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1. Introduction. This paper is concerned with a matrix A of m rows and 
n columns, all of whose entries are O's and l's. Let the sum of row i of A be 
denoted by rt {i = 1, . . . , m) and let the sum of column i of A be denoted by 
Si (i — 1, . . . , n). It is clear that if r denotes the total number of l's in A 

m n 

r = X ft = X) st. 

With the matrix A we associate the row sum vector 
R = (ri, • • • , O » 

where the ith component gives the sum of row i of A. Similarly, the column 
sum vector S is denoted by 

5 = (si, . . . , sn). 

We begin by determining simple arithmetic conditions for the construction 
of a (0, 1)-matrix A having a given row sum vector R and a given column 
sum vector S. This requires the concept of majorization, introduced by 
Muirhead. Then we apply to the elements of A an elementary operation called 
an interchange, which preserves the row sum vector R and column sum 
vector S, and prove that any two (0, 1)-matrices with the same R and S 
are transformable into each other by a finite sequence of such interchanges. 
The results may be rephrased in the terminology of finite graphs or in the 
purely combinatorial terms of set and element. Applications to Latin rec­
tangles and to systems of distinct representatives are studied. 

2. Maximal matrices and majorization. Let 

ôi= ( 1 , . . . , 1 , 0 , . . . , 0 ) 

be a vector of n components with l's in the first rt positions, and O's elsewhere. 
A matrix of the form 

\h 
A = : 

Mm 

is called maximal, and we refer to Â as the maximal form of A. The maximal 
Â may be obtained from A by a rearrangement of the l's in the rows of A. 
Also by inverse row rearrangements one may construct the given A from Â. 
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Let R — (ri, . . . , fm) and S = (si, . . . , sn) be the row sum and column 
sum vectors of Â. Evidently 

R = R. 

Moreover, it is clear that the row sum vector R uniquely determines Â, and 
hence S. Indeed, r = 5Z r i — H $i constitute conjugate partitions of r. 

Consider two vectors 5 = (su . . . , sn) and S* = (si*y . . . , sn*), where the 
Si and s* are nonnegative integers. The vector 5 is majorized by 5*, 

5 << S*f 

provided that with the subscripts renumbered (5; 3): 

* * 
(1) Si > . . . > sn, s± > . . . > sn ; 

(2) si + . . . + s t < 5i + • . . + St , i = 1, . . . , n - 1 ; 
(3) s\ + . . . + sn = si + . . . + sn . 

For the vectors S and S associated with the matrices A and Â, respectively, 
we prove that 

S < S. 

We renumber the subscripts of the Si of A so that 

Si > S2 > . . . > Sn. 

For Â, we already have 

Si > S2 > • • • > Sw. 

Now 4̂ must be formed from Â by a shifting of l's in the rows of Â. But for 
each i — 1, . . . , n — 1, the total number of l's in the first i columns of A 
cannot be increased by a shifting of l's in the rows of A. Hence 

Si + . . . + St < ,Si + . . . + fiu 

i = 1, . . . , n — 1. Moreover, 

Si + . . . + Sn = Si + . . . + Sn, 

whence we conclude that S < S. 

THEOREM 2.11. L^^ /Ae matrix A be maximal and have column sum vector S. 
Let S be majorized by S. Then by rearranging Vs in the rows of A, one may 
construct a matrix A having column sum vector S. 

Without loss of generality, we may assume that the column sums of A 
satisfy S\ > s2 > . . . > sn. We construct the desired A inductively by columns 
by a rearrangement of the l's in the rows of A. 

1 Added in proof. The author has been informed recently that Theorem 2.1 was obtained 
independently by Professor David Gale. His investigations concerning this theorem and cer­
tain generalizations are to appear in the Pacific Journal of Mathematics. 
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By hypothesis, S < S, whence Si < §i. If si = Si, we leave the first column 
of Â unchanged. Suppose that Si < sT We may rearrange l's in the rows of 
A to obtain si l 's in the first column, unless 

S2 > Si, • • • , Sn > Si. 

But if these inequalities hold, then 

Sl + . . . + Sn > flSi > Si + • • • + Sn = Si + . . . + Sn, 

which is a contradiction. 
Let us suppose then that the first / columns of A have been constructed, 

and let us proceed to the construction of column / + 1. We have then given 
an m by w. matrix 

[771, . . . ,rjt, rjt+i, . . . , rjn], 

where the number of l's in column 77̂  is st (i = 1, . . . , t). Let the number of 
l's in column yjj be s'j (j = / + 1, . . . , n). We may suppose that 

St+l ^ St+2 > • • • > Sn. 

Two cases arise. 

Case 1. st+l < s't+i. 

In this case, remove l's from column y]t+i by row rearrangements, and place 
the l's in columns Vt+2, . • • , yn- If sufficiently many l's may be removed from 
rjt+i in this manner, then we are finished. Suppose then that there remain e 
l's in column / + 1, with 

St+i < e ^ St+i, 

and that no further l's may be removed by this procedure. Then there must 
exist an integer w > 0 such that 

st+i + . . . + sn = (n — t)e + w. 

But 
St+i < e, 

st+2 K st+i < c, 

sn < e. 

st+i + . . . + sn < (n - t)e, 

Therefore 

(n — t)e + w 

which is a contradiction. 

Case 2. s't+i < st+i. 
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By row rearrangements, insert l's into column rjt+i from columns r^+o, . • • , Vn-
If sufficiently many l's may be inserted in this manner, then we are finished. 
Suppose then that there remain e l ' s in column / + 1 with 

and that no further l's may be inserted by our procedure. 
Let the matrix at this stage of the construction process be denoted by 

[ e r , ] . 
If now 

cr,t+l — 0, 

then 
en = 0, (j = t + 1, . • • ,» ) . 

Suppose that some 
erj = 1, j > t + 2. 

Then either 
Cri: = 1, (* = 1, • • • , t + 1), 

or else for some k, 1 < k < /, 
6'r* = 0. 

Consider the case in which erk — 0. Since sk > st+i > e, there must exist 

ePk = 1, tp.t+i = 0. 

Interchanging e'rJ = 1 and erk = 0, and interchanging ^ = 1 and ^>r+i = 0, 
we see that Si, . . . , st are left unaltered, and that e is increased by 1. 

Continue to increase e by transformations of this variety. Suppose that all 
such transformations have been applied and that e still satisfies 

Sj+l - ^ e < S j + i . 

But now it is no longer possible to move a 1 from columns t + 2, . . . , n 
into columns 1 , 2 , . . . , / + 1. This'"means that 

S i + . . . + S * + e = S i + . . . + S; + St+i. 

But then 

si + . . . + st+i < S i + . . . + st+i = si + . . . + st + e, 

whence st+i < e, which is a contradiction. This completes the proof. 

The preceding theorem has a variety of applications. For example, let the 
(0, 1)-matrix A of m rows and n columns contain exactly r = km l 's, where k 
is a positive integer. Let the column sum vector of A be S = (si, . . . , sw). 
Then there exists an m by n matrix A* composed of 0's and l's with exactly 
k l 's in each row, and column sum vector S. For let Â be m by n, with all l's 
in the first k columns and 0's elsewhere. US denotes the column sum vector of 
Â, then S < S, and the desired A* may be constructed from Â. 
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In this connection we mention the following result arising in the study 
of the completion of Latin rectangles (1; 7). Let A be a (0, l)-matrix of r 
rows and n columns, 1 < r < n. Let there be k l's in each row of A, and let 
the column sums of A satisfy k — (n — r) < st < k. Then n — r rows of 
0's and l's may be adjoined to A to obtain a square matrix with exactly k 
l's in each row and column (7). To prove this it suffices to construct an 
n — r by n matrix A* of 0's and l's with exactly k l's in each row, and column 
sum vector (k — Su . . . , k — sn). By the remarks of the preceding paragraph, 
such a construction is always possible. 

3. Interchanges. We return now to the m by n matrix A composed of 0's 
and l's, with row sum vector R and column sum vector S. We are concerned 
with the 2 by 2 submatrices of A of the types 

i o" 
Lo l . 

and A2 = 
"o i l 
.1 0j 

An interchange is a transformation of the elements of A that changes a specified 
minor of type A\ into type At, or else a minor of type A2 into type Au and 
leaves all other elements of A unaltered. Suppose that we apply t o i a finite 
number of interchanges. Then by the nature of the interchange operation, 
the resulting matrix A* has row sum vector R and column sum vector S. 

THEOREM 3.1. Let A and A* be two m by n matrices composed of 0's and Vs, 
possessing equal row sum vectors and equal column sum vectors. Then A is 
transformable into A* by a finite number of interchanges. 

The proof is by induction on m. For m = 1 and 2, the theorem is trivial. 
The induction hypothesis asserts the validity of the theorem for two (0, 1)-
matrices of size m — \hy n. 

We attempt to transform the first row of A into the first row of A* by 
interchanges. If we are successful, the theorem follows at once from the 
induction hypothesis. Suppose that we are not successful and that we denote 
the transformed matrix by A'\ For notational convenience, we simultaneously 
permute the columns of A' and A* and designate the first row of A' by 

(àn T)S1 5t, rjt) 

and the first row of A* by 

(Ôn I7.s, 7]t, Ôt). 

Here ôr and dt are vectors of all l's with r and t components, respectively, 
and rjs and rjt are 0 vectors with 5 and t components, respectively. Thus we 
have been successful in obtaining agreement between the two rows in the 
positions labelled dr and rjs, but have been unable to obtain agreement in the 
positions labelled 8t and rjt. We may suppose, moreover, that these 2t positions 
of disagreement are the minimal number of disagreements obtainable among 
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all a t t emp t s to transform the first row of A into the first row of A* by inter­
changes. 

Let Ar
m-i and A*m-i denote the matrices composed of the last m — 1 

rows of A' and ^4*, respectively. The row sum vectors of A' m-\ and A*m-i 
are equal. Also corresponding columns of A'm-\ and -4*m_i below the positions 
labelled 8r and rjs have equal sums. Let at denote the (r + s + i)th column 
of i4'.w_i, and let /?* denote the (r + s -\- t + i)th column of -4'w_i, where 
i = 1, . . . , /. Let ai*, . . . , « , * and Pi*, . . . , 13 * denote the corresponding 
columns of A*m-i. Let au bu a{*} b{* denote the column sums oîau fit, «**, |S7*, 
respectively. 

NOWT in A'm-i we cannot have simultaneously a 0 in the position determined 
by row j and column at and a 1 in the position determined by row j and column 
fit. For if this were the case, we could perform an interchange and reduce the 
2/ disagreements in the first row of A'. Hence at > bt. Moreover, at = at -\- 1 
and b* = bt — 1, whence 

at — bt = at — bt + 2 > 2. 
In A*m-i, consider columns a* and f3*. There exists a row of A*m-i t h a t has 
a 1. in column a* and a 0 in column fi*. Replace the 1 by 0 and the 0 by 1, 
and let such a replacement be made for each i — 1, . . . , /. We obtain in this 
way a new matr ix Am-\ whose row and column sum vectors are equal to those 
of A1

 m-\. By the induction hypothesis, we may transform A'm-\ into Am-\ 
by interchanges. However, these interchanges applied to A' will allow us to 
perform further interchanges and make the first rows of the transformed A' 
and A* coincide. Hence the theorem follows. 

Let SI denote the class of all (0, l ) -matr ices of m rows and n columns, with 
row sum vector R and column sum vector S. The term rank p of A in ?t is the 
order of the greatest minor of A with a nonzero term in its de te rminan t 
expansion (6). This integer is also equal to the minimal number of rows and 
columns t ha t contain collectively all of the nonzero elements of A (4). A 
(0, l ) -matr ix A = [a,,] may be considered an incidence matr ix dis tr ibut ing n 
elements Xi, . . . , xn into m sets Si, . . . , Sm. Here atJ = 1 or 0 according as 
xj is or is not in St. From this point of view the term rank of a matr ix is a 
generalization of the concept of a system of distinct representat ives for subsets 
Si, . . . , Sm of a finite set N (2). Indeed, the subsets Si, . . . , Sm possess a 
system of dist inct representat ives if and only if p — m. 

T H E O R E M 3.2. Let p be the minimal and p the maximal term rank for the 
matrices in 31. Then there exists a matrix in 91 possessing term rank p, where p 
is an arbitrary integer on the range 

p < p < p. 

For an interchange applied to a matr ix in ?I either changes the term rank 
by 1 or else leaves it unaltered. But by Theorem 3.1, we may transform the 
matr ix of term rank p into the matr ix of term rank p. This implies t ha t there 
exists a matr ix in 21 of term rank p. 
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