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Abstract. Let A4 be a finite-dimensional k-algebra over algebraically closed field k and mod 4 be
the category of finite-dimensional left 4-modules.We show that a module M in mod A4 degenerates
to another module N in modA if and only if there is an exact sequence 0 — N —
M & Z — Z — 0inmod A4 for some A-module Z. Moreover, we give a description of minimal
degenerations of finite-dimensional 4-modules.
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1. Introduction and Main Results

Let A be a finite-dimensional associative k-algebra with an identity over an
algebraically closed field kK and mod 4 be the category of finite-dimensional left
A-modules. If a; =1, ..., a, is a basis of 4 over k, we have the structure constants
a;y defined by a;a; = " ajar. The affine variety mod 4 (k) of d-dimensional unital
left A-modules consists of o-tuples m = (my,...,m,) of d x d-matrices with
coefficients in k such that my is the identity matrix and m;m; = ) a;umy holds
for all indices i and j. Any such a-tuple m corresponds to a d-dimensional module
M emod A in the obvious way. The general linear group Gly(k) acts on
mod % (k) by conjugation, and the orbits correspond to the isomorphism classes
of d-dimensional modules in mod 4 (see [7]). We denote by O(m) the Gl (k)-orbit
of a point m in mod % (k). By abuse of notation, N is a degeneration of M if n belongs
to the Zariski closure O(m) of O(m) in mod“(k), and we denote this fact by
M < 4,N. Thus, <, is a partial order on the set of isomorphism classes of
A-modules of a given (finite) dimension. It was not clear how to characterize
< dee in terms of representation theory.

Let M, N, Z be modules in mod 4 such that there is an exact sequence in mod A4 of
one of the forms

O>N—-Me&Z—->Z—-0 or 0—-Z—>7Z&M—> N— 0.
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In[11] Riedtmann proved that then M <., N. We shall show that the reverse impli-
cation is also true.

THEOREM 1. Let m, n be points in mod %(k), d = 1. Then the following conditions
are equivalent:

() M <4, N.

(2) There is a short exact sequence 0 > N —- M & Z — Z — 0 in mod A for some
module Z in mod A.

(3) There is a short exact sequence 0 - Z — Z@® M — N — 0 in mod A for some
module Z in mod A.

As a direct consequence of Theorem 1 and the proof of Proposition 3.4 in [11] we
get

COROLLARY 2. Let m, n be points in mod % (k) such that M < degN- Then there is a
nonempty open subset C of k, a morphism p : C — O(m) and a point ¢y in C, such that
u(co) = n and u(c) € O(m) for all ¢ # cy.

Following Abeasis and del Fra [1] we may consider another partial order <,
defined as follows:

o M <_N: & there are modules M;, U;, V; and short exact sequences
0> U —>M;—V;—0 in modA such that M =M, M, =U; &V,
1 <i<s,and N = My, for some natural number s.

Then for modules M and N in mod 4 the following implication holds:

M <exl]v = M <deg]V
(see [3], [11]). Observe that for any modules M, N in mod 4 with M <ex N, the
module N is decomposable. Since there exist proper degenerations to
indecomposable modules even for very simple representation-finite algebras (see
[11]), the reverse implication is not true in general. Our next result concerns

degenerations M <gee N which are not given by a sequence of the form
0—>N —>M-—>N'—-0with N=N @ N".

THEOREM 3. Let M, N, N', N” be modules in mod 4 such that M < gegV and
N >~ N' @ N". If every exact sequence in mod A of the form

O-N->W->N -0 or 0N -W->N =0

with M < 4o, W is splittable (W >~ N' & N"), then there are modules M', M" inmod 4
such that M" < 4o oN', M" < 4 ,N" and M ~M" & M".

It will give us the following theorem about minimal degenerations.
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THEOREM 4. Let M, N be modules in mod A such that N is a minimal degeneration
of M. Then M <ext N or there are modules W, M, N inmod A suchthat M ~ W & M,
N>~W®&N, M <4, N and the module N is indecomposable.

As a direct consequence of Theorem 4 we get the following fact.

COROLLARY 5. The orders < . and < 4, are equivalent for all modules inmod 4
if and only if for any modules M, N in mod A with M <geg N, the module N is
decomposable.

It is known (see Corollary 2 in [15]) that, if 4 is an algebra and for any proper
degeneration M <g.; N of A-modules the module N is decomposable, then 4 is tame,
that is, the indecomposable 4-modules occur, in each dimension d, in a finite number
of discrete and a finite number of one-parameter families. Recall also that an algebra
A is called quasi-tilted if 4 is of global dimension at most 2 and each indecomposable
finite dimensional 4-module has projective dimension at most one or injective
dimension at most one. The structure of tame quasi-tilted algebras and their module
categories has been described by Skowroniski in [13]. Then, applying results of [14],
we proved in our joint paper ([15], Theorem 3) that for any proper degeneration
M <geg N of modules over a tame quasi-tilted algebra A, the module N is
decomposable. Applying Corollary 5 we may reformulate it now as follows.

COROLLARY 6. Let A be a tame quasi-tilted algebra. Then the orders < ., and
< geg are equivalent for all modules in mod A.

The paper is organized as follows. In Section 2 we give characterisations of
splittable exact sequences and introduce the notion of an affine scheme mod ¢, play-
ing a fundamental role in our proofs of Theorems 1 and 3. Sections 3, 4 and 5 are
devoted to the proofs of Theorems 1, 3 and 4, respectively.

For basic background on the topics considered here we refer to [3], [4], [7] and [12].
The author would like to thank C. M. Ringel and A. Skowroniski for helpful sugges-
tions and comments during the preparation of this paper. The author also gratefully
acknowledges support from the Polish Scientific Grant KBN No. 2 PO3A 012 14 and
Sonderforschungsbereich 343 (Universitit Bielefeld).

2. Preliminary Results

2.1. Throughout the paper 4 denotes a fixed finite dimensional associative k-algebra
with an identity over an algebraically closed field k. We denote by mod 4 the cat-
egory of finite-dimensional left 4-modules.

Let R be aring and d’, d” be two natural numbers. We denote by M7, ;. (R) the set
of all a-tuple of d’ x d” matrices with coefficients in R (so mod %(k) € MY, ,(k)).
Clearly, M%. . is a functor from the category of rings to the category of sets.
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Let m = (my, ..., my) belongs to M?%, .(R) and /' (resp. /") be any ¢’ x d’ (resp.
d” x ") matrix with coefficients in R, for some natural numbers ¢/, ¢’. Then we define

W xm= (h’ml, ey h/l’l’lfx) € M?/Xd//(R),
mxh"=@mbh",....,mh") e M5 .(R).

In particular, if g € Gly(k) and m € mod‘/’l(k), then g-m =g+m=*g~' defines the
action of Gly(k) on modf‘;(k) that was mentioned in the introduction.

2.2. For an exact sequence X : 0 > U - W — V' — 0in mod 4 we define an addi-
tive function dy from mod A4 to the set of integers as follows:

Ox(X) = dimy Hom4(U & V, X) — dim; Hom (W, X),

for any module X in mod A. Then the following fact holds:

LEMMA. Let £:0—> U —- W — V — 0 be an exact sequence in mod A. Then
0x(X) = 0 for any module X in mod A. Moreover, the following conditions are
equivalent:

(1) the sequence X is splittable,
2 WxUesV,
(3) 0x(X) =0 for any module X in mod A.

Proof. The exact sequence £ : 0 - U —f> w -£5 ¥ — 0induces the following
exact sequence

0 — Homy(V, X) i'> Hom (W, X) f—) Homy(U, X),

what leads to dx(X) = 0, for any module X in mod 4. Clearly, the condition (1)
implies (2) and the condition (2) implies (3).

Assume that d3(X) = 0 for any module X in mod 4. In particular, éx(U) = 0 and
hence the sequence

0 — Hom,(V, U) > Hom,(W, U) 2> Hom(U, U) — 0

is exact. This implies that 1y =f*(y) =yof, for some homomorphism y in
Hom (W, U). Then the sequence X is splittable and the condition (1) holds.

2.3. Now we give another characterisation of splittable sequences. Let d, d’, d” be
natural numbers with d =d +d” and let u, w, v be points in mod¢ k),
mod 4 (k), mod % (k), respectively. Then the following lemma holds (see 11.2.7 in [8]):

LEMMA. Assume that w= [g Z] Sfor some z € M, (k). Then there is an exact
v

sequence X inmod A of the form 0 — U — W — V — 0. Moreover, the sequence X
is splittable if and only if z = ux h — hx v, for some d' x d” matrix h with coefficients
in k.
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2.4. The affine variety modﬂ(k) extends to an affine algebraic k-scheme mod‘j’1 (see,
for example [2], [4], [10]). The scheme mod % may be described in the functorial point
of view as follows: for any commutative k-algebra R with an identity, the set
mod 4(R) consists of a-tuples m = (my, m, ..., m,) in M% _,(R), such that m is
the identity matrix and m;m; = ) a;zmyi holds for all indices i and j. Clearly,
any a-tuple m € mod 4(R) gives the A-R-bimodule structure on R? with the natural
action of R. The affine algebraic group scheme Gl, acts on mod“ by conjugation.
Let u be a point in mod ’f,(R) and U be the corresponding A-R-bimodule. Observe
that, for any homomorphism ¢ : R — S of k-algebras, the A-S-bimodule corre-
sponding to the point mod %(¢)(x) in mod %(S) is isomorphic to U ®z S.

2.5. Since any two points on an irreducible variety can be connected by an irreducible
curve (see A.1.4.5 in [8]), then we get the following characterization of orbit closure
(see Theorem 1.2 in [5], also [9]).

PROPOSITION. Let m and 7 be any points in mod ¢ (k). Then M < deg!V 1f and only
if there is a discrete valuation k-algebra R with the maximal ideal m and residue field
R/m = k, whose quotient field K is finitely generated over k of transcendence degree
one, and an element y € mod‘j(R) such that

e mod¥(t)(y) = g (mod¥(tn)(m)), for some g € Gly(K)
e mod4(n)(y) =n,
where #, T and 7w are the canonical homomorphisms
k- R 5K

i
R/m=k.

There is a geometric interpretation of this characterization. Such a k-algebra Rand a
field K correspond to the local ring of a point ¢y of some nonsingular affine curve C
and the field of rational function on C, respectively (see, for example, 1.6 in [6]).
Hence, M <N if and only if there is a nonsingular affine curve C, a point ¢
in C and a morphism u: C — O(m) such that u(cy) =n and u(c) € O(m) for ¢ in
an open dense subset of C (compare with the proof of Theorem 1.2 in [5]).

3. The Proof of Theorem 1

3.1. (2) implies (1) and (3) implies (1), by Proposition 3.4 in [11]. Let m, n be points in
mod 4 (k), d > 1. By transposing all matrices in m and n we get points m’ and n/,
respectively, in mod ¢,(k), where A’ denotes an opposite algebra of 4. One sees that
the module M degenerates to N if and only if the same holds for dual modules
M’ and N’ over A'. Hence, it remains to show that M <, N implies that there
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is an exact sequence in mod 4 of the form 0 > N - M & Z — Z — 0, for some
A-module Z.

Thus assume that M < 4., N. We apply Proposition 2.5 and use the notation intro-
duced there. Let Y be an A-R-bimodule on R’ corresponding to y. Denote by fin R
the category of finite dimensional (over k) R-modules. Since Yy is a free R-module
of finite rank, we have the exact functor F = 4Y ®z(—): fin R — mod 4. For
i>1,let N;=F(R/m')=Y/Ym' € mod 4. Since Mod¥(n)(y) = n, then

ANT = 4(Y/Ym) = 4(Y ®r R/m) = 4N.

We fix an element f € m \ m?. Since R is a discrete valuation ring, then m = () and
consequently, m’ = (f?), for any i> 1. Since F is exact, the following exact
sequences:
(B i1 i i .

0> R/m — R/m™ — R/m'—>0, ix>=1,
where B,(r +m) =f"-r+mt!, p,(r + M) = 41, for all r € R, gives the exact
sequence

F(By) FOi) .

0—- N — Ngyg — N;—>0, i=1,

in mod A4. Since N; = N, it remains to show that N, ~ M & N; for some i > 1. The

remaining part of this section is devoted to the proof that, for sufficiently large #,
there is an A-module isomorphism N; 1 >~ M @ Ny,

3.2. The assumption that mod4(t)(y) = g - (mod %(zn)(m)), for some g € Gly(K),
means that the function g: M ®; K — Y ®g K is an isomorphism of A-K-
bimodules. Let g = [g;];; < 4» With g;; € K. Since K is the quotient field of the discrete
valuation ring R, there is a number b > 0 such that f* -gj € R, foralll <i,j<d. Let
g =/"-g and observe that

g- (), (m) = g (), (m) x g~ = g x (xn), (M) x ™" = g - ((xn),(m)),

where (1), = modﬁ(rn). Thus we may assume that » = 0, g = g, and consequently
gij € R, for all 1 <i,j <d. Then we get the monomorphism

¢ =glmer - M R—Y

of A-R-bimodules.
We note that results in the remaining part of this section and their proofs extend
without any changes to an arbitrary field k.

3.3. Let Y be an 4-R-bimodule which is, as an R-module, free of rank d. Assume that

there is a monomorphism ¢ : M ®; R— Y of A-R-bimodules, for some d-
mensional 4-module M. We set X =im ¢.
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LEMMA. There is a natural number t with Ym' C X. In particular, the module Y /X
is finite-dimensional.

Proof. Since ¢ is a monomorphism between free R-modules of rank d (and since R
is a principal ideal domain), then Y /X, as an R-module, is isomorphic to

R/m" @ R/m2@...® R/m".

Thus, the R-module Y/X is annihilated by m’, where ¢ is the maximum of
f,t, ..., tg. Hence, Ym' C X.

LEMMA 3.4. There exists a natural number s such that Xm® is a direct summand of
the A-module Y.

Proof. Given a subset C of R, we denote by (C) the k-subspace generated by C. Let B
be a k-basis of R. For b € B, let M), = ¢(M ®y, (b)). This is an A-submodule of X and
is isomorphic to 4M. Of course, X = P,z M}, and this is a direct decomposition of
A-modules.

We devide the proof into several steps.

(1) There exists an A-submodule Z of Y which satisfies Z+ X =Y and
ZNX =@, M, for some finite subset V of B.

Take a projective cover & : P — Y /X of the A-module Y /X and lift thismapto Y.
We obtain an A-module homomorphism &' : P — Y, say with image Zj, and such
that Zy+ X = Y. By construction, Zj is a finite dimensional 4-submodule of Y.
Consider ZyNX = Zy NP,z M;. Since Zj is finite dimensional, there is a finite
subset V of B such that Zo NP, s My = Zo N Ppey Mp. Let Z = Zy + Py M.
Then Z is finite dimensional and ZNX = @,., M.

(I’) As a consequence: ¥ = Z @ C, where C = Djcp,y Mp.

We are going to replace the direct summand C by an A-submodule C’ of Y which
contains Xm* as a submodule. Actually, Xm* will be required to be even a direct
summand of C’. This exchange will be done inside X: both C and C’ will be
A-submodules of X, they will be direct complements of (Z N X) in X. First, we deal
with the ring R itself.

(2) Let V be a finite subset of B. Then there is a natural number s and a finite subset
W of B such that m*® (W) ® (V) = R. Since (V) is finite dimensional and
MNis1 m’ =0, then (V) N m* = 0, for some natural number s. Consider the subspace
m* @ (V) of R. Since B is a K-basis of R, we can find a subset W of B as required.

(3) Of course, we may tensor the above decomposition of R with M over k and
apply the monomorphism ¢. Note first that p(M ®; m*) = Xm®. Second, denote
oM & W) = Bpeyy Mp by W. Third, recall that o(M Q (V) = @y My =
Z N X. Altogether we get Xm°@ W (ZNX)=X.

As mentioned above we denote (P, My = C. Let €' = Xm* @ W. Then we see
that C®(ZNX)=X =C & (ZnN X). Note that Y = C & Z, according to (1°).

(4) 1t follows that Y =C' @ Z=Xm*® W & Z, thus W & Z is a direct comp-
lement to Xm?.
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Namely, we have C'NZ=CNZNX =0, since C'CX. Also, C'+Z =
C+Z+(ZnNX)=Z+X =Y, since ZN X C Z. This completes the proof.

PROPOSITION 3.5. Let Y be an A-R-bimodule which is, as an R-module, free of
rank d. Assume that there is a monomorphism ¢ : M ®; R — Y of A-Rbimodules,
for some d-dimensional A-module M. Then, for a sufficiently large 4, there is an
A-module isomorphism Y/Ym'"*! ~ Y/Ym" @ M.

Proof. Recall that X = im ¢. It follows from Lemma 3.4 that there exists a natural
number s such that Xm® is a direct summand of Y. Fix a direct complement Z’ of
Xm® in Y. Next observe that, for each i >0, Xm'*! is a direct summand of
Xwm', with a direct complement isomorphic to M. Further, by Lemma 3.3 there
is a natural number ¢ with Ym’ C X. Write Z” = X/Ym'. For any natural number
Jj, we have Ym'™ € Xnv/. The multiplication by f7 (recall that n/ = (f7)) induces
an isomorphism Z” — ~Xnv/Ym'*.

For any natural number i, consider now the following chain of inclusions:

Yms+l+i C Xm.?+i C Xm® C Y.

It follows from the above remarks that the last two inclusions have direct
complements, namely M’ and Z’, while the first factor
Xmt/ YmstH is isomorphic to Z”. Thus we get

Y/ YmA‘JrlJri ~ Z// D Mi D Z,.
Therefore,
Y/ Ymt i ~ vy ym't @ M.

In particular, for 4 = s+ tand i = 1, we obtain Y/ Ym/*! ~ Y/Ym" @& M. This com-
pletes the proof of Proposition 3.5 and also the proof of Theorem 1.

4. The Proof of Theorem 3

4.1. Let d, d’, d” be natural numbers with d = d’ + d". Let m, n be points in mod % (k)
such that M <., N, and ', n” be points in mod ff{(k), mod j'f;(k), respectively, such
that N >~ N’ @ N”. Assume that every exact sequence in mod 4 of the form

O->N->W->N -0 or 0O>N -W->N—=>0

with M <4, W, is splittable. We apply Proposition 2.5 for points m, n, and we use
the notation introduced there. Denote by 7; : R — R/m’ and ¢; : R/m't! — R/m’,
i = 1, the natural epimorphisms of k-algebras. Clearly, then n; = ¢m;1;, for any
i>1. As in (3.1), let Y be the A-R-bimodule on R? corresponding to y, let F
be the exact functor 4Y ®z (=) : fin R — mod 4, and finally let N; = F(R/m') €
mod A4, for any i > 1. Then Ny = N and the module N; corresponds to the point
mod 4(m;)(y). Then the following fact holds.
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LEMMA 4.2. For any i > 1, there is a point y; € mod 4(R) such that
() yi=gi-y, for some g; € Gly(R),
(2) mod¥(m)(y:) = (’(')l :,_,), for some elements n, in mod%(R/m') and n! in
mod 4 (R/m), '
(3) ifi> 1, then mod ffl'(gi_l)(n;) =n,_, and mod jé”(s,-_l)(n;/) =n.
Moreover, ny =n' and n| =n".
Proof. Since R/m =k, we may assume that nn = 1;. The isomorphism
N>~N &N’ means that there is an element ge Gly(k) such that

g-n =<’(’) ,f) Let g1 = Glu(n)(g) and y; =g - y. Then

mod ‘i (m1)(y1) = mod 4 (n)(Glu()(g) - »)
= Gly(n)(Gla(n)(g)) - mod 4 (m)(»)

"0
=Gld<nn)<g>~n:g-n=<'; )
n

Assume now that there is a point y; € mod jfl(R) satisfying the conditions (1), (2) and
(3), for some i > 1. Then y; = [}é ;f_,], for some points y}, &, v, y/ in M3, ,(R),
M (R, My 4 (R), M3 (R), respectively. Applying (2) we get

MG (m)() = 1] and MGy (m)O7) = 1y

Moreover, since kerm; =m' = (f%), then #=f"-u and vy=f"-v, for some
ue M, (R and v e M7 ,(R). Take

g/=[fi'1d’ O}GGIJ(K) and 1=[

u d
0 1, i| € mod %(R).

zy;
f L, y y//

1

Then mod4(z)(/) equals g -mod¥(r)(y;). We set w=mod“(n)(/). Then w=

['g ’f,,]e mod 4 (k), where &t = M%,_,.(n)(u). Applying Lemma 2.3 we obtain an

exact sequence X in mod 4 of the form 0 - N'— W — N” — 0. Observe that
mod §(1)(!) = (¢'Gla(x)(g:) - mod 4(1)(») = (g'Glu(x)(g1)g) - mod §(z)(m), by (1).
Then M < 4, W, by Proposition 2.5. Hence, by our assumptions, the sequence X
is splittable. Consequently, by Lemma 2.3, there is a d’ x d” matrix # with
coefficients in k, such that f=n'«i —K «n". This implies  that
u—y,xh'+h*y! =f.2, forsomez € MJ, ;. (R), where /' is a d’ x d” matrix with
coefficients in R, and these coefficients are the images of the corresponding
coefficients of /' via the homomorphism 5. Dually, we conclude that there is a
d” x d’ matrix h” with coefficients in R such that v—y/ «h" + 41" xy, =f-Z", for
some z’ € M, ,(R). Consider the d x d matrix

w[le W] w0
1o 1. Fion g

https://doi.org/10.1023/A:1001778532124 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001778532124

214 GRZEGORZ ZWARA

with coefficients in R. Then & € Gl (R), sincedeth = 1g € R\ m. Weset y;y; = h-y;
and g;.1 = h-g;. Then y;y; = g;11 - y and the condition (1) holds for i + 1. Observe
that y;,; equals

|:1d, fi~h/:| |: 1y 0 ] yio flu [ la 01|
A x| * ‘ X
0 ld” fz W 1d” fz ) y;_/ _fz 'y ld”
|: g —f" h/}
X .
0 Ly
Multiplying these matrices we get

; =y w4+ 1wy '
Yit1 = I:fi(v _y/_/ *);ll// + *y/_) S i’ y/_/ yl)i| +f2[ - Z,
i i i

for some z € M, ,(R). Invoking the above equalities we obtain

o _|yio i1 | 0 2 2
Yir1 = [0 y;/il f |:Z” 0 +f Z.

Consequently,

4 0
mod §(mis1)(vis1) = [”'g' , ]

Nty

where 7/, | = Mfﬁx’d'(”iﬂ)o’;) and n}, | = M},_Xd,,(niﬂ)(y;/). Clearly, n} | and n7, | are
elements in mod 4 (R/m*!') and mod 4 (R/m*!), respectively, and hence the con-
dition (2) for i+ 1 holds. Moreover,

mod 9 (&:)(n}, ;) = mod 4 (e) M, (i) (V) = M0y 4 (6imis 1))
= MG, o (m)) = n;.

Similarly, mod 4 (¢;)(n},,) = n. Hence, the condition (3) holds for i + 1. This finishes
the proof.

LEMMA 4.3. For any i = 1, the A-modules N; and N; @ N are isomorphic.
Proof. Applying the conditions (1) and (2) of Lemma 4.2, we get

n; 0 d d
[ :| =mod Y (m;)(g; - y) = Gla(m;)(g;) - mod 4 (7;)(»)

0 n/
= Gly(m)(gi) - i,

1

for some g; € Gly(R). But this implies that even as A-R/m'’-bimodules N; and
N; @ N/ are isomorphic.
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LEMMA 4.4. For any i = 1, there are in mod A exact sequences

710> N, - N®@&N;,,—> N, —0,
2//'0_>N;;1_>N;/@N;;2_>Nl+1 — 0.

Proof. Take a natural number / > 1 and setj = i + 2. Since n} € modd (R/n), then
Niisan A-R/ nv¥-bimodule, which as an R/n/-module is free of finite rank. Then the
functor F = N ®prm (—) : fin (R/m¥) > mod A is exact. Hence the exact
sequence

0— R/mt L5 Rymie R/mit2 25 R/mitt S 0

in fin(R/nv), where B;r+m*) =@+, f-r+m*?), 9 +mir +mt?) =
f-r—r +m*! for any r, ¥ € R, gives the exact sequence:
0— F®Rm*) 8 Frm) @ F (R T FRM) S 0
in mod A. Applying the condition (3) of Lemma 4.2, we obtain
mod i’(8[+1)(njl-) =1}, and mod Z(sism)(n;) =n.
This implies that
F'(R/m') = N Qg R/m' ~ N,

F(R/mth = N @y R/M™ o~ N,H,

f‘/(R/ml+2)=]VJ{®R/n1fR/m]_N/ Nl/+2

Thus there exists an exact sequence X; in modA4 of the form 0 — N

l+1
N/@® N}, — N/, — 0, and, by symmetry, also the exact sequence X;:0 —
Niyy = NY @ Nijy — Nijy — 0.

4.5. Applying Proposition 3.5 we get a number /% > 1 such that Ny, ® N; >~
Niy1 @ N;y; for any i > h. Moreover, we have the following lemma.

LEMMA. N/, ®N; =~ N, ® N;, and N}, ® N =~ N/, ® N}, for any i > h.
Proof. From Lemma 4.4, there are in mod 4 exact sequences

P ()—>NI+1—>N/€B I+2—>N,+1—>0

20> Ny — N/ @ N, > Ny — 0.

Then 0y,/(X) >0 and J5/(X) =0, for any module X in mod 4, by Lemma 2.2.
Applying Lemma 4.3 we get

Os/(X) + 05/(X)
= dim; Hom4(Njy1 @ Niy1, X) — dimg Homy(Ni» @ Ny, X) =0,
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and consequently dy/(X) = 0 = dy/(X), for any module X in mod 4. Then the claim
follows from Lemma 2.2.

LEMMA 4.6. There are modules M" and M" in mod A such that N; ., ~ M’ ® N, and
Njy = M" & N,
Proof. Applying Lemma 4.5 several times we obtain that

GB (Njpsis2 ® Njpyy) = GB (Niyir1 © Niy i),

0<i</ 0<i</

forany / > 1. If we cancel the common direct summand &,  ; (N}, ®N},,), then
we get an isomorphism of 4-modules N, ;. , ® N, =N, ;@& N, ,, for any [ > 1
Hence, there is an isomorphism

@ (Njip141 ® N) @ (Njiys ® Ny
1<i<j 1</l<j

for any j > 2. After the cancellation of the common direct summand P, . ,_; N},
we get an isomorphism N}, & (Nh)’ ! (Nh+l)’ of A-modules, for any j > 2. This
implies that

W(Npyys X) + G = 1) - w(Ny,, X) = - u(Njpyy. X)),

for any indecomposable module X in mod 4 and j > 2, where u(Y, X) denotes the
multiplicity of an indecomposable module X € mod 4 as a direct summand of a
module Y € mod 4. Hence,

J
/‘(NJ/VX) hm 1 - u( h+1,X)::“(N1/1+1,X)7

for any indecomposable module X in mod A. This implies that the module N} is a
direct summand of N//1+1’ so N, ,, =M &N, for some M’ € modA. Similarly,
we conclude that there is a module M” in mod 4 such that N}, ~ M" & N}

4.7. The following lemma completes the proof of Theorem 3.

LEMMA. M' < ,N', M" < 4,,N" and M ~M' & M".
Proof. Applying Proposition 3.5 and Lemmas 4.3, 4.6 we get

M®N, =Ny =Ny ®N, =M &N, &M " ®N ~M &M’ & N,

and consequently M ~ M’'@® M”. Up to symmetry, it remains to show that
M <4 N'. We set j=h+1. As in (4.4) we may consider the exact functor
F' = Nj ®pyw (=) : fin (R/m) — mod 4. Then the exact sequence

0— R/m 25 R/m* s Rymt - 0
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(see (3.1)) induces the following exact sequence

F'(By O
0— FR/m) 2 7Rty 28 PRty - 0.

Applying the condition (3) of Lemma 4.2 several times, we obtain
mod ﬁ/(ah)(n}) =n),
mod % (e ... en)(p) = ny =n'.

Together with Lemma 4.6 this implies that F'(R/m") ~ N;, F'(R/m)~ N’ and
F'(R/m"* 1y~ N; | ~ M@ Nj. Then we have an exact sequence

0—>N—>M®e&N,—>N,—0
in mod 4, and so M’ < 4, N’, by Proposition 3.4 in [11].

5. The Proof of Theorem 4

Let M, N be modules in mod 4 such that N is a minimal degeneration of M and
M +#ext N. We proceed by induction on the number of direct summands of a
decomposition of N into the direct sum of indecomposable modules. If N is
indecomposable, then the claim follows for M = M, N = N and W = 0. Assume
now that N >~ N’ @ N” for some nonzero modules N’, N” in mod A. Suppose that
there is a nonsplittable exact sequence in mod A of the form

O>N->W->N -0 or 0O->N -W->N >0

with M <y, W. Then M < 4, W <exxt N and M >~ W, because N is a minimal
degeneration of M. Therefore M <cx¢ N what contradicts our assumptions. Hence,
by Theorem 3, there are modules M’', M” in modA such that M' <4, N',
M" < 4o, N" and M >~ M' @& M". Observe that

M:M/®M// <degN/®M// <degN/®N// ~ N.

Then either M’ >~ N’ or M" >~ N”, since the degeneration M <gc; N is minimal. We
may assume that M” ~ N”. Then we have the minimal degeneration M’ <geg N’
and M’ £ext N'. Hence, the claim follows from our inductive assumption, applied
to the minimal degeneration M’ <4, N'. This finishes the proof.
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