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A prime example of why matter-dominated lattices are relevant comes from the prospect of a neutrino 

factory or a muon collider [1]. As muon branching fractions are nearly 100% 𝜇− → 𝑒−�̅�𝑒𝜈𝜇 and 𝜇+ →

𝑒+𝜈𝑒�̅�𝜇, there are obvious advantages of a muon-sourced neutrino beam. Also, due to the fact that 

muons are roughly 200 times heavier than electrons, synchrotron radiation is not an issue, and as a result 

a high-energy muon collider (√s = 6 TeV) could be built on a relatively compact site (where the collider 

ring is about 6 km in circumference). This energy level is experimentally unprecedented in the leptonic 

sector, since a circular electron accelerator would be restricted by vast amounts of synchrotron radiation. 

At lower energy, a muon collider could serve as a Higgs factory (√s = 126 GeV), with possible new 

physics via the observation of Higgs to lepton coupling. This is advantageous since the Higgs 

theoretically couples more strongly to muons than electrons because of the small electron mass.  

 

However, muon-based facilities are not without their challenges. Synthetic muon creation comes from 

the collision of protons with a fixed target. The resultant spray of particles largely contains kaons (which 

decay primarily into pions and muons), pions (which decay primarily into muons), and rogue protons. 

High-intensity collection necessarily entails a large initial phase space volume. The resultant cloud of 

muons must be collected, focused, and accelerated well within the muon lifetime (2.2 μs at rest). 

Therefore, beam cooling (beam size reduction) techniques which are commonly used for protons and 

electrons cannot be used, as they are too slow. Due to the short-lived nature of the muon, novel beam 

cooling techniques have been explored and ionization cooling in particular has been shown to work quite 

well [2]. Here, muons traverse a certain amount of material in order to lose energy in both longitudinal 

and transverse directions due to ionization. The energy is then restored in the longitudinal direction only 

by passing through a set of RF cavities, leading to an overall reduction in the transverse direction 

(cooling). Schematically, this can be seen in Figure 1, where this process is split into three parts. 

 

COSY Infinity (COSY) [3,4] is a simulation tool used in the design, analysis, and optimization of 

particle accelerators, spectrographs, beam lines, electron microscopes, and other such devices, with its 

use in accelerator lattice design being of particular interest here. COSY uses the transfer map approach, 

in which the overall effect of the optics on a beam of particles is evaluated using differential algebra. 

Along with tracking of particles through a lattice, COSY has a plethora of analysis and optimization 

tools, including computation of Twiss parameters, tunes and nonlinear tune shifts, high-order 

nonlinearities; analysis of properties of repetitive motion via chromaticities, normal form analysis, and 

symplectic tracking; analysis of single-pass systems resolutions, reconstructive aberration correction, 

and consideration of detector errors; built-in local and global optimizers; and analysis of spin dynamics. 

COSY is particularly advantageous to use when considering the efficient use of computational time. 

This is due to the transfer map methods that COSY employs. Given an initial phase space vector 𝐙𝟎 at s0 

that describes the relative position of a particle with respect to the reference particle, and assuming the 

future evolution of the system is uniquely determined by 𝐙𝟎, we can define a function called the transfer 

map relating the initial conditions at s0 to the conditions at s via 𝐙(s) = 𝓜(s0, s) ∗ 𝐙(s0). The transfer 
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map formally summarizes the entire action of the system. The composition of two maps yields another 

map: 𝓜(s0, s1) ∘ 𝓜(s1, s2) = 𝓜(s0, s2), which means that transfer maps of systems can be built up 

from the transfer maps of the pieces. Computationally this is advantageous because once calculated, it is 

much faster to apply a single transfer map to a distribution of particles than to track individual particles 

through multiple lattice elements. 

 

 

 

 

 

 

Figure 1. Vector representation of ionization cooling. 1) Energy loss in material, both transverse and 

longitudinal momenta are reduced. 2) Increase in the transverse momentum due to multiple scattering.  

3) Re-acceleration through the RF cavity resulting in the net reduction in the transverse momentum. 

 

Currently supported elements in COSY include various magnetic and electric multipoles (with fringe 

effects), homogeneous and inhomogeneous bending elements, Wien filters, wigglers and undulators, 

cavities, cylindrical electromagnetic lenses, general particle optical elements, and deterministic 

absorbers of intricate shapes described by polynomials of arbitrary order, with the last element being of 

particular interest for this study. The term deterministic is deliberately emphasized, since the polynomial 

absorber acts like a drift with the average (Bethe-Bloch) energy loss. The advantage of this is that the 

user must only specify six material parameters in order for COSY to calculate this energy loss: the 

atomic number, atomic mass, density, ionization potential, and two correction parameters. 

 

However, this element only takes into account deterministic effects (producing the same final result 

every time for the same initial condition), not stochastic effects (intrinsically random effects such as 

multiple scattering and energy straggling). For a realistic simulation of a beam of particles through 

matter, one needs to take into account both the former and the latter. The evolution of the normalized 

transverse emittance can be described by the following equation: 
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𝑑𝑧
≈ −

1
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where ϵn is the normalized emittance, z is the path length, Eμ is the muon beam energy, β =  v/c, X0 is 

the radiation length of the absorber material, β⊥ is the betatron function, and Es is the characteristic 

scattering energy [5]. Here, two competing effects can be seen: the first term is the cooling (reduction of 

phase space beam size) component from ionization energy loss and the second term is the heating 

(increase of phase space beam size) term from multiple scattering. This highlights the importance of the 

stochastic terms, as the only deterministic term is the expected (Bethe-Bloch) energy loss, 〈𝑑𝐸𝜇/𝑑𝑧〉. 
 

It is clear why stochastic effects do not fit well into the transfer map paradigm: two identical particles 

with identical initial coordinates may follow two different paths inside the absorber material due to the 

intrinsically random nature of multiple scattering. Therefore, it is not possible to construct a traditional 

transfer map that represents the absorber, as this would require uniquely relating the coordinates after 

the absorber to the coordinates before the absorber. In light of this, the effort of integrating stochastic 
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processes into COSY focuses on particle-by-particle propagation (as opposed to transfer map methods). 

Furthermore, in the spirit of efficiency this integration should endeavor to greatly increase the step size 

of such algorithms, and to include other possible improvements. 

 

The typical treatment of multiple scattering involves three steps: free propagation, angular correction, 

and lateral displacement correction, as depicted by Figure 2. As previously discussed, Figure 2 shows 

only one of many possibilities. The angular correction and lateral displacement are chosen from 

probability distributions, which vary by material, absorber length, and initial energy. Figure 3 clearly 

shows the dependence of the lateral correction on absorber length corresponding to longitudinal 

momentum losses of 5, 10, 15, and 20 𝑀𝑒𝑉/𝑐. Since the initial distribution is a pencil beam (i.e. 

𝑥 = 𝑝𝑥 = 𝜎𝑥 = 𝜎𝑝𝑥
= 0), Figure 3 shows virtually all of the different possible final states for 104 muons 

with the same initial conditions. From here the probability distribution of the lateral displacement 

correction can be ascertained as roughly Gaussian, where the Gaussian mean is always zero (i.e. the 

most probable scenario is no net scattering) and the Gaussian 𝜎 appears to be some function of absorber 

length, and possibly absorber material and initial energy. 

 

 
Figure 2. Left: a depiction of classical scattering. Right: an algorithm producing a similar effect. 

 
Figure 3. 104 muons were simulated with ICOOL [6] through various lengths of liquid hydrogen. These 

transverse position histograms were obtained from a pencil beam with an initial momentum of precisely 

200 𝑀𝑒𝑉/𝑐.  

 

More precisely, the distribution should follow Goudsmit-Saunderson theory [7] for small angles and 

have a Rutherford distribution for large angles. Then the (unnormalized) distribution that represents the 

angular correction can be described by Eq. (2), which takes into account continuity and smoothness: 

 

 

𝑔(𝑢) = {
𝑒−𝑎(1−𝑢)

4𝑒−3

(𝑎 − 1 − 𝑎𝑢)2

 

𝑢0 ≤ 𝑢   (𝑃𝑥 ≤ 𝑃𝑥0
)

𝑢 ≤ 𝑢0   (𝑃𝑥0
≤ 𝑃𝑥)

 (2) 
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where 𝑢 = 𝑐𝑜𝑠(𝜃) = 𝑃𝑧/√𝑃𝑧
2 + 𝑃𝑥

2, 𝑢0 = 1 − 3/𝑎, and 𝑃𝑥0
= 𝑃𝑧√(𝑎/(𝑎 − 3))2 − 1. Here the Gaussian 

profile mentioned earlier is recovered for small 𝑃𝑥, as 1/√1 + (𝑃𝑥/𝑃𝑧)2  ≈ 1 − 0.5 (𝑃𝑥/𝑃𝑧)
2. 

 

The scattering profile is now in terms of the variable a. According to modified Highland-Lynch-Dahl 

theory, it is possible to write: 𝑎(𝐿, 𝐸𝑖) = 0.5/(1 − 𝑐𝑜𝑠 (𝜃0(𝐿, 𝐸𝑖)), where 𝜃0(𝐿, 𝐸𝑖) = 13.6 𝑀𝑒𝑉 ∗
𝐿0.555/(𝛽𝑝𝑐𝑋0

0.555) has been slightly modified [8]. Here, 𝛽 = 𝑣/𝑐, 𝑝 is the total initial momentum, 𝐿 is 

the so-called “true path length” (here approximated simply as the step size), and 𝑋0 is the radiation 

length of the material. Finally, it is possible to explicitly see the dependence of the scattering distribution 

on the absorber material (𝑋0), absorber length (𝐿), and initial energy (𝛽𝑐𝑝).  

 

In a similar fashion, straggling (fluctuation about a mean energy loss) may be simulated. The energy loss 

profile follows a Landau distribution [9] of the form 

 

 𝑓(𝜆) =
1

𝜉
∗

1

2𝜋𝑖
∫ 𝑒𝑥𝑝 (𝑢 𝑙𝑛 𝑢 + 𝜆𝑢)𝑑𝑢

𝑐−𝑖∞

𝑐+𝑖∞

, (3) 

 

where 𝑐 ≥ 0 and 𝜆 = (𝜖 − 𝜖)̅/𝜉 − 1 + 𝛾𝐸𝑢𝑙𝑒𝑟 − 𝛽2 − 𝑙𝑛(𝜉/𝐸𝑚𝑎𝑥). Here 𝜖 is the energy loss variable, 𝜖 ̅

is the average energy loss (which is already calculated by baseline COSY), 𝛾𝐸𝑢𝑙𝑒𝑟 = 0.577…, and 𝐸𝑚𝑎𝑥 

and 𝜉 are defined as 

 

 𝐸𝑚𝑎𝑥 =
2𝑚𝑒𝛽

2𝛾2

1 + 2𝛾𝑚𝑒/𝑚 + (𝑚𝑒/𝑚)2 
, 𝜉 =

2𝜋𝑧𝑐ℎ
2 𝑒4𝑁𝐴𝑍𝜌

𝐴𝑚𝑒𝑐2
∗

𝐿

1 − 𝑚2/𝐸𝑖
2 . (4) 

 

Here 𝑚𝑒 is the mass of the electron, 𝛾 = 1/√1 − 𝛽2, 𝑚 is the mass of the incident particle, 𝑒 is the 

fundamental charge, 𝑁𝐴 is Avogadro’s number, 𝑍 is the nucleic charge of the material, 𝜌 is the material 

density, 𝐴 is the atomic number of the material, 𝐿 is the length of the absorber, and 𝐸𝑖 is the incident 

energy of the particle.  

 

For implementation reasons, it is more helpful to use the Landau function where the energy loss is 

parameterized as 𝜆 = (𝜖 − 𝛼)/𝛽𝐿, where 𝛼 is approximately the most probable value and 𝛽𝐿 is a 

“scaling factor” referred to as the Landau beta. By comparison with the former parameterization, it is 

easy to infer that 𝛽 = 𝜉 and that 

 

 𝛼(𝐿, 𝐸𝑖) = 𝜖̅ + 𝛽𝐿(𝐿, 𝐸𝑖) [2 − 𝛾𝐸𝑢𝑙𝑒𝑟 −
𝑚2

𝐸𝑖
2 + 𝑙𝑛 (

𝛽𝐿(𝐿, 𝐸𝑖)

𝐸𝑚𝑎𝑥
)].  

 

Eqns. (2) and (3) (with the variables 𝑎, 𝛽𝐿, and 𝛼 as functions of material, absorber length, and initial 

energy) were implemented into COSY as post-absorber corrections. Figures 4, and 5 show the results of 

these implementations compared to ICOOL [6] and G4Beamline [10], where ICOOL uses the default 

setting for straggling (Vavilov straggling) and Bethe-modified Molière scattering. The initial beam 

parameters for this simulation were 5 × 104 muons through 12 mm of liquid hydrogen (left) and liquid 

helium (right) with (𝑥, 𝜎𝑥, 𝑃𝑥, 𝜎𝑃𝑥
, 𝜎𝑃𝑧

) = 0⃗ , where 𝑥 signifies the arbitrary transverse direction, and 

𝑃𝑧 = 200 𝑀𝑒𝑉/𝑐. 
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Figure 4. |𝑃𝑥| histogram comparison between COSY Infinity, ICOOL, and G4Beamline showing good 

agreement between the codes. Left is liquid hydrogen, right is lithium hydride. 

 

 
Figure 5. Energy loss histogram comparison between COSY Infinity, ICOOL, and G4Beamline 

showing good agreement between the codes. Left is liquid hydrogen, right is lithium hydride. 

 

Based on the current results, future work should include several improvements. The most obvious 

improvement is to increase the step size even further: up to, for example, 10 cm. For scattering, it is 

presently unclear how this increase will affect the theoretical curves. On the other hand, when 

considering energy loss effects theory predicts a Vavilov distribution [11] of the form 

 

 
𝑓(𝜖) =

1

𝜉

1

2𝜋𝑖
∫ 𝑒𝑥𝑝 [𝜅(1 + 𝛽2𝛾) + 𝜓(𝑠) + 𝜆𝑠]𝑑𝑠

𝑐+𝑖∞

𝑐−𝑖∞

,    𝑐 ≥ 0, 

 

 

where 

𝜓(𝑠) = 𝑠 𝑙𝑛 𝜅 + (𝑠 + 𝛽2𝜅) [𝑙𝑛(𝑠/𝜅) + ∫ 𝑡−1𝑒−𝑡𝑑𝑡
𝑠/𝜅

∞

] − 𝜅𝑒−𝑠/𝜅 

 

and  𝜅(𝐿, 𝐸𝑖) = 𝜉/𝐸𝑚𝑎𝑥. Recall that 𝐸𝑚𝑎𝑥 and 𝜉 can be found in Eqn. (4). 𝜆𝑣 can be shown to be related 

to the Landau 𝜆 as 𝜆 = 𝜆𝑣/𝜅 − 𝑙𝑛 𝜅. Moreover, as 𝜅 → 0 the Vavilov distribution tends to the Landau 
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distribution, and as 𝜅 → ∞ the Vavilov distribution tends to a Gaussian distribution. For computational 

efficiency it is common to set these limits as 

 

 

𝑓(𝜖) = {
𝐿𝑎𝑛𝑑𝑎𝑢,                       𝜅 ≤ 0.01
𝑉𝑎𝑣𝑖𝑙𝑜𝑣,            0.01 ≤ 𝜅 ≤ 10
𝐺𝑎𝑢𝑠𝑠,                              10 ≤ 𝜅

 
 

 

More implementations into this code consider very small step sizes (~0.1 mm) for the purpose of 

propagation of the beam through absorbers inside of high magnetic fields. For any realistic simulation of 

muons, decay processes must be included as well. This naturally leads to the inclusion in the code of 

daughter particle tracking. Finally, the algorithms presented here should be subject to comparison with 

experimental results, such as the Muon Scattering Experiment [12].  

 

In summary, muon-based neutrino sources are enticing due to their ability to create consistent, high-

intensity mixed neutrino beams. On the other hand, muon colliders present an opportunity to conduct 

leptonic experiments at unprecedented energy levels while keeping the facility size quite compact. 

However, for both of these facilities ionization cooling is a crucial component. The design of these novel 

cooling channels requires many simulation software tools to be augmented with new experimental 

results for various types of absorbers. COSY Infinity has many features for advanced lattice design, and 

will in the future be outfitted with tools that can accurately evaluate matter-dominated lattices of a wide 

variety. One of these tools will parameterize probability distribution function terms in order to add a 

stochastic perturbative kick at the end of a step inside such a lattice, which will emulate random effects. 

These step sizes will be able to be varied without significant loss of accuracy from 0.1 mm (for high 

magnetic fields) to 10 cm (for no magnetic fields).  
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