0) = θ̃0 in χ (T3). �
REMARK 4.5. By [5] and [21], we can choose a generic, �2-invariant

Riemannian metric g̃ and a �2-invariant self-dual two-form ζ̃ over Ỹ ′ such
that (MỸ ′(ξ̃0, g̃, ζ̃ )�2 ∩ D ∩ (∂̃∞)−1(θ̃ ξ̃ ′)) is a smooth, compact, zero-dimensional
manifold, where D is the geometric representative of µ(pt)

d̃
4 , µ is given by

µ : H0(Ỹ ′; �) → H2(MỸ ′ (ξ̃0, g̃, ζ̃ )�2 ; �) and dimMỸ ′(ξ̃0, g̃, ζ̃ )�2 = d̃
2 .

However, in this case, the space (MỸ ′(ξ̃0, g̃, ζ̃ ) ∩ D̃ ∩ ∂̃−1
∞ (θ̃ ξ̃ ′ )) may not be

smooth. �
As in Theorem 3.8 of [21], by comparing the �2-invariant moduli space over Ỹ ′

with the moduli space over Y ′, for g̃ = p∗g and ζ̃ = p∗ζ, there is a homeomorphism

MỸ ′(ξ̃0, g̃, ζ̃ )�2 ∼= MY ′ (ξ0, g, ζ ) � (�η∈KY ′ MY ′ (ξ0 ⊗ η, g, ζ )
)
,

where KY ′ is a subspace of H2(Y ′; �) consisting of isomorphic line bundles η on Y ′

that pull back to the trivial line bundle on Ỹ ′ and η|T3 is trivial.
Then by [18] there are continuous maps ∂∞ : MY ′(ξ0, g, ζ ) → χ0(T3) and

∂ ′
∞ : MY ′(ξ0 ⊗ η, g, ζ ) → χ0(T3).

Let D′ and D′′ be geometric representatives of µ(pt) ∈ H2(MY ′(ξ0, g, ζ ) : �) and
µ′(pt) ∈ H2(MY ′(ξ0 ⊗ η, g, ζ ) : �), respectively.

Then we can define the relative Seiberg-Witten invariant on Y ′ by

SWY ′(ξ0) = �ξ ′∈∧+(ξ )

(
MY ′(ξ0, g, ζ ) ∩ D′ ∩ ∂−1

∞ (θξ ′)
)
,

SWY ′(ξ0 ⊗ η) = �ξη
′∈∧+(ξ⊗η̃)


(
MY ′ (ξ0 ⊗ η, g, ζ ) ∩ D′′ ∩ ∂ ′

∞
−1(

θξ ′
η

))
,

(1)

where η̃ → X is an extension of the bundle η → Y ′.
By Proposition 4.4, we can define the �2-invariant, relative Seiberg-Witten

invariant SWỸ ′(ξ̃0)�2 by

SWỸ ′(ξ̃0)�2 = �ξ̃ ′∈∧+(ξ̃ )

(
MỸ ′ (ξ̃0, g̃, ζ̃ )�2 ∩ D ∩ (∂̃∞)−1(θ̃ ξ̃ ′ )

)
,

where π∗ξ ′ = π∗ξ ′
η = ξ̃ ′.

By using the method of proof as in Theorem 2.2 of [21], for a generic, �2-invariant,
self-dual two-form ζ̃ , we have

SWỸ ′(ξ̃0)�2 = SWỸ ′ (ξ̃0) mod 2. (2)

Let det ξ̃ ′ = L̃′, det ξ ′ = L′, and det ξ ′
η = L′

η.
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PROPOSITION 4.6. ξ̃ ′ ∈ ∧+ (ξ̃ ) if and only if

ξ ′ ∈ ∧+(ξ ) and 〈c1(L′
η), π∗b̃〉 > 〈c1(L), π∗b̃ + π∗[D2 × pt]〉.

Proof. For all A ∈A(L̃) and all points pt ∈ T̃2, we have

〈c1(L̃), b̃ + [D2 × pt]〉 =
∫

b̃+[D2×pt]

i
2π

FA.

Since L̃|D2×T̃2 and L|D2×T2 are trivial and π∗(ξ0) ∼= ξ̃0, we have

〈c1(L̃), b̃ + [D2 × pt]〉 = 〈c1(L̃0), b̃〉,
〈c1(L̃0), b̃〉 = 〈π∗c1(L0), b̃〉 = 〈c1(L0), π∗b̃〉 = 〈c1(L), π∗b̃ + π∗[D2 × pt]〉.

Thus we have

〈c1(L̃), b̃ + [D2 × pt]〉 = 〈c1(L), π∗b̃ + π∗[D2 × pt]〉. (3)

Furthermore,

〈c1(L̃′), b̃〉 = 〈π∗c1(L′), b̃〉 = 〈c1(L′), π∗b̃〉 = 〈c1(L′), b〉,
〈c1(L̃′), b̃〉 = 〈π∗c1(L′

η), b̃〉 = 〈c1(L′
η), π∗b̃〉 = 〈c1(L′

η), b〉, (4)

where ∂b = γ ∈ keri∗.
By equations (3) and (4) we conclude that ξ̃ ′ ∈ ∧+(ξ ) if and only if

ξ ′ ∈ ∧+(ξ ) and 〈c1(L′
η), π∗b̃〉 > 〈c1(L), π∗b̃ + π∗[D2 × pt]〉,

where π∗ξ ′ = π∗ξ ′
η = ξ̃ ′. �

Let �η = {ξ ′
η ∈ r−1(ξ0 ⊗ η)|〈c1(L′

η, π∗b̃〉> 〈c1(L), π∗b̃ + π∗[D2 × pt]〉}.
We now come to our main theorem.

THEOREM 4.7. Let π : X → X ′ be a double cover branched along a torus T2 with
self-intersection 0 and b+

2 (X ′), b+
2 (X) > 2. Suppose that H2(X ; �) has no 2-torsion and

ξ is a Spinc-structure on X ′ such that ξ |D2×T2 is trivial. Let ξ̃ be a Spinc-structure on
X whose restriction to D2 × T̃2 is trivial, the determinant bundle L̃ ∼= π∗L ⊗ PD−1[T̃2]
and ξ̃ |Ỹ0

∼= π∗(ξ |Y0 ). Then we have a relation between the Seiberg-Witten invariants of X
and those of X ′ such that

SWX (ξ̃ ) = SWX ′ (ξ ) + k(X ′, T2, a) mod 2,

where

k(X ′, T2, a) = �η∈KY ′ �ξ ′
η∈�η



(
MY ′(ξ0 ⊗ η, g, ζ ) ∩ D′′ ∩ (∂ ′

∞)−1(θξ ′
η

))
.

Proof. By Proposition 4.6 we have a homeomorphism between smooth, compact,
zero-dimensional spaces

�ξ̃ ′∈∧+(ξ̃ )(MỸ ′(ξ̃0, g̃, ζ̃ )�2 ∩ D ∩ (∂̃∞)−1(θ̃ ξ̃ ′))

∼= �ξ ′∈∧+(ξ )(MY ′(ξ0, g, ζ ) ∩ D′ ∩ (∂∞)−1(θξ ′ ))�,

�η∈KY ′ �ξ ′
η∈�η

(
MY ′ (ξ0 ⊗ η, g, ζ ) ∩ D′′ ∩ (∂ ′

∞)−1(θξ ′
η

))
,

where π∗ξ ′ = π∗ξ ′
η = ξ̃ ′.
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Thus, under mod 2 we have

SWỸ ′(ξ̃0)�2 =SWY ′(ξ0) + �η∈KY ′ �ξ ′
η∈�η



(
MY ′(ξ0 ⊗ η, g, ζ ) ∩ D′′ ∩ (∂ ′

∞)−1(θξ ′
η

))
. (5)

The equation (2) implies that

SWỸ ′(ξ̃0)�2 = SWỸ ′ (ξ̃0) mod 2. (6)

By using Theorem 4.1 of [18] we have

SWX (ξ̃ ) = SWỸ ′(ξ̃0), SWX ′(ξ ) = SWY ′(ξ0) mod 2. (7)

From equations (5), (6), and (7) we conclude that under mod 2,

SWX (ξ̃ ) = SWX ′(ξ ) + �η∈KY ′ �ξ ′
η∈�η



(
MY ′(ξ0 ⊗ η, g, ζ ) ∩ D′′ ∩ (∂ ′

∞)−1(θξ ′
η

))
,

completing the proof. �
REMARK 4.8. By definition, ξ ′′ ∈ ∧+(ξ ⊗ η̃) if and only if ξ ′′ ∈ r−1((ξ ⊗ η̃)|Y ) =

r−1(ξ0 ⊗ η) and 〈c1(det ξ ′′), π∗b̃〉> 〈c1(det(ξ ⊗ η̃)), π∗b̃ + π∗[D2 × pt]〉.
Because we do not know the action of the line bundle η̃ over D2 × T2 and ξ ′

η in
Theorem 4.7 only satisfies

〈c1(L′
η), π∗b̃〉> 〈c1(L), π∗b̃ + π∗[D2 × pt]〉,

we conclude that in general, ∧+(ξ ⊗ η̃) �= �η and

�ξ ′
η∈�η


(MY ′(ξ0 ⊗ η, g, ζ ) ∩ D′′ ∩ (∂ ′
∞)−1(θ (ξ ′

η))) �= SWY ′(ξ0 ⊗ η).

Thus �η∈KY ′ �ξ ′
η∈�η


(MY ′(ξ0 ⊗ η, g, ζ ) ∩ D′ ∩ (∂ ′
∞)−1(θξ ′

η
)) cannot be extended to a

Seiberg-Witten invariant SWX ′(ξ ⊗ η̃) and, as in [21], it is an invariant of (X ′, T2, a),
where 2a = [T2] ∈ 2H2(X ′; �). �

COROLLARY 4.9. Let X be a closed symplectic 4-manifold with b+
2 (X) > 2. Suppose

that σ : X → X is an anti-symplectic involution with a torus T2 as a fixed point set.
Under the conditions for the Spinc-structures ξ and ξ̃ of Theorem 4.7, we have a relation
between the Seiberg-Witten invariants of X and the quotient X/σ = X ′ with b+

2 (X ′) > 2
such that

SWX (ξ̃ ) = SWX ′(ξ ) + k(X ′, T2, a) mod 2.

Proof. There is a branched double cover π : X → X ′ along π (T2) = T2, and so the
required result follows. �

5. Applications. To find the relationship between the Seiberg-Witten invariants
on X and X ′ of Theorem 4.7, we have to calculate the invariant k(X ′, T2, a). As in [21]
we can show that k(X ′, T2, a) = 0 for many cases.

PROPOSITION 5.1. Let X be a Kähler surface with b+
2 (X) > 3 and with the canonical

class KX satisfying K2
X > 0. Let σ : X → X be an anti-holomorphic involution with a

smoothly embedded torus as a fixed point set. Then the Seiberg-Witten invariant on the
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quotient X ′ is

SWX (ξ̃ ) = SWX ′(ξ ) mod 2

for the Spinc-structures ξ̃ and ξ of Theorem 4.7.

Proof. Consider a projection map π : X → X ′ = X/σ . Then, by [24], we have
b+

2 (X) = 2b+
2 (X ′) + 1 and b+

2 (X ′) > 1.

Since σ acts freely on Y ′ and

2χ (Y ′) + 3Sign(Y ′) = 2χ (X ′) + 3Sign(X ′) = K2
X ′ > 0,

by [25] there is no reducible or irreducible solution of the Seiberg-Witten equations
over the cylindrical end space Y ′. Thus the moduli space MY ′(ξ0 ⊗ η, g, µ) is empty
and hence the invariant

k(X ′, T2, a) = �ξ ′
η∈��η∈KY ′ 


(
MY ′(ξ0 ⊗ η, g, µ) ∩ D′ ∩ ∂ ′

∞
−1(

θξ ′
η

)) = 0,

for all cases. Thus the Seiberg-Witten invariant on the quotient X ′ is

SWX (ξ̃ ) = SWX ′(ξ ) mod 2

for the Spinc-structures ξ̃ and ξ in Theorem 4.7. �
In the case considered in [21], g(�′) > 1 and �′ ·�′ = 0. They did not find an

example such that k(X ′, �′, a) �= 0 mod 2 although they believe such an example should
exist. When g(�′) = 1 and �′ · �′ = 0, there is an example such that k(X ′, T2, a) �= 0
mod 2.

EXAMPLE 5.2. Let σ : �P1 × �P1 → �P1 × �P1 be an involution defined by
the diagonal complex conjugation. Then the fixed point set of σ is a torus and
�P1 × �P1/σ = S4. See Section 6 of [21] for this construction.

Let X ′ be a closed symplectic 4-manifold with b+
2 (X ′) > 1. Now we take a connected

sum X = �P1 × �P1
2X ′ which is taken away from the branch set T2. Then there is a
double cover X → X ′
S4 = X ′ branched along T2.

By the Seiberg-Witten vanishing theorem [22], there is no Seiberg-Witten basic
class on X . Thus we have SWX (ξ̃ ) = 0 and SWX ′ (ξ ) = k(X ′, T2, a) mod 2.

Since X ′ is a closed symplectic 4-manifold with b+
2 (X ′) > 1, SWX ′ (ξ ) �= 0 mod 2 for

a Seiberg-Witten basic class ξ. Thus we have

SWX ′(ξ ) = k(X ′, T2, a) �= 0 mod 2. �
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