SEIBERG-WITTEN INVARIANTS AND (ANTI-)SYMPLECTIC INVOLUTIONS

YONG SEUNG CHO and YOON HI HONG

Department of Mathematics, Ewha Women's University, Seoul 120-750, Korea e-mail: yescho@ewha.ac.kr, yoonihong@hanmail.net

(Received 16 November, 2000; accepted 18 February, 2003)

Abstract. Let *X* be a closed, symplectic 4-manifold. Suppose that there is either a symplectic or an anti-symplectic involution $\sigma : X \to X$ with a 2-dimensional compact, oriented submanifold Σ as a fixed point set.

If σ is a symplectic involution then the quotient X/σ with $b_2^+(X/\sigma) \ge 1$ is a symplectic 4-manifold.

If σ is an anti-symplectic involution and Σ has genus greater than 1 representing non-trivial homology class, we prove a vanishing theorem on Seiberg-Witten invariants of the quotient X/σ with $b_2^+(X/\sigma) > 1$.

If Σ is a torus with self-intersection number 0, we get a relation between the Seiberg-Witten invariants on X and those of X/σ with $b_2^+(X)$, $b_2^+(X/\sigma) > 2$ which was obtained in [21] when the genus $g(\Sigma) > 1$ and $\Sigma \cdot \Sigma = 0$.

2000 Mathematics Subject Classification. 53D05, 57M12, 57M50, 57R17, 57R57, 57S25.

1. Introduction. Let X be a closed, oriented Riemannian 4-manifold and let $L \to X$ be a complex line bundle satisfying $c_1(L) = w_2(TX) \mod 2$. Then there is a principal Spin^c(4)-bundle $\xi \to X$ associated to L. We say ξ is a Spin^c-structure associated to L. Let $W^{\pm}(\xi)$ be $(\pm \frac{1}{2})$ -twisted spinor bundles associated to ξ . The determinant bundle det W^{\pm} is isomorphic to L.

Let $\mathcal{A}(L)$ be the set of all Riemannian connections on L. The gauge group $\mathcal{G}(L)$ of all bundle automorphisms on L acts on $\mathcal{A}(L) \times \Gamma(W^+(\xi))$ by $g(A, \psi) = (A - 2g^{-1}dg, g\psi)$, for all $g \in \mathcal{G}(L)$ and $(A, \psi) \in \mathcal{A}(L) \times \Gamma(W^+(\xi))$.

For a unitary connection $A \in \mathcal{A}(L)$ and a positive spinor field $\psi \in \Gamma(W^+(\xi))$ the Seiberg-Witten equations are defined by

$$\begin{cases} F_A^+ = q(\psi), \\ D_A \psi = 0, \end{cases}$$

where $D_A : \Gamma(W^+(\xi)) \to \Gamma(W^-(\xi))$ is the Dirac operator associated with A and q : $C^{\infty}(W^+(\xi)) \to \Omega_X^+(i\mathbb{R})$ is a quadratic map defined by $q(\psi) = \psi \otimes \psi^* - \frac{||\psi||^2}{2}$ Id.

Let $\mathcal{M}(\xi)$ be the moduli space of the gauge equivalence classes of all solutions of the Seiberg-Witten equations. Then $\mathcal{M}(\xi)$ is compact by [16].

This work was supported by a Korea Research Foundation Grant (No KRF-2002-072-C00010).

We consider perturbed Seiberg-Witten equations:

$$\begin{cases} F_A^+ + i\delta = q(\psi), \\ D_A \psi = 0, \end{cases}$$

where δ is a real valued, self-dual 2-form on X.

Then the perturbed moduli space $\mathcal{M}_{\delta}(\xi)$ is a smooth manifold with its dimension dim $\mathcal{M}_{\delta}(\xi) = \frac{1}{4} \{c_1(L)^2[X] - (2\chi(X) + 3\operatorname{Sign}(X))\}$. If the metric on X is chosen so that the perturbed Seiberg-Witten equations admit no reducible solutions, then $\mathcal{M}_{\delta}(\xi)$ is compact. If dim $\mathcal{M}_{\delta}(\xi) = 2d$, then the Seiberg-Witten invariant is defined by

$$\int_{\mathcal{M}_{\delta}(\xi)} c_1(\mathcal{M}_{\delta}(\xi)_0)^d,$$

the integral of the maximal power of the Chern class of the circle bundle $\mathcal{M}_{\delta}(\xi)_0 \to \mathcal{M}_{\delta}(\xi)$, where $\mathcal{M}_{\delta}(\xi)_0$ is the framed moduli space.

If dim $\mathcal{M}_{\delta}(\xi)$ is odd or negative then the Seiberg-Witten invariant is defined to be zero. For details, see [23].

In general, there are infinitely many elements $c_1(L) \in H^2(X; \mathbb{Z})$ satisfying $c_1(L) = w_2(TX) \mod 2$. Each such element induces a Spin^c-structure on X. However there are only finitely many elements in $H^2(X; \mathbb{Z})$ such that their Seiberg-Witten invariants are non-zero. Such an element in $H^2(X; \mathbb{Z})$ is called a *basic class*. Hence the set of basic classes is finite. Furthermore X is said to have *simple type* if all basic classes satisfy $c_1(L)^2[X] = 2\chi(X) + 3\sigma(X)$.

Using the Seiberg-Witten invariants, Taubes [23] proved the non-trivialness of the Seiberg-Witten invariants on symplectic 4-manifolds with $b_2^+ > 1$. In Section 2, we consider a symplectic involution σ over a closed symplectic 4-manifold X with a symplectic structure ω . We show that if the symplectic involution σ has a 2-dimensional, compact, oriented submanifold as a fixed point set, then the quotient X/σ with $b_2^+(X/\sigma) \ge 1$ is a closed symplectic 4-manifold.

If a closed, oriented Riemannian 4-manifold X has a basic class, it gives a minimal genus bound for the embedded surface, called the *adjunction inequality*.

THEOREM 1.1. (Adjunction Inequality [16,19]). Let X be a smooth 4-manifold with $b_2^+(X) > 1$ and a basic class L, and let Σ_X be an embedded connected oriented surface with $\Sigma_X \cdot \Sigma_X \ge 0$ and $[\Sigma_X] \ne 0 \in H_2(X; \mathbb{Z})$. Then we have an inequality

$$-\chi(\Sigma_X) \geq \Sigma_X \cdot \Sigma_X + |c_1(L)[\Sigma_X]|.$$

Ozsváth and Szabó [20] extended Theorem 1.1 for a 4-manifold *X* of Seiberg-Witten simple type with $b_2^+(X) > 1$ and $g(\Sigma_X) > 0$ and $\Sigma_X \cdot \Sigma_X < 0$.

Related with a symplectic 4-manifold, there is a Akbulut's conjecture [15] (Problem 4.104) that if an anti-symplectic involution σ acts on a simply-connected, closed, symplectic 4-manifold X (that is, $\sigma^* \omega = -\omega$ for a symplectic structure ω) with a 2-dimensional smooth surface as a fixed point set, then $X/\sigma = r\mathbb{C}P^2 \sharp s\mathbb{C}\bar{P}^2$ or $nS^2 \times S^2$, for some $r, s, n, \in \mathbb{N}$.

Akbulut [1] showed that if σ is a complex conjugation over a complex algebraic surface X with a real algebraic surface as a fixed point set then $X/\sigma = r\mathbb{C}P^2 \sharp s\mathbb{C}\bar{P}^2$ or $nS^2 \times S^2$ for many cases.

In Section 3, we consider an anti-symplectic involution σ over a symplectic 4manifold X with a 2-dimensional compact submanifold as a fixed point set. By using

402

Theorem 1.1, we show that if the fixed point set contains a Riemann surface with genus greater than 1 representing non trivial homology class in $H_2(X/\sigma;\mathbb{Z})$, then the quotient X/σ with $b_2^+(X/\sigma) > 1$ has a vanishing Seiberg-Witten invariant.

Let X' be a closed, smooth, oriented 4-manifold with a smoothly embedded 2torus T^2 with self-intersection number 0 and let $\pi : X \to X'$ be a double cover branched along T^2 . In Section 4, we prove a relation between the Seiberg-Witten invariants on X and those of X' when $b_2^+(X)$, $b_2^+(X') > 2$. Ruan and Wang [21] proved the same results when the genus of the fixed point set is greater than 1 and the fixed point set has selfintersection number 0. In particular, if $\sigma : X \to X$ is an anti-symplectic involution on a closed symplectic 4-manifold X whose fixed point set is a torus with self-intersection number 0, we get a relation between the Seiberg-Witten invariants on X and those of X/σ .

In Section 5, we calculate Theorem 4.7 for some cases.

2. Seiberg-Witten invariant of the quotient manifold under a symplectic involution with a 2-dimensional fixed point set. Let X be a closed symplectic 4-manifold with a symplectic structure ω . A smooth map $\sigma : X \to X$ is a symplectic involution if and only if $\sigma^* \omega = \omega$ and $\sigma^2 = \text{Id on } X$.

PROPOSITION 2.1. Let X be a closed symplectic 4-manifold with a symplectic structure ω . Suppose that $\sigma : X \to X$ is a symplectic involution with a 2-dimensional, compact, oriented submanifold Σ . Then Σ is a symplectic submanifold.

Proof. By definition, J is a ω -compatible almost complex structure if and only if $\omega(v, Jv) > 0$, for all $v \neq 0 \in TX$, and $\omega(Jv, Jw) = \omega(v, w)$, for all $v, w \in TX$. It is known that the set of all ω -compatible almost complex structures is not empty and contractible. Then we can find a ω -compatible metric g such that $g(v, w) = \omega(v, Jw)$ and ω is self-dual with respect to g.

Let $T\Sigma$ and N_{Σ} be, respectively, the tangent and normal complex line bundles of Σ in X. The induced map σ_* on $TX|_{\Sigma} = T\Sigma \oplus N_{\Sigma}$ satisfies $\sigma_*|_{T\Sigma} = \text{Id}$ and $\sigma_*|_{N_{\Sigma}} = -\text{Id}$.

Then σ acts as an isometry over $TX|_{\Sigma}$ for the ω -compatible metric g. Indeed, for all $v_1, v_2 \in T\Sigma$ and $w_1, w_2 \in N_{\Sigma}$, $g(v_i, w_i) = 0$, i, j = 1, 2, and

$$\sigma^* g(v_1, v_2) = g(\sigma_* v_1, \sigma_* v_2) = g(v_1, v_2),$$

$$\sigma^* g(w_1, w_2) = g(\sigma_* w_1, \sigma_* w_2) = g(-w_1, -w_2) = g(w_1, w_2).$$

Then we have

$$g(J\sigma_*v, w) = \omega(\sigma_*v, w) = \sigma^*\omega(\sigma_*v, w) = \omega(v, \sigma_*w) = g(Jv, \sigma_*w)$$
$$= \sigma^*g(Jv, \sigma_*w) = g(\sigma_*Jv, w), \quad \text{for all} \quad v, w \in TX|_{\Sigma}.$$

Thus $g(J\sigma_*v, w) = g(\sigma_*Jv, w)$, for all $v, w \in TX|_{\Sigma}$, and $J \circ \sigma_* = \sigma_* \circ J$ on $TX|_{\Sigma}$. Then for all $v \in T\Sigma$, $Jv \in T\Sigma$ and so $T\Sigma$ is a complex vector space.

For any non zero $v \in T\Sigma$, we have $Jv \in T\Sigma$ and $\omega(v, Jv) = g(v, v) > 0$. Thus the restriction of ω on Σ is a symplectic structure on Σ .

PROPOSITION 2.2. Let X be a closed symplectic 4-manifold with a symplectic structure ω . Suppose that $\sigma : X \to X$ is a symplectic involution with a 2-dimensional compact, oriented submanifold Σ as a fixed point set. Then the quotient X/σ with $b_2^+(X/\sigma) \ge 1$ is a closed symplectic 4-manifold.

Proof. Let $\pi : X \to X/\sigma$ be the projection and the image of the fixed point set $\pi(\Sigma) = \Sigma'$. Then by [24] and [5], the quotient X/σ is a closed, smooth 4-manifold.

By [4], there is a σ -invariant tubular neighborhood $N(\Sigma)$ of Σ in X such that the restriction $\pi|_{N(\Sigma)} : N(\Sigma) \to \pi(N(\Sigma)) = N(\Sigma')$ is a double covering with the branch set Σ' that is locally $\pi(z, v) = \pi(z, -v) = [z, v]$, for all $z \in \Sigma$ and v in the normal fiber.

Since $\sigma^*\omega = \omega$, the σ -invariant symplectic form ω on X defines naturally a symplectic form ω' on X/σ by $\omega'(v', w') = \omega(v, w)$ if $\pi_*(v) = v', \pi_*(w) = w'$ for all $v, w \in TX$.

Indeed, for all $x' \in \Sigma' \subset X/\sigma$, the tangent space $T_{x'}X' = T_{x'}\Sigma' \oplus N_{\Sigma'}|_{x'}$ and locally $\omega' = dx'_1 dx'_2 + dx'_3 dx'_4$, where $x' = (x'_1, x'_2)$ and (x'_3, x'_4) is a coordinate of the normal fiber. Then there is an element $x \in \Sigma \subset X$ such that $\pi(x) = x'$, $T_x X = T_x \Sigma \oplus N_{\Sigma}|_x$ and locally $\omega = dx_1 dx_2 + dx_3 dx_4$.

Let $v = (v_1, v_2)$, $w = (w_1, w_2) \in T_x X = T_x \Sigma \oplus N_{\Sigma}|_x$ and $\pi_* v = v'$, $\pi_* w = w'$. Then $\sigma_*(v_1, v_2) = (v_1, -v_2)$ and we have

$$\omega(v, w) = (dx_1 dx_2 + dx_3 dx_4)(v, w) = dx_1 dx_2(v_1, w_1) + dx_3 dx_4(v_2, w_2),$$

$$\sigma^* \omega(v, w) = \omega(\sigma_* v, \sigma_* w) = \omega((v_1, -v_2),$$

$$(w_1, -w_2)) = dx_1 dx_2(v_1, w_1) + dx_3 dx_4(-v_2, -w_2) = dx_1 dx_2(v_1, w_1) + dx_3 dx_4(v_2, w_2).$$

Thus ω' is well-defined on $\Sigma' \subset X/\sigma$. The other case $x \in X/\sigma - \Sigma'$ is clear since $\sigma^* \omega = \omega$. Thus we have completed the proof.

EXAMPLE 2.3. [7]. Let $X = S^2 \times S^2$ be the symplectic 4-manifold with the standard product symplectic form $\omega = \omega_1 + \omega_2$, where ω_1 and ω_2 are the standard symplectic forms on S^2 .

The involution $\sigma: X \to X$ is given by $\sigma(x, y) = (y, x)$. Then σ is clearly a symplectic involution and its fixed point set is the diagram $\triangle(X) = S^2$. Then the quotient $X/\sigma = \mathbb{C}P^2$ is symplectic.

3. Seiberg-Witten invariant of the quotient manifold under an anti-symplectic involution with a 2-dimensional fixed point set. Let X be a closed symplectic 4-manifold with a symplectic structure ω . A smooth map $\sigma : X \to X$ is an anti-symplectic involution if and only if it satisfies $\sigma^* \omega = -\omega$ and $\sigma^2 = \text{Id on } X$. If X is a Kähler surface then σ is anti-symplectic if and only if σ is anti-holomorphic; that is, $\sigma_* \circ J = -J \circ \sigma_*$ for the complex structure J on X. For an example of an anti-holomorphic involution, we can consider a complex conjugation over a complex algebraic surface.

From now on suppose that there is an anti-symplectic involution $\sigma : X \to X$ with a 2-dimensional, compact submanifold X^{σ} as a fixed point set. Then we have the following result.

LEMMA 3.1. Each connected, oriented 2-dimensional component $\Sigma \subset X^{\sigma}$ is a Lagrangian surface.

Proof. Since σ is anti-symplectic, $\sigma^* \omega = -\omega$ and so $\sigma^* \omega|_{\Sigma} = -\omega|_{\Sigma}$. However, over the fixed point set Σ , we have

$$\sigma^*\omega|_{\Sigma} = \omega|_{\sigma(\Sigma)} = \omega|_{\Sigma}.$$

Thus $\omega|_{\Sigma} = 0$ and Σ is a Lagrangian surface in X.

PROPOSITION 3.2. For an anti-symplectic involution σ , we have $\sigma_* \circ J = -J \circ \sigma_*$ for a ω -compatible almost complex structure J as long as σ is an isometry for the ω -compatible metric g.

Proof. Let g be a ω -compatible metric such that $g(v, w) = \omega(v, Jw)$, for all $v, w \in TX$, and ω is self-dual with respect to g.

Since σ is anti-symplectic and acts as an isometry for the ω -compatible metric g, we have

$$g(J\sigma_*v, w) = \omega(\sigma_*v, w) = -\sigma^*\omega(\sigma_*v, w) = \omega(-v, \sigma_*w) = g(-Jv, \sigma_*w)$$
$$= \sigma^*g(-Jv, \sigma_*w) = g(-\sigma_*Jv, w), \quad \text{for all} \quad v, w \in TX.$$

Thus we have $J \circ \sigma_* = -\sigma_* \circ J$ on *TX*.

LEMMA 3.3. Each connected, oriented 2-dimensional component $\Sigma \in X^{\sigma}$ satisfies $\chi(\Sigma) + \Sigma \cdot \Sigma = 0$.

Proof. Let J be the ω -compatible almost complex structure and g be the compatible metric.

Over $TX|_{\Sigma} = T\Sigma \oplus N_{\Sigma}$, the induced map σ_* acts as $\sigma_*|_{T\Sigma} = \text{Id}$ and $\sigma_*|_{N_{\Sigma}} = -\text{Id}$ where $T\Sigma$ and N_{Σ} are the tangent and normal complex line bundle of Σ in X, respectively. Then σ acts as an isometry on $TX|_{\Sigma}$ for the ω -compatible metric g. Indeed, for all $v_1, v_2 \in T\Sigma$ and $w_1, w_2 \in N_{\Sigma}, g(v_i, w_j) = 0$, for i, j = 1, 2, and

$$\sigma^* g(v_1, v_2) = g(\sigma_* v_1, \sigma_* v_2) = g(v_1, v_2),$$

$$\sigma^* g(w_1, w_2) = g(\sigma_* w_1, \sigma_* w_2) = g(-w_1, -w_2) = g(w_1, w_2).$$

By Proposition 3.2, we have $J \circ \sigma_* = -\sigma_* \circ J$ on $TX|_{\Sigma}$ and so J is an orientation reversing isomorphism $J : T_x \Sigma \to N_{\Sigma}|_x$, for each $x \in \Sigma$. Thus we have $\chi(\Sigma) = -\Sigma \cdot \Sigma$.

THEOREM 3.4. Let (X, ω) be a symplectic 4-manifold and $\sigma : X \to X$ be an antisymplectic involution with a 2-dimensional compact submanifold as a fixed point set. If the fixed point set contains a Riemann surface Σ with genus $g(\Sigma) \ge 2$ and $0 \ne [\Sigma] \in$ $H_2(X : \mathbb{Z})$, then the quotient manifold X/σ with $b_2^+(X/\sigma) > 1$ has a vanishing Seiberg-Witten invariant.

Proof. Let $\pi : X \to X/\sigma$ be the projection map and $\pi(\Sigma) = \Sigma'$. By [5] and [24], we have $\Sigma' \cdot \Sigma' = 2\Sigma \cdot \Sigma$.

If the quotient X/σ has a Seiberg-Witten basic class L then, by Theorem 1.1, we have

$$|c_1(L)[\Sigma']| + \Sigma' \cdot \Sigma' \le -\chi(\Sigma'). \tag{1}$$

By Lemma 3.3, $\chi(\Sigma) + \Sigma \cdot \Sigma = 0$ and so the equation (1) implies that

$$|c_1(L)[\Sigma']| + 2\Sigma \cdot \Sigma + \chi(\Sigma) = |c_1(L)[\Sigma']| + \Sigma \cdot \Sigma \le 0.$$

Then we have

$$|c_1(L)[\Sigma']| \le -\Sigma \cdot \Sigma. \tag{2}$$

 \square

Since $g(\Sigma) \ge 2$, we have $\Sigma \cdot \Sigma = -\chi(\Sigma) > 0$ and so equation (2) yields a contradiction. Thus there is no Seiberg-Witten basic class over X/σ .

REMARK 3.5. Let X be a closed, smooth, almost complex 4-manifold with an almost complex structure J. Assume that $\sigma: X \to X$ is an anti-holomorphic involution with a 2-dimensional, compact submanifold as a fixed point set. Then, since $J \circ \sigma_* = -\sigma_* \circ J$ on TX, we have an orientation reversing isomorphism J: $T_X \Sigma \to N_{\Sigma}|_X$, for all $x \in \Sigma$.

With the same conditions on Σ as in Theorem 3.4, the quotient X/σ with $b_2^+(X/\sigma) > 1$ has a vanishing Seiberg-Witten invariant.

4. Relationship between Seiberg-Witten invariants on X and X' when $g(\Sigma) = 1$ and $\Sigma \cdot \Sigma = 0$. Let X' be a closed smooth 4-manifold and $\pi : X \to X'$ be a double branched cover along a surface Σ' . Ruan and Wang [21] established a formula between the Seiberg-Witten invariants on X and X' with $b_2^+(X')$, $b_2^+(X) > 1$ when Σ' has genus greater than 1 and $\Sigma' \cdot \Sigma' = 0$. Suppose that $H_2(X; \mathbb{Z})$ has no 2-torsion. Let $\pi^{-1}(\Sigma') = \Sigma$ and Y_0 be the complement of a tubular neighborhood of Σ' .

THEOREM 4.1. [21]. Let $\pi : X \to X'$ be a double cover branched along a surface Σ' with genus greater than 1, $[\Sigma']^2 = 0$, and such that $b_2^+(X')$, $b_2^+(X) > 1$. Suppose that ξ is a Spin^c-structure on X' satisfying $c_1(\det \xi) \cdot [\Sigma'] \leq 0$, and the virtual dimension of the Seiberg-Witten moduli space and the adjunction term, $|c_1(\det \xi)[\Sigma']| + \Sigma' \cdot \Sigma' + \chi(\Sigma')$ both vanish. Moreover let $\tilde{\xi}$ be a Spin^c-structure on X whose determinant bundle is $\det \tilde{\xi} = \pi^*(\det \xi) \otimes PD[\Sigma]^{-1}$ and whose restriction to $\tilde{Y}_0 = \pi^{-1}(Y_0)$ is the pull-back of $\xi|_{Y_0}$. Then the following equality holds:

$$SW_X(\tilde{\xi}) = SW_{X'}(\xi) + k_{\xi}(X', \Sigma') \mod 2,$$

where $k_{\xi}(X', \Sigma') = \Sigma_{[\gamma] \in K_Y^*} \mathcal{S} W_c(\xi|_Y \otimes \gamma)$ is an invariant of the triple $(X', \Sigma', \frac{[\Sigma']}{2})$ and $c = c_1(\det \xi)^2 - 2\chi(\Sigma')$.

Ruan and Wang proved Theorem 4.1 by using the relative Seiberg-Witten invariants formula [19]. Their idea is to rewrite the Seiberg-Witten invariants on X and X' in terms of relative Seiberg-Witten invariants and relate the relative Seiberg-Witten invariants using the Seiberg-Witten theory with a \mathbb{Z}_2 -action. Under the conditions of Theorem 4.1, all finite energy solutions of the Seiberg-Witten moduli space defined over the cylindrical end space are irreducible. They exclude the case in which Σ' is a torus, because here we have reducible solutions of the Seiberg-Witten equations over the cylindrical extensions of the complement of T^2 .

In Section 4, we prove a formula between the Seiberg-Witten invariants of X and X' when the genus of Σ' is 1 and $\Sigma' \cdot \Sigma' = 0$ by using [18] and [21].

Assume that X' is a closed, smooth, oriented 4-manifold with a smoothly embedded 2-torus T^2 with self-intersection number 0. Then X' is diffeomorphic to a 4-manifold $Y \cup_{\phi} (D^2 \times T^2)$, where Y is a smooth, compact, oriented 4-manifold with boundary $\partial Y \cong T^3$, $\phi : \partial (D^2 \times T^2) \to \partial Y$ is an orientation reversing diffeomorphism and D^2 is a disk in \mathbb{R}^2 with $\partial D^2 \cong S^1$. We identify $X' = Y \cup_{\phi} (D^2 \times T^2)$.

By Hirzebruch [14], if $[T^2] = 2a$, $a \in H_2(X'; \mathbb{Z})$, then there is a branched double cover $\pi : X \to X'$ along $[T^2]$. Then X is a closed, oriented, smooth 4-manifold with a smoothly embedded torus $\tilde{T}^2 = \pi^{-1}(T^2)$ with self-intersection number 0 and X is

diffeomorphic to $\tilde{Y} \cup_{\psi} (D^2 \times \tilde{T}^2)$, where \tilde{Y} is an unramified 2-fold cover of Y with $\partial \tilde{Y} = \pi^{-1} (\partial Y)$ and $\psi : \partial (D^2 \times \tilde{T}^2) \to \partial (\tilde{Y})$ is an orientation reversing diffeomorphism.

Suppose that $b_2^+(Y)$, $b_2^+(\tilde{Y}) > 1$. Since $b_2^+(X') = b_2^+(Y) + 1$ and $b_2^+(X) = b_2^+(\tilde{Y}) + 1$, we have $b_2^+(X')$, $b_2^+(X) > 2$.

Let $\tilde{\gamma}$ be a representative of the homology class $\psi_*[\partial D^2 \times \{pt\}] \in H_1(\partial \tilde{Y}; \mathbb{Z})$. Suppose that $\tilde{\gamma} \in \ker(\tilde{i}_*)$, where $\tilde{i}_* : H_1(\partial \tilde{Y}; \mathbb{R}) \to H_1(\tilde{Y}; \mathbb{R})$ is induced from the inclusion $\tilde{i} : \partial \tilde{Y} \to \tilde{Y}$.

Then we can fix a $\tilde{b} \in H_2(\tilde{Y}, \partial \tilde{Y}; \mathbb{R})$ such that the boundary $\partial \tilde{b} = \tilde{\gamma}$ and $\pi_* \tilde{\gamma} = \gamma = \phi_*(2[\partial D^2 \times \{\text{pt}\}]) \in \ker(i_*)$. Thus there exists $\pi_* \tilde{b} = b \in H_2(Y, \partial Y; \mathbb{R})$ such that $\partial b = \gamma$, where $i_* : H_1(\partial Y; \mathbb{R}) \to H_1(Y; \mathbb{R})$.

Let ξ be a Spin^{*c*}-structure over X' with determinant bundle det $\xi = L$ and the restriction $\xi|_{D^2 \times T^2}$ of ξ to $D^2 \times T^2$ is trivial. Take $Y_0 = X' \setminus (D^2 \times T^2)$ and $\tilde{Y}_0 = \pi^{-1}(Y_0)$.

LEMMA 4.2. In the same situations as above, there exists a $Spin^c$ -structure $\tilde{\xi}$ on X whose restriction to $D^2 \times \tilde{T}^2$ is trivial, det $\tilde{\xi} = \tilde{L} \cong \pi^* L \otimes PD^{-1}[\tilde{T}^2]$ and $\tilde{\xi}|_{\tilde{Y}_0} \cong \pi^*(\xi|_{Y_0})$.

Proof. For the existence of the Spin^{*c*}-structure $\tilde{\xi}$ with determinant bundle $\pi^*L \otimes \text{PD}^{-1}[\tilde{T}^2]$ and $\pi^*\xi|_{Y_0} \cong \tilde{\xi}|_{\tilde{Y}_0}$, see Proposition 5.11 [21]. We only check that $\tilde{\xi}|_{D^2 \times \tilde{T}^2}$ is trivial.

The subspace $D^2 \times \tilde{T}^2$ is a symplectic 4-manifold with a symplectic structure $\omega = dx_1 dx_2 + dy_1 dy_2$, where $(x_1, x_2) \in \tilde{T}^2$ and $(y_1, y_2) \in D^2$ are coordinates. Then the positive spinor field $W^+(\tilde{\xi})$ and the determinant bundle \tilde{L} over $D^2 \times \tilde{T}^2$ can be decomposed by

$$W^+(\tilde{\xi})|_{D^2 \times \tilde{T}^2} = E \otimes (\mathrm{II} \oplus K^*_{D^2 \times \tilde{T}^2}), \quad \tilde{L}|_{D^2 \times \tilde{T}^2} = E^2 \otimes K^*_{D^2 \times \tilde{T}^2};$$

for some complex line bundle $E \to D^2 \times \tilde{T}^2$, where $K_{D^2 \times \tilde{T}^2}$ is the canonical class and II is a trivial line bundle over $D^2 \times \tilde{T}^2$.

Since $L|_{D^2 \times T^2}$ is trivial and $\tilde{L}|_{D^2 \times \tilde{T}^2} = \pi^* L|_{D^2 \times \tilde{T}^2} \otimes \mathrm{PD}^{-1}[\tilde{T}^2]|_{D^2 \times \tilde{T}^2}$, $\tilde{L}|_{D^2 \times \tilde{T}^2}$ is trivial and $2c_1(E) = c_1(K_{D^2 \times \tilde{T}^2})$.

Because

$$c_1(K_{D^2 \times \tilde{T}^2})[D^2 \times \tilde{T}^2] = -c_1(T(D^2 \times \tilde{T}^2))[D^2 \times \tilde{T}^2] = -(\chi(\tilde{T}^2) + \tilde{T}^2 \cdot \tilde{T}^2) = 0,$$

 $W^+(\tilde{\xi})|_{D^2 \times \tilde{T}^2}$ and $\tilde{L}|_{D^2 \times \tilde{T}^2}$ are all trivial, where $T(D^2 \times \tilde{T}^2)$ is the tangent bundle of $D^2 \times \tilde{T}^2$. Since $W^+(\tilde{\xi}) = \tilde{\xi} \times_{\text{Spin}^c(4)} \mathbb{C}^2$, we conclude that $\tilde{\xi}|_{D^2 \times \tilde{T}^2}$ is trivial. \Box

From now on let $\xi|_{Y_0} = \xi_0$, $\tilde{\xi}_0 = \pi^*(\xi_0)$, $\det(\xi_0) = L_0$, and $\det(\tilde{\xi}_0) = \tilde{L}_0$. Denote $\tilde{Y}' = \tilde{Y} \cup_{T^3} T^3 \times [0, \infty) = \operatorname{cl}(\tilde{Y}_0) \cup_{T^3} T^3 \times [0, \infty)$. Fix a flat metric \tilde{h} on T^3 and a corresponding cylindrical end metric \tilde{g} on \tilde{Y}' such that $\tilde{g} = \tilde{h} + dt^2$ near the end of $\tilde{Y}', t \in [0, \infty)$.

Since $\tilde{\xi}_0|_{T^3}$ is trivial, $\tilde{\xi}_0$ is a Spin^c-structure on \tilde{Y}' . Over the space $\mathcal{A}(\tilde{L}_0) \times \Gamma(W^+_{\tilde{Y}'}(\tilde{\xi}_0))$, we define Seiberg-Witten equations. For any compactly supported, real-valued, smooth, self-dual two-form $\tilde{\zeta} \in \Omega_+^2(\tilde{Y}'; \mathbb{R})$, let $\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})$ be the moduli space of all finite energy solutions of the perturbed Seiberg-Witten equations by the action of the gauge group, where the energy of a pair (A, ψ) is defined by $\int_{\tilde{Y}'} |F_A|^2 dvol$. Then, by [18], there is a continuous map $\tilde{\partial}_{\infty}$ and a covering map \tilde{p}

$$\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \xrightarrow{\tilde{\partial}_{\infty}} \chi_0(T^3) \xrightarrow{\tilde{p}} \chi(T^3),$$

where $\chi(T^3)$ is the moduli space of the 3-dimensional Seiberg-Witten equations for the trivial Spin^c-structure and a flat metric over T^3 and $\chi_0(T^3)$ is a covering space of $\chi(T^3)$ defined in Section 2 [18].

By Lemma 2.3 [18], there is a unique singular point $\tilde{\theta} = (\tilde{\theta}_0, 0) \in \chi(T^3)$ such that ker $D_{\tilde{\theta}_0} \neq 0$ and $\mathcal{M}_{\tilde{Y}'}(\tilde{\mathcal{L}}_0, \tilde{g}, \tilde{\zeta})$ has singularities induced from $\tilde{\theta}$ and it is a compact manifold with boundary, the boundary mapping to the singular point $\tilde{\theta}$.

Let $C_{\tilde{Y}}$ be the set of isomorphism classes of Spin^{*c*}-structures $\tilde{\xi}_0$ on the space $\tilde{Y} = cl(X \setminus (D^2 \times \tilde{T}^2))$ such that $\tilde{\xi}_0|_{\partial \tilde{Y}}$ is trivial. By [18], $\tilde{p}^{-1}(\tilde{\theta})$ is in one-to-one correspondence with the set $\tilde{r}^{-1}(\tilde{\xi}_0)$, where $\tilde{r} : C_{\tilde{Y},\partial \tilde{Y}} \to C_{\tilde{Y}}$ is the forgetful map. For the set $C_{\tilde{Y},\partial\tilde{Y}}$, see [18].

By definition [18], the Spin^{*c*}-structure $\tilde{\xi}' \in \wedge^+(\tilde{\xi})$ if and only if $\tilde{\xi}' \in \tilde{r}^{-1}(\tilde{\xi}_0)$ and for all points in \tilde{T}^2 ,

$$\langle c_1(\tilde{L}), \tilde{b} + [D^2 \times \text{pt}] \rangle < \langle c_1(\det \tilde{\xi}'), \tilde{b} \rangle.$$

Then the relative Seiberg-Witten invariant $SW_{\tilde{Y}'}(\tilde{\xi}_0)$ over \tilde{Y}' is defined by

$$\mathcal{S}W_{\tilde{Y}'}(\tilde{\xi}_0) = \Sigma_{\tilde{\xi}' \in \wedge^+(\tilde{\xi})} \sharp(\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \cap \tilde{D} \cap \tilde{\partial}_{\infty}^{-1}(\tilde{\theta}_{\tilde{\xi}'}));$$

that is the sum of the counting numbers of a smooth, compact, zero-dimensional manifold $\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \cap \tilde{D} \cap \tilde{\partial}_{\infty}^{-1}(\tilde{\theta}_{\tilde{\xi}'})$, where $\tilde{\theta}_{\tilde{\xi}'} \in p^{-1}(\tilde{\theta})$ is the element corresponding to $\tilde{\xi}' \in \tilde{r}^{-1}(\tilde{\xi}_0)$.

REMARK 4.3. \tilde{D} is a geometric representative of $\tilde{\mu}(pt)^{\frac{d}{2}}$ that is similar to the geometric representative defined in the Donaldson invariant and $\tilde{\mu}$ is a map

$$\tilde{\mu}: H_0(\tilde{Y}'; \mathbb{Q}) \to H^2(\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}); \mathbb{Q})$$

defined by $\tilde{\mu}(\mathrm{pt}) = c_1(\mathbb{L})$, where $\mathbb{L} = \pi^*(\tilde{L}_0)$ is the bundle over $\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \times \tilde{Y}'$, $\pi : \mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \times \tilde{Y}' \to \tilde{Y}'$ is the projection map and \tilde{d} is given by $\tilde{d} = \frac{1}{4}(c_1(\tilde{L}_0)^2 - 2\chi(\tilde{Y}) - 3\mathrm{Sign}(\tilde{Y}))$.

Since X is a 2-fold branched cover of X', there is an involution $\sigma : X \to X$ with a fixed point set \tilde{T}^2 . Then σ acts freely over \tilde{Y}' and there are involutions $\tilde{\tau} : \tilde{\xi}_0 = \pi^* \xi_0 \to \tilde{\xi}_0$ and $\tau = \det \tilde{\tau} : \tilde{L}_0 \to \tilde{L}_0$ induced from the involution σ_* on the orthonormal frame bundle of \tilde{Y}' . Then we have an involution

$$\tau^*: \mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \to \mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})$$

and a \mathbb{Z}_2 -invariant moduli space $\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2}$, which is the fixed point set of τ^* and is independent of the choice of τ .

PROPOSITION 4.4. The maps $\tilde{\partial}_{\infty}$ and \tilde{p} are \mathbb{Z}_2 -equivariant. Furthermore the singular point $\tilde{\theta} \in \chi(T^3)^{\mathbb{Z}_2}$.

Proof. Every Spin^c-structure $\xi_{\mathbb{R}\times T^3} \to \mathbb{R}\times T^3$ is a pull back from a Spin^c-structure ξ_{T^3} on T^3 . From the embedding Spin^c(3) \to Spin^c(4) sending (q, x) to (q, q, x), we have an identification between the positive and negative spinor spaces $W^+(\xi_{\mathbb{R}\times T^3}) \cong W^-(\xi_{\mathbb{R}\times T^3}) \cong \pi^*\xi_{T^3}$.

Let det $\xi_{\mathbb{R}\times T^3} = L_{\mathbb{R}\times T^3}$ and det $\xi_{T^3} = L_{T^3}$. Then there is a gauge transformation $g : \mathbb{R} \times T^3 \to S^1$ such that for all connections $A \in \mathcal{A}(L_{\mathbb{R}\times T^3})$, g(A) has no *dt*-component, $t \in \mathbb{R}$, which is said to be in *temporal gauge*. Then the Seiberg-Witten equations over

 $\mathbb{R} \times T^3$ can be written as the gradient flow equations. The critical points of the gradient flow equation are solutions of 3-dimensional Seiberg-Witten equations over T^3 .

Thus if we consider a \mathbb{Z}_2 -invariant solution of the Seiberg-Witten equations over $\mathbb{R} \times T^3$, then it induces a \mathbb{Z}_2 -invariant solution of the 3-dimensional Seiberg-Witten equations over T^3 . Thus we have the restrictions of $\tilde{\partial}_{\infty}$ and $\tilde{\pi}$ such that

$$\mathcal{M}_{\check{Y}'}(\check{\xi}_0, \tilde{g}, \check{\zeta})^{\mathbb{Z}_2} \xrightarrow{\tilde{\partial}_{\infty}} \chi_0(T^3)^{\mathbb{Z}_2} \xrightarrow{\tilde{p}} \chi(T^3)^{\mathbb{Z}_2}.$$

If there is a $u \neq 0$ in ker $D_{\tilde{\theta}_0}$, then $h(u) \neq 0$, for all $h \in \mathbb{Z}_2$, because h is an involution. Since the Dirac operator D_A is \mathbb{Z}_2 -equivariant, $D_{h(\tilde{\theta}_0)}h(u) = h(D_{\tilde{\theta}_0}u) = 0$, for all $h \in \mathbb{Z}_2$. Thus there is a $h(u) \neq 0$ such that $h(u) \in \ker D_{h(\tilde{\theta}_0)}$. Since $\tilde{\theta} = (\tilde{\theta}_0, 0)$ is the unique point such that $\ker D_{\tilde{\theta}_0} \neq 0$, we conclude that, for all $h \in \mathbb{Z}_2$, $h(\tilde{\theta}_0) = \tilde{\theta}_0$ in $\chi(T^3)$.

REMARK 4.5. By [5] and [21], we can choose a generic, \mathbb{Z}_2 -invariant Riemannian metric \tilde{g} and a \mathbb{Z}_2 -invariant self-dual two-form $\tilde{\zeta}$ over \tilde{Y}' such that $(\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2} \cap D \cap (\tilde{\partial}_{\infty})^{-1}(\tilde{\theta}_{\tilde{\xi}'}))$ is a smooth, compact, zero-dimensional manifold, where D is the geometric representative of $\mu(\mathrm{pt})^{\frac{d}{4}}$, μ is given by $\mu: H_0(\tilde{Y}'; \mathbb{Q}) \to H^2(\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2}; \mathbb{Q})$ and dim $\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2} = \frac{d}{2}$.

However, in this case, the space $(\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta}) \cap \tilde{D} \cap \tilde{\partial}_{\infty}^{-1}(\tilde{\tilde{\theta}}_{\tilde{\xi}'}))$ may not be smooth.

As in Theorem 3.8 of [21], by comparing the \mathbb{Z}_2 -invariant moduli space over \tilde{Y}' with the moduli space over Y', for $\tilde{g} = p^*g$ and $\tilde{\zeta} = p^*\zeta$, there is a homeomorphism

$$\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2} \cong \mathcal{M}_{Y'}(\xi_0, g, \zeta) \amalg \big(\amalg_{\eta \in \mathcal{K}_{Y'}} \mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \big),$$

where $\mathcal{K}_{Y'}$ is a subspace of $H^2(Y';\mathbb{Z})$ consisting of isomorphic line bundles η on Y' that pull back to the trivial line bundle on \tilde{Y}' and $\eta|_{T^3}$ is trivial.

Then by [18] there are continuous maps $\partial_{\infty} : \mathcal{M}_{Y'}(\xi_0, g, \zeta) \to \chi_0(T^3)$ and $\partial'_{\infty} : \mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \to \chi_0(T^3)$.

Let D' and D'' be geometric representatives of $\mu(\text{pt}) \in H^2(\mathcal{M}_{Y'}(\xi_0, g, \zeta) : \mathbb{Q})$ and $\mu'(\text{pt}) \in H^2(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) : \mathbb{Q})$, respectively.

Then we can define the relative Seiberg-Witten invariant on Y' by

$$\mathcal{S}W_{Y'}(\xi_0) = \Sigma_{\xi' \in \wedge^+(\xi)} \sharp \left(\mathcal{M}_{Y'}(\xi_0, g, \zeta) \cap D' \cap \partial_{\infty}^{-1}(\theta_{\xi'}) \right),$$

$$\mathcal{S}W_{Y'}(\xi_0 \otimes \eta) = \Sigma_{\xi_{\eta}' \in \wedge^+(\xi \otimes \tilde{\eta})} \sharp \left(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D'' \cap \partial_{\infty}'^{-1}(\theta_{\xi_{\eta}'}) \right),$$
(1)

where $\tilde{\eta} \to X$ is an extension of the bundle $\eta \to Y'$.

By Proposition 4.4, we can define the \mathbb{Z}_2 -invariant, relative Seiberg-Witten invariant $SW_{\tilde{Y}'}(\tilde{\xi}_0)^{\mathbb{Z}_2}$ by

$$\mathcal{S}W_{\tilde{Y}'}(\tilde{\xi}_0)^{\mathbb{Z}_2} = \Sigma_{\tilde{\xi}' \in \wedge^+(\tilde{\xi})} \sharp \big(\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2} \cap D \cap (\tilde{\partial}_{\infty})^{-1}(\tilde{\theta}_{\tilde{\xi}'}) \big),$$

where $\pi^* \xi' = \pi^* \xi'_n = \tilde{\xi}'$.

By using the method of proof as in Theorem 2.2 of [21], for a generic, \mathbb{Z}_2 -invariant, self-dual two-form $\tilde{\zeta}$, we have

$$\mathcal{SW}_{\tilde{Y}'}(\tilde{\xi}_0)^{\mathbb{Z}_2} = \mathcal{SW}_{\tilde{Y}'}(\tilde{\xi}_0) \mod 2.$$
⁽²⁾

Let det $\tilde{\xi}' = \tilde{L}'$, det $\xi' = L'$, and det $\xi'_n = L'_n$.

PROPOSITION 4.6. $\tilde{\xi}' \in \wedge^+ (\tilde{\xi})$ *if and only if*

$$\xi' \in \wedge^+(\xi) \quad and \quad \langle c_1(L'_\eta), \pi_*\tilde{b} \rangle > \langle c_1(L), \pi_*\tilde{b} + \pi_*[D^2 \times pt] \rangle.$$

Proof. For all $A \in \mathcal{A}(\tilde{L})$ and all points $pt \in \tilde{T}^2$, we have

$$\langle c_1(\tilde{L}), \tilde{b} + [D^2 \times \text{pt}] \rangle = \int_{\tilde{b} + [D^2 \times \text{pt}]} \frac{i}{2\pi} F_A$$

Since $\tilde{L}|_{D^2 \times \tilde{T}^2}$ and $L|_{D^2 \times T^2}$ are trivial and $\pi^*(\xi_0) \cong \tilde{\xi}_0$, we have

$$\langle c_1(\tilde{L}), \tilde{b} + [D^2 \times \text{pt}] \rangle = \langle c_1(\tilde{L}_0), \tilde{b} \rangle,$$

$$\langle c_1(\tilde{L}_0), \tilde{b} \rangle = \langle \pi^* c_1(L_0), \tilde{b} \rangle = \langle c_1(L_0), \pi_* \tilde{b} \rangle = \langle c_1(L), \pi_* \tilde{b} + \pi_* [D^2 \times \text{pt}] \rangle.$$

Thus we have

$$\langle c_1(\tilde{L}), \tilde{b} + [D^2 \times \text{pt}] \rangle = \langle c_1(L), \pi_* \tilde{b} + \pi_* [D^2 \times \text{pt}] \rangle.$$
(3)

Furthermore,

$$\langle c_1(\tilde{L}'), \tilde{b} \rangle = \langle \pi^* c_1(L'), \tilde{b} \rangle = \langle c_1(L'), \pi_* \tilde{b} \rangle = \langle c_1(L'), b \rangle, \langle c_1(\tilde{L}'), \tilde{b} \rangle = \langle \pi^* c_1(L'_n), \tilde{b} \rangle = \langle c_1(L'_n), \pi_* \tilde{b} \rangle = \langle c_1(L'_n), b \rangle,$$

$$(4)$$

where $\partial b = \gamma \in \ker i_*$.

By equations (3) and (4) we conclude that $\tilde{\xi}' \in \wedge^+(\xi)$ if and only if

$$\xi' \in \wedge^+(\xi)$$
 and $\langle c_1(L'_\eta), \pi_* \hat{b} \rangle > \langle c_1(L), \pi_* \hat{b} + \pi_* [D^2 \times \text{pt}] \rangle$

where $\pi^* \xi' = \pi^* \xi'_n = \tilde{\xi}'$.

Let $\mathbb{O}_{\eta} = \{\xi_{\eta}' \in r^{-1}(\xi_0 \otimes \eta) | \langle c_1(L_{\eta}', \pi_* \tilde{b}) \rangle \rangle \langle c_1(L), \pi_* \tilde{b} + \pi_* [D^2 \times \text{pt}] \rangle \}.$ We now come to our main theorem.

THEOREM 4.7. Let $\pi : X \to X'$ be a double cover branched along a torus T^2 with self-intersection 0 and $b_2^+(X')$, $b_2^+(X) > 2$. Suppose that $H_2(X; \mathbb{Z})$ has no 2-torsion and ξ is a Spin^c-structure on X' such that $\xi|_{D^2 \times T^2}$ is trivial. Let $\tilde{\xi}$ be a Spin^c-structure on X whose restriction to $D^2 \times \tilde{T}^2$ is trivial, the determinant bundle $\tilde{L} \cong \pi^* L \otimes PD^{-1}[\tilde{T}^2]$ and $\tilde{\xi}|_{\tilde{Y}_0} \cong \pi^*(\xi|_{Y_0})$. Then we have a relation between the Seiberg-Witten invariants of X and those of X' such that

$$\mathcal{S}W_X(\tilde{\xi}) = \mathcal{S}W_{X'}(\xi) + k(X', T^2, a) \mod 2,$$

where

$$k(X', T^2, a) = \Sigma_{\eta \in \mathcal{K}_{Y'}} \Sigma_{\xi'_{\eta} \in \mathbb{O}_{\eta}} \sharp \left(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D'' \cap (\partial'_{\infty})^{-1}(\theta_{\xi'_{\eta}}) \right).$$

Proof. By Proposition 4.6 we have a homeomorphism between smooth, compact, zero-dimensional spaces

$$\begin{split} & \amalg_{\tilde{\xi}' \in \wedge^+(\tilde{\xi})} (\mathcal{M}_{\tilde{Y}'}(\tilde{\xi}_0, \tilde{g}, \tilde{\zeta})^{\mathbb{Z}_2} \cap D \cap (\bar{\partial}_{\infty})^{-1}(\bar{\theta}_{\tilde{\xi}'})) \\ & \cong \amalg_{\xi' \in \wedge^+(\xi)} (\mathcal{M}_{Y'}(\xi_0, g, \zeta) \cap D' \cap (\partial_{\infty})^{-1}(\theta_{\xi'})) \amalg, \\ & \amalg_{\eta \in \mathcal{K}_{Y'}} \amalg_{\xi_{\eta}' \in \mathbb{O}_{\eta}} (\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D'' \cap (\partial_{\infty}')^{-1}(\theta_{\xi_{\eta}'})), \end{split}$$

where $\pi^* \xi' = \pi^* \xi'_{\eta} = \tilde{\xi}'$.

Thus, under mod 2 we have

$$\mathcal{S}W_{\tilde{Y}'}(\tilde{\xi}_0)^{\mathbb{Z}_2} = \mathcal{S}W_{Y'}(\xi_0) + \Sigma_{\eta \in \mathcal{K}_{Y'}} \Sigma_{\xi'_\eta \in \mathbb{O}_\eta} \sharp \left(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D'' \cap (\partial'_\infty)^{-1} (\theta_{\xi'_\eta}) \right).$$
(5)

The equation (2) implies that

$$SW_{\tilde{Y}'}(\tilde{\xi}_0)^{\mathbb{Z}_2} = SW_{\tilde{Y}'}(\tilde{\xi}_0) \mod 2.$$
(6)

By using Theorem 4.1 of [18] we have

$$\mathcal{S}W_X(\tilde{\xi}) = \mathcal{S}W_{\tilde{Y}'}(\tilde{\xi}_0), \quad \mathcal{S}W_{X'}(\xi) = \mathcal{S}W_{Y'}(\xi_0) \mod 2.$$
(7)

From equations (5), (6), and (7) we conclude that under mod 2,

$$\mathcal{S}W_X(\tilde{\xi}) = \mathcal{S}W_{X'}(\xi) + \Sigma_{\eta \in \mathcal{K}_{Y'}} \Sigma_{\xi_{\eta}' \in \mathbb{O}_{\eta}} \sharp \left(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D'' \cap (\partial_{\infty}')^{-1} (\theta_{\xi_{\eta}'}) \right),$$

completing the proof.

REMARK 4.8. By definition, $\xi'' \in \wedge^+(\xi \otimes \tilde{\eta})$ if and only if $\xi'' \in r^{-1}((\xi \otimes \tilde{\eta})|_Y) = r^{-1}(\xi_0 \otimes \eta)$ and $\langle c_1(\det \xi''), \pi_* \tilde{b} \rangle > \langle c_1(\det(\xi \otimes \tilde{\eta})), \pi_* \tilde{b} + \pi_*[D^2 \times \text{pt}] \rangle$.

Because we do not know the action of the line bundle $\tilde{\eta}$ over $D^2 \times T^2$ and ξ'_{η} in Theorem 4.7 only satisfies

$$\langle c_1(L'_n), \pi_* \tilde{b} \rangle > \langle c_1(L), \pi_* \tilde{b} + \pi_* [D^2 \times \text{pt}] \rangle,$$

we conclude that in general, $\wedge^+(\xi \otimes \tilde{\eta}) \neq \mathbb{O}_{\eta}$ and

$$\Sigma_{\xi'_n \in \mathbb{O}_n} \sharp(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D'' \cap (\partial'_{\infty})^{-1}(\theta(\xi'_n))) \neq \mathcal{S}W_{Y'}(\xi_0 \otimes \eta).$$

Thus $\sum_{\eta \in \mathcal{K}_{Y'}} \sum_{\xi'_{\eta} \in \mathbb{O}_{\eta}} \sharp(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \zeta) \cap D' \cap (\partial'_{\infty})^{-1}(\theta_{\xi'_{\eta}}))$ cannot be extended to a Seiberg-Witten invariant $SW_{X'}(\xi \otimes \tilde{\eta})$ and, as in [21], it is an invariant of (X', T^2, a) , where $2a = [T^2] \in 2H_2(X'; \mathbb{Z})$.

COROLLARY 4.9. Let X be a closed symplectic 4-manifold with $b_2^+(X) > 2$. Suppose that $\sigma : X \to X$ is an anti-symplectic involution with a torus T^2 as a fixed point set. Under the conditions for the Spin^c-structures ξ and $\tilde{\xi}$ of Theorem 4.7, we have a relation between the Seiberg-Witten invariants of X and the quotient $X/\sigma = X'$ with $b_2^+(X') > 2$ such that

$$\mathcal{S}W_X(\tilde{\xi}) = \mathcal{S}W_{X'}(\xi) + k(X', T^2, a) \mod 2.$$

Proof. There is a branched double cover $\pi : X \to X'$ along $\pi(T^2) = T^2$, and so the required result follows.

5. Applications. To find the relationship between the Seiberg-Witten invariants on X and X' of Theorem 4.7, we have to calculate the invariant $k(X', T^2, a)$. As in [21] we can show that $k(X', T^2, a) = 0$ for many cases.

PROPOSITION 5.1. Let X be a Kähler surface with $b_2^+(X) > 3$ and with the canonical class K_X satisfying $K_X^2 > 0$. Let $\sigma : X \to X$ be an anti-holomorphic involution with a smoothly embedded torus as a fixed point set. Then the Seiberg-Witten invariant on the

 \Box

quotient X' is

$$\mathcal{S}W_X(\tilde{\xi}) = \mathcal{S}W_{X'}(\xi) \mod 2$$

for the Spin^c-structures $\tilde{\xi}$ and ξ of Theorem 4.7.

Proof. Consider a projection map $\pi : X \to X' = X/\sigma$. Then, by [24], we have $b_2^+(X) = 2b_2^+(X') + 1$ and $b_2^+(X') > 1$.

Since σ acts freely on \overline{Y}' and

$$2\chi(Y') + 3\text{Sign}(Y') = 2\chi(X') + 3\text{Sign}(X') = K_{X'}^2 > 0$$

by [25] there is no reducible or irreducible solution of the Seiberg-Witten equations over the cylindrical end space Y'. Thus the moduli space $\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \mu)$ is empty and hence the invariant

$$k(X', T^2, a) = \sum_{\xi'_n \in \mathbb{O}} \sum_{\eta \in \mathcal{K}_{Y'}} \sharp \left(\mathcal{M}_{Y'}(\xi_0 \otimes \eta, g, \mu) \cap D' \cap \partial_{\infty}'^{-1}(\theta_{\xi'_n}) \right) = 0,$$

for all cases. Thus the Seiberg-Witten invariant on the quotient X' is

$$\mathcal{S}W_X(\tilde{\xi}) = \mathcal{S}W_{X'}(\xi) \mod 2$$

for the Spin^{*c*}-structures $\tilde{\xi}$ and ξ in Theorem 4.7.

In the case considered in [21], $g(\Sigma') > 1$ and $\Sigma' \cdot \Sigma' = 0$. They did not find an example such that $k(X', \Sigma', a) \neq 0 \mod 2$ although they believe such an example should exist. When $g(\Sigma') = 1$ and $\Sigma' \cdot \Sigma' = 0$, there is an example such that $k(X', T^2, a) \neq 0 \mod 2$.

EXAMPLE 5.2. Let $\sigma : \mathbb{C}P^1 \times \mathbb{C}P^1 \to \mathbb{C}P^1 \times \mathbb{C}P^1$ be an involution defined by the diagonal complex conjugation. Then the fixed point set of σ is a torus and $\mathbb{C}P^1 \times \mathbb{C}P^1 / \sigma = S^4$. See Section 6 of [21] for this construction.

Let X' be a closed symplectic 4-manifold with $b_2^+(X') > 1$. Now we take a connected sum $X = \mathbb{C}P^1 \times \mathbb{C}P^1 \sharp 2X'$ which is taken away from the branch set T^2 . Then there is a double cover $X \to X' \sharp S^4 = X'$ branched along T^2 .

By the Seiberg-Witten vanishing theorem [22], there is no Seiberg-Witten basic class on X. Thus we have $SW_X(\tilde{\xi}) = 0$ and $SW_{X'}(\xi) = k(X', T^2, a) \mod 2$.

Since X' is a closed symplectic 4-manifold with $b_2^+(X') > 1$, $SW_{X'}(\xi) \neq 0 \mod 2$ for a Seiberg-Witten basic class ξ . Thus we have

$$\mathcal{S}W_{X'}(\xi) = k(X', T^2, a) \neq 0 \mod 2.$$

REFERENCES

1. S. Akbulut, On quotients of complex surfaces under complex conjugation, J. Reine Angew. Math. 447 (1994), 83–90.

2. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications, *Ann. of Math.* **88** (1968), 451–491.

3. W. Barth, C. Peters and A. Van de Ven, *Compact complex surfaces* (Springer-Verlag, 1984).

4. N. Bredon, Introduction to compact transformation groups (Academic Press, 1972).

5. Y. S. Cho, Finite group actions on the moduli space of self-dual connections I, *Trans. Amer. Math. Soc.* 323 (1991), 233–261.

 \square

6. Y. S. Cho, Finite group actions on symplectic four-manifolds with finite fundamental groups, *J. Austral. Math. Soc. Ser. A* 66 (1999), 287–296.

7. Y. S. Cho, Finite group action and Gromov-Witten invariant, Preprint.

8. Y. S. Cho and Y. H. Hong, Cyclic group actions on 4-manifold, Acta. Math. Hung. 94 (4) (2002), 333–350.

9. S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, *Bull. Amer. Math. Soc.* 33 (1996), 45–70.

10. S. K. Donaldson and P. B. Kronheimer, *The geometry of 4-manifold* (Clarendon Press, Oxford, 1990).

11. R. Fintushel and R. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), 335-364.

12. R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), 527–595.

13. R. E. Gompf and A. I. Stipsciz, *4-manifolds and Kirby calculus*, Graduate Studies in Mathematics, Vol. 20, (Amer. Math. Soc., Providence, Rhode Island, 1999).

14. F. Hirzebruch, The signature of ramified coverings in *Global analysis in honor of K. Kodaira* (D. Spencer and S. Iyanage eds.) (Academic Press, 1969), 253–265.

15. R. Kirby, Problems in low-dimensional topology (Berkeley – 22 Dec 95).

16. P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, *Math. Res. Letters* 1 (1994), 797–808.

17. D. McDuff and D. Salamon, *Introduction to symplectic topology* (Clarendon Press, Oxford, 1995).

18. J. W. Morgan, T. S. Mrowka and Z. Szabó, Product formulas along T^3 for Seiberg-Witten invariants, *Math. Res. Letters* 4 (1997), 915–929.

19. J. W. Morgan, Z. Szabó and C. H. Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, *J. Differential Geom.* **44** (1996), 706–788.

20. P. Ozsváth and Z. Szabo, The symplectic Thom conjecture, *Ann. of Math. (2)* **151** (2000), 93–124.

21. Y. Ruan and S. Wang, Seiberg-Witten invariants and double covers of 4-manifolds, *Comm. Anal. Geom.* **8** (2000), No. 3, 477–515.

22. D. Salamon, Spin geometry and Seiberg-Witten invariants (University of Warwick, October 2, 1995).

23. C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, *Math. Res. Letters* 1 (1994), 809–822.

24. S. Wang, Gauge theory and involutions (Oxford University Thesis, 1990).

25. S. Wang, A vanishing theorem for Seiberg-Witten invariants, *Math. Res. Letters* 2 (1995), 305–310.