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The linear stability of the axisymmetric steady flow in a thermocapillary liquid bridge
made from 2-cSt silicone oil (Pr = 28) is investigated numerically. The liquid bridge is
heated either from above or below and exposed to an axial air flow which is confined
to a concentric tube surrounding the bridge. At the annular inlet, the air flow is fully
developed and has the same temperature as the adjacent support rod. Using an extended
Oberbeck—Boussinesq approximation in which the density of both fluids depends linearly
on the temperature in all equations, critical thermocapillary Reynolds numbers are
obtained depending on the strength of the imposed axial air flow. The critical conditions
are sensitive with respect to the direction of a weak air flow, because the air flow changes
the plateau value of the interfacial temperature midway between the hot and cold ends.
For stronger air flow the critical thermocapillary Reynolds number almost saturates at
moderate values. Throughout, the instability arises as a hydrothermal wave with the gas
phase being passive. The dynamic interface deformations for axisymmetric flow caused by
the thermocapillarity flow in the liquid and by the stresses from the air flow are considered
separately. Apart from turning points of the critical curve, the impact of dynamic surface
deformations on the critical thermocapillary Reynolds number is moderate.
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1. Introduction

When the temperature varies along the interface between two immiscible fluids, the
thermocapillary effect generates a tangential shear stress that drives a motion in
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Figure 1. Schematic of a differentially heated liquid bridge (cyan) with a deformed interface /(z) between the
support rods (both with the same radius r; and length d,,4) which are concentrically mounted in a tube (radius
7o, grey, hatched). The sketch shows the situation when the liquid is heated from above (Tiop > Thorrom, red)
and an imposed gas flow (bright blue) with velocity profile w,(r) enters the annular region from below with a
temperature Tponom (blue). The polar coordinate system is centred in the liquid bridge and the gravity vector is
always directed in the negative z direction.

both fluids. This effect is important in many systems such as welding (Mills et al.
1998) or crystal growth from the melt (Hurle 1994). Crystals grown by the floating-zone
technique (Pfann 1962) can exhibit impurity inhomogeneities caused by the onset of
a time-dependent flow in the opaque melt. To understand the underlying physics, the
model problem of a liquid bridge between coaxial cylindrical solid support rods has
been devised. The original full-zone problem in which the cylinder-like free surface is
heated symmetrically with respect to the equator (Chang & Wilcox 1975) was further
simplified to a half-zone problem (Schwabe et al. 1978). In the half-zone problem,
which is more amenable to experimentation, the liquid bridge is differentially heated
via the support rods. A sketch is shown in figure 1. Basic numerical models assuming a
fixed cylindrical interface were able to qualitatively predict the instability of the steady
axisymmetric basic flow. For low Prandtl numbers, the first instability is inertial and
leads to a steady three-dimensional flow (Levenstam & Amberg 1995; Wanschura et al.
1995), while for high Prandtl numbers, the first instability arises as a pair of azimuthally
travelling hydrothermal waves (Wanschura et al. 1995), first discovered for plane layers
by Smith & Davis (1983a). Parallel to numerical investigations, experiments have been
carried out, mainly for transparent high-Prandtl-number liquids. By today, the half-zone
problem, or the thermocapillary liquid bridge, has become the most important paradigm
for thermocapillary convection (Kuhlmann 1999). The thermocapillary Reynolds number
Re, which is proportional to the total variation of the surface tension along the interface,
is the most important parameter measuring the strength of the flow. It is thus suitable to
characterise the low-Prandtl-number inertial instabilities, whereas the hydrothermal-wave
instabilities at large Prandtl numbers are best characterised by the Marangoni number
Ma = PrRe.

Some features of real experiments have been very difficult to implement in numerical
analyses. These are the dynamics of the free surface and the heat (and mass) transfer
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across it. The importance of the heat transfer for the critical Reynolds number has been
pointed out by Kamotani et al. (2003). Its significance is also reflected by the scatter of
critical Reynolds numbers for the onset of hydrothermal waves in high-Prandtl-number
liquid bridges obtained in different experiments and by different investigators. The
sensitivity with respect to the thermal conditions in the ambient atmosphere has been
proposed to be utilised for controlling the onset of oscillations by exposing the liquid
bridge to a well-defined gas flow (Yasnou, Mialdun & Shevtsova 2012). This problem has
also been the subject of the Japanese—European Research and Experiments on Marangoni
Instability (JEREMI) collaboration which was aimed at an experiment on the International
Space Station (Shevtsova et al. 2014).

In early numerical investigations, the heat transfer across the interface has been
treated by Newton’s law of cooling (Neitzel er al. 1992; Kuhlmann & Rath 1993).
Even for an adiabatic-free surface, this model was successful in qualitatively describing
the instability and its mechanism (Wanschura, Kuhlmann & Rath 1997). Melnikov &
Shevtsova (2014) calculated the critical Marangoni number for the onset of hydrothermal
waves for different variants of Newton’s law. They tested models using different ambient
reference temperatures: (a) the temperature of the hot wall, (b) the temperature of the
cold wall and (c) an ambient temperature linearly depending on the axial coordinate. The
critical Marangoni numbers as a function of the Biot number strongly depended on the
heat transfer model used because neither the heat transfer coefficient for an assumed
environmental reference temperature is known nor does Newton’s law correctly capture
the spatial dependence of the local heat transfer rate.

The sensitivity of the critical conditions on the unknown model parameters thus calls
for a more accurate treatment of the problem by including the flow in the gas phase
into the analysis. The present work is intended to understand how a gas flow affects
the critical Reynolds number and the instability mechanism. To that end a numerical
linear stability analysis of the axisymmetric steady basic two-phase flow is carried out.
In addition, the influence of the dynamic deformability of the liquid—gas interface on the
critical conditions is studied.

1.1. Axisymmetric two-phase flow

The typical set-up enabling a better control of the heat transfer is to mount the liquid bridge
inside of a concentric shield cylinder (Preisser, Schwabe & Scharmann 1983). However,
even if the shield cylinder is closed, sealing the gas phase, the critical Marangoni number
and the modal structure depend on the wall temperature of the shield cylinder (Yano
et al. 2017). For high-Prandtl-number liquids, Romand & Kuhlmann (2019) demonstrated
the strong dependence of the local interfacial heat flux density on the axial coordinate.
Moreover, by carrying out a large number of calculations of the steady axisymmetric
thermocapillary flow in the presence of the surrounding gas, being confined to an adiabatic
sealed cylindrical container, they developed fit functions for the true local interfacial heat
flux valid for a wide range of Reynolds numbers and height-to-radius ratios of the liquid
bridge (aspect ratio ™). The fit function can be implemented in a single-fluid model using
Newton’s law with a space-dependent Biot function. This approach promises a significant
reduction of the numerical effort as compared with the two-phase approach, while the
thermal conditions are accurately represented.

When the shield tube has open ends, the liquid bridge can be exposed to a defined gas
flow without swirl, which has the same temperature at the inlet as the adjacent support
rod. In this case, the radius ratio n = r,/r; (figure 1) becomes important: for large 7,
viscous stresses exerted on the interface by the gas flow are small and may be negligible.
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In this case, the effect of the gas flow on the liquid flow is mainly thermal. If, on the
other hand, the air gap n — 1 is small, viscous stresses become important and may even
dominate.

Gaponenko, Mialdun & Shevtsova (2012) investigated the effect of viscous stresses
from the gas flow experimentally and numerically by considering the isothermal problem
in which a toroidal vortex is solely driven by a gas flow through a relatively narrow
annular gap with n = 1.6. Depending on the strength of the gas flow, they found the
axisymmetric toroidal vortex slightly displaced. Furthermore, when the dynamic viscosity
of the liquid is more than 100 times that of the gas, the strength of the vortex scales linearly
with the gas flow Reynolds number Reé, based on the mean gas velocity and twice the
width of the air gap. Similar results were reported by Gaponenko, Miadlun & Shevtsova
(20110). Gaponenko et al. (2011a) used the same isothermal set-up, but concentrated on
the effect of the gas flow on the shape of the liquid bridge. For all cases considered, the
gas-flow-induced deformation of the liquid bridge was much smaller than that due to the
hydrostatic pressure difference.

The same set-up, but now with differentially heated support cylinders to include the
thermocapillary effect, was considered by Shevtsova, Gaponenko & Nepomnyashchy
(2013). Using Fluent, they numerically simulated the axisymmetric flow in liquid bridges
made from n-decane and 5-cSt silicone oil in air, which had a temperature identical to the
upstream support rod. For a tight gap with n = 1.6, Re(’g 2 100 and a liquid bridge with
an indeformable interface and twice as long as its radius, the strength and structure of the
flow in the liquid are strongly affected by viscous stresses from the gas, even leading to
multiple flow separations on the interface such that the surface flow is locally directed
opposite to the thermocapillary stress. Furthermore, they found axisymmetric instabilities
for high gas flow rates, leading to a time-dependent flow. When the air comes from the
cold side, the axisymmetric waves propagate to the cold side, i.e. upstream of the gas flow.
Even though the mechanical shear stress was large, the waves were interpreted as being
due to a modification of the Pearson mechanism (Pearson 1958), because the gas is cooling
the interface, potentially leading to Marangoni rolls superimposed to the basic flow which
could be advected by the basic surface flow. Part of these results have been published
earlier by Gaponenko & Shevtsova (2012). Gaponenko, Nepomnyashchy & Shevtsova
(2011c¢) also reported similar results.

In their numerical study using STAR-CCM+, Yano & Nishino (2020) considered the
axisymmetric flow in a thermocapillary liquid bridge for a moderately wide gap with
n = 3. The gas at the inlet had the same temperature as the adjacent support rod. They
found viscous stresses have a negligible effect on the flow in the liquid. But the flow
direction and the temperature of the shield cylinder (which was varied) had a strong
influence on the interfacial heat transfer and thus on the flow, even deep inside of the
liquid.

1.2. Instability of the axisymmetric two-phase flow

In one of the first experimental investigations of the effect of an axial gas flow on the onset
of hydrothermal waves, Ueno, Kawazoe & Enomoto (2010) used a 2-cSt liquid bridge
heated from above in air with a shield tube of n = 5 and a gas temperature equal to the
temperature of the support rod upstream of the airflow. They found a significant and almost
linear dependence of the critical parameters on the mean gas flow rate measured by the
gas flow Reynolds number Re;, € [—100, 100]. For the wide air gap used, the change of
the critical onset is mainly due to thermal effects, because the gas temperature differs
from that of the surface of the liquid. For the same wide air gap, Yano et al. (2016)
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carried out experiments with liquid bridges heated from above under a weak airflow and
an air temperature as in Ueno et al. (2010). The temperature of the cylindrical shield
was kept constant. Likewise, the critical Marangoni numbers depended sensitively on the
gas flow rate. The critical Marangoni numbers Ma, obtained could be well correlated by
the normalised total heat flux through the interface, which was obtained by numerically
computing the basic axisymmetric flow for the measured values of Ma,.. However, in terms
of the total normalised heat flux through the interface, the critical Marangoni number can
be extremely sensitive. This indicates, once again, that the total heat flux is not a suitable
parameter to characterise the onset conditions and that the heat flux must be considered
space resolved.

As a first step towards a three-dimensional linear stability analysis, Ryzhkov &
Shevtsova (2012) simplified the problem by considering an indeformable infinitely long
liquid bridge similar as in (Xu & Davis 1984), but with an axial gas flow inside an annulus.
An additional thermocapillary flow is driven by an imposed linear variation of the axial
temperature in the whole system, while a zero axial mean flow was enforced in the liquid
phase. A linear stability analysis shows that a gas flow parallel to the thermocapillary stress
(co-flow) acts destabilising. A counter-flow can act stabilising or destabilising, depending
on its strength. The first three-dimensional linear stability analysis for the two-phase flow
in a system of finite length is reported in Shevtsova et al. (2014). For a 5-cSt liquid
and an air gap with n = 2, it was demonstrated that the linear stability boundaries in
the plane made by the thermocapillary and the gas Reynolds numbers (Re, Reé) can be
quite complex. For the same liquid, argon gas and n = 3, Stojanovic & Kuhlmann (20205)
obtained linear stability boundaries for moderate co- and counter-flow. A representative
critical hydrothermal wave which exhibits a strong spiral character was characterised
and discussed by Stojanovic & Kuhlmann (2020a). The first more comprehensive linear
stability analysis of the two-phase flow is due to Stojanovic, Romano & Kuhlmann (2022).
They carried out a linear stability analysis of the flow in a liquid bridge of 2-cSt silicone
oil inside of a sealed adiabatic air-filled shield tube with a radius ratio n = 4.

Targeting the supercritical behaviour, Gaponenko et al. (2021) carried out experiments
on the fully developed three-dimensional flow in a liquid bridge of n-decane (Pr = 14) in
nitrogen using a narrow gap with n = 1.6. Certain cases were also numerically simulated
taking into account the cooling of the interface due to evaporation of the liquid. The
distinguished feature of their experiments was a constant gas flow rate with a mean velocity
of 0.5 ms™! (Re/, = const.) from the cold to the hot side of the liquid bridge, but the inlet
temperature of tfle gas was varied. This was accomplished by the heating and cooling
devices of the liquid bridge being realised by very thin plates mounted on the end faces
of the support rods. Depending on the inlet gas temperature travelling and standing waves
were found, as well as periodic and different quasi-periodic states. An isolated window
of stability of the axisymmetric flow was detected when the gas flow was considerably
hotter (28 °C) than the mean temperature of the liquid bridge (25°C) which was kept
constant. Hysteresis was not observed. Practically the same results have been reported
earlier by Yasnou et al. (2018) who used the same set-up and the same conditions. They
also measured stability boundaries as a function of the gas temperature. A similar study

was undertaken by Gaponenko et al. (2023) using the same set-up and methods, but for

the smaller mean gas velocity of 0.1 ms™!.

1.3. Dynamic deformations and surface waves

The interest in dynamic surface deformations of thermocapillary liquid bridges was
partly stimulated by Kamotani & Ostrach (1998), who proposed that the onset of flow
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oscillations in high-Prandtl-number liquid bridges is due to the coupling between the flow
and the flow-induced dynamic surface deformations via an essentially two-dimensional
mechanism. Today, however, it is generally accepted that the very small dynamic surface
deformations in the oscillatory supercritical flow are only passive in the absence of a
gas flow (Kuhlmann & Nienhiiser 2002), merely reflecting the hydrothermal wave which
is created by a different mechanism (Smith & Davis 1983a; Wanschura et al. 1997),
independent of dynamic deformations.

In a series of publications Ferrera et al. (2008), Montanero, Ferrera & Shevtsova
(2008) and Shevtsova et al. (2008) experimentally studied dynamic surface deformations
due to the thermocapillary flow for a 5-cSt liquid (Pr = 68) for sub- and supercritical
conditions. The magnitude of the dynamic (flow-induced) interfacial deformation due to
the thermocapillary flow was found to be less than the static deformation at the threshold,
and the oscillatory deformations in the supercritical flow were below micrometre size.
Very small supercritical oscillatory dynamic deformations with amplitudes of the order
of 0.1 pwm were also measured for large liquid bridges (r; = 5.15 mm) of high Prandtl
numbers under microgravity conditions by Yano et al. (2018b).

These results established that interfacial deformation induced by the liquid flow is
typically small compared with the size of the liquid bridge (millimetre scale). In fact,
the linear stability analysis of Carridn, Herrada & Montanero (2020) including dynamic
deformations due to the perturbation flow, but in the absence of a gas flow and using
Newton’s law of cooling, has shown that dynamic deformations have very little effect on
the eigenvalues and eigenvectors resulting from the linear stability problem. On the other
hand, Herrada et al. (2011) studied dynamic deformations of an isothermal liquid bridge
caused by an imposed axisymmetric coaxial gas flow in the absence of a thermocapillary
flow. They found numerically that the amplitude of the surface deformations takes higher
values for normal gravity conditions compared with zero gravity conditions. For the gas
flow rates investigated the flow remained steady. In the presence of thermocapillarity,
however, the flow may become unstable and surface wave instabilities may be triggered by
the gas flow. Surface waves have been observed in low-Prandtl-number thermocapillary
layers (Smith & Davis 1983b; Bach & Schwabe 2015) and in two-dimensional shallow
droplets with low surface tension migrating on a flat wall under a constant temperature
gradient (Hu, Zhang & Chen 2023). Surface waves in the plane return flow have a
rather long wavelength when the surface tension is small (Davis 1987). Based on the
analysis of Smith & Davis (1983b) surface waves are not expected to become critical for
high-Prandtl-number liquid layer and, in particular, not in axially confined liquid bridges
of high Prandtl number.

Except for the brief results of Shevtsova et al. (2014) and Stojanovic & Kuhlmann
(2020b) for liquids with Pr = 67, a numerical linear stability analysis of the flow
in thermocapillary liquid bridges under the influence of an axial gas flow has never
been carried out. The present work intends to fill this gap and compute the influence
of the gas flow on the stability of a set of typical parameters. In §2, the problem
is formulated. The popular combination of 2-cSt silicone oil and air is selected and
the case of a wide gap with n =4 is considered. Section 3 explains the numerical
methods employed. Results are presented in § 4. First, the influence of the axial gas flow
rate on the linear stability boundary and the critical modes is presented and analysed.
Thereafter, free surface deformations due to the basic flow are discussed and their
effect on the linear stability boundary is established. We close with a discussion of the
results in § 5.
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2. Problem formulation
2.1. Set-up

We consider a liquid bridge between two coaxial cylindrical rods, both of length
dyoq = 1 mm and radius r; = 2.5 mm, which are separated by a distance d = 1.65 mm,
as shown in figure 1. The rods are aligned parallel to the acceleration of gravity g = —ge;
with ¢ = 9.81 m s~2. The liquid bridge is surrounded by an ambient gas which is confined
to a cylindrical tube of radius r, = 10 mm > r; (i inner and o outer). The geometry is
characterised by the aspect ratio of the liquid bridge I", the rod aspect ratio [5,4 and the
radius ratio n which are defined, respectively, as

d drod To
I'=—=0.66, [= =04 and n=—=4. 2.1a—-c)
T T T
These geometry parameters are identical to those of the experimental set-up used by
Romano et al. (2017) and they are kept constant throughout.

The liquid bridge is made of 2-cSt silicone oil KF96L-2cs produced by Shin-Etsu
Chemical (Japan), while the surrounding gas is air. Both are considered Newtonian
fluids. The liquid bridge is kept in place by capillary forces due to the surface tension
between the liquid and the gas and by pinning of the three-phase contact lines to the
sharp circular edges of the support rods. The support rods are assumed to be perfect
thermal conductors and are kept at different but constant temperatures T;,, = To + AT /2
and Tporwom = To — AT/2 with AT = Ttop — Thottom and Ty = (Ttop + Tportom) /2. The
temperature difference AT can accept positive or negative values corresponding to heating
from above or from below, respectively. Since the imposed temperature difference leads to
a surface tension variation along the interface, tangential interfacial stresses are induced
via the thermocapillary effect. These thermocapillary stresses drive a flow both in the
liquid and in the gas phase (Kuhlmann 1999).

The dependence of the surface tension

o (T) = o — y(T — To) + O(T — Tp)*] (2.2)

on the temperature 7 is considered up to first order in T — Ty, where og = o (Tp) is
the surface tension at the reference temperature 7y and y the negative surface tension
coefficient. Apart from thermocapillary surface forces, the flow is also driven by body
forces caused by the thermal expansion of the liquid and the gas. Therefore, the densities

p(T) = poll — B(T — To) + OL(T — To)*1}, (2.3a)
pe(T) = peoll — Be(T — To) + OL(T — To)1}, (2.3b)

of the liquid and the gas, respectively, are also considered up to first order in the
temperature deviation from its algebraic mean Ty, where po = p(Tp) and pgo = pg(To)
are the reference densities at the mean temperature. The respective thermal expansion
coefficients are f = —po_l(ap/aT)p and B, = —/og_o1 (0pg/0T)p.

A third driving force of the fluid motion is an imposed axial pressure difference between
the inlet and the outlet of the gas (figure 1). The pressure difference leads to a forced flow
in the annular gap between the rods and the shield tube. The direction of the mean gas
flow depends on the sign of the pressure difference. Here we assume that the gas enters
the annular space with a temperature equal to the rod temperature upstream of the gas flow.

For millimetric liquid bridges of the above silicone oil which can be realised under
terrestrial gravity the main driving force is thermocapillarity. As long as the imposed
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Property Dimension KF96L-2cs Air
Density pg kgm™3 871 1.184
Dynamic viscosity 1 Pas 1.742 x 1073 1.846 x 107>
Thermal conductivity A W (mK)~! 0.11 2.637 x 1072
Specific heat ¢, J (kg K)! 1768.1 1005.7
Thermal expansion coefficient 8 K~! 1.24 x 1073 3.38 x 1073
Surface tension oy Nm™! 18.3 x 1073

Surface tension coefficient y N (mK)~! 7 x 1073

Table 1. Thermophysical properties of the working fluids 2-cSt silicone oil KF96L-2cs and air at 25 °C.

temperature difference and the gas flow rate are small the flow in the liquid and in the
gas will be axisymmetric and steady, reflecting the symmetry of the problem. Here we
are interested in the stability of this steady axisymmetric flow and the dependence of
its stability boundary on the forced flow in the gas phase. In order to keep this problem
manageable we assume the dynamic viscosities of both fluids « and ug as well as their
thermal conductivities A and A, and their specific heat capacities ¢, and ¢, ; to be constant.
Moreover, the mean temperature is kept constant at 7o = 25 °C. All physical properties for
both working fluids are given in table 1.

2.2. Governing equations and boundary conditions

2.2.1. Transport equations
The flow in both the liquid and the gas phase is governed by the Navier—Stokes,
continuity and energy equations. For the problem at hand it seems reasonable to simplify
the governing equations and consider the Oberbeck—Boussinesq approximation (Landau
& Lifschitz 1959; Mihaljan 1962) which takes into account density variations only
in the buoyancy term. However, a proper treatment of flow-induced deformations of
the liquid—gas interface requires higher-order corrections to the Oberbeck—Boussinesq
approximation (Simanovskii & Nepomnyashchy 1993). Therefore, we consider the linear
temperature dependence of the densities not only in the buoyancy term, but also in the
entire momentum equations, the continuity equations and in the energy equations for both
the liquid and the gas.

Within this approximation we consider the following equations for the velocity u,
pressure p and temperature field T for the liquid phase:

u
pa—l—pu-Vu: —Vp —pge, + nV - S, (2.4a)
9

8—‘; +V - (ou) =0, (2.4b)

aT A
p— + pu-VT = —V°T, (2.4¢)

at Cp

where ¢ is the time and

S=Vu+ (V) —3(V-wl (2.5)

is (twice) the deformation rate tensor with the identity matrix I = §;. In the energy
equation (2.4c), the pressure contribution to the enthalpy is neglected, assuming
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p I Z Cp p
1.359 x 1073 0.010597 023973  0.5688  2.7258

Table 2. Ratios of the thermophysical parameters between air and 2-cSt silicone oil as defined in (2.6).

p/p K |cpT|. Likewise, we neglect the pressure work and the heat due to viscous
dissipation in (2.4¢).

Formally the same equations (2.4) hold for the gas phase, merely with the material
parameters of the gas. To distinguish between liquid and gas we follow Stojanovic et al.
(2022) and introduce the set of coefficients

(1,1,1,1,1) for the liquid phase,

2 2.6
(0, L, A, cp, B) for the gas phase, (2.6)

o= (apa a/l,a a/ly Olcpa aﬁ) =

where p = pg0/p0, L = g/, 1= Ag/A, ¢y = ¢p g/cp and B = Bg/B denote the ratios
of the reference densities, dynamic viscosities, thermal conductivities, specific heat
capacities and the thermal expansion coefficients between the gas and the liquid.
Numerical data are given in table 2.

Scaling lengths, time, velocity, pressure and temperature by d, dz,oo /m, yAT/u,
y AT /d and AT, respectively, and using the same notation as for the dimensional variables,
we arrive at the dimensionless version of (2.4) for both fluids:

a 1
(1 - aﬂsz?)a—l: +Re(l1 —age)u-Vu=—-—Vp+oagBdve, +a,V -8, (2.7a)
®p

)

_%5 —ageV - (Pu)+V-u=0, (2.7b)

(1 — aped) = + Re(l — aged)u - V9 = —v2y, 2.70)
ot acpPr

where we made use of the coefficients defined in (2.6). We use cylindrical coordinates
(r, ¢, z) centred in the middle of the liquid bridge and a polar representation of the
velocity field u = ue, + vey, + we;. In (2.7), the reduced temperature and the reduced
pressure are defined as ¥ = (T — Tp)/AT and p = (d/y AT)(P — pogz), respectively,
where P indicates the dimensional pressure. Furthermore, the temperature dependence
of the density is taken into account up to linear approximation with the (small) parameter
¢ = BAT (and &g = B, AT) measuring the magnitude of the density variation in the liquid
(and in the gas).

The flow in the silicone oil under terrestrial gravity is characterised by the
thermocapillary Reynolds number Re, the Prandtl number Pr and the dynamic Bond
number Bd, defined respectively as

_poyATd o py e g pogBd?

Re ,
u? A %

=0.41. (2.8a—c)

Since AT can accept both, positive and negative values, the thermocapillary Reynolds
number Re, the Marangoni number Ma = PrRe as well as the Rayleigh number Ra =
BdMa have a sign. As most investigations of the flow in liquid bridges consider
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heating from above, this configuration will be associated with (Re, Ma, Ra) > 0, while
(Re, Ma, Ra) < 0 indicates heating from below, even though this is an unusual convention
for pure buoyancy convection.

2.2.2. Linear stability equations

The steady axisymmetric solution ug = u(r, z)e, + w(r, z)e; of (2.7) is called the basic
flow. For sufficiently small driving forces the basic flow is stable. We are interested
in the linear stability boundary of the basic flow when the thermocapillary Reynolds
numbers Re exceeds a certain threshold. For Reynolds numbers larger in magnitude than
the critical Reynolds number, i.e. Re > Re, > 0 for heating from above, or Re < Re, < 0
for heating from below, the flow is time-dependent, three-dimensional or both. In order
to find the critical Reynolds numbers Re. a linear stability analysis is carried out. To
that end the general three-dimensional time-dependent solution ¢ = (i, v, w, p, ¥) and
g, = (g, Vg, Wg, Pg, Vg) of (2.7) is decomposed into an axisymmetric time-independent
basic flow (subscript 0) and deviations from this basic flow (indicated by a prime ’):

qZQO(”’ Z) +q/(r’ ¢, 2, t)’ qg =qg0(rv Z) +‘];;(’3 ¢, 2, t) (29a7b)

Inserting this decomposition into (2.7) and linearising the equations with respect to the
perturbation quantities yields the set of linear equations

/

0
(1 — aﬁsﬁo)a—l; + Re(1 — agedy)(up - Vu' +u - Vug) — o:,gsReﬁ/u() - Vugy

1
= ——Vp +ayBdde. +a,V S, (2.10a)
®p
a0’
- “RL”W —apeV - (0'up) — ageV - (Vo) + V -l =0, (2.10b)
e

/

3
(I —apevo) —— + Re(l — apevo) (uo - Vo' +u - Vi)

o

— ageRedug - Vo = v/, (2.10¢)

o, Pr

which describe the dynamics of the infinitesimal perturbation flow. Again (2.10) is valid for
both phases, distinguished by «. Both phases are coupled through the boundary conditions
on the interface.

Since the basic state is homogeneous in time ¢ and in the azimuthal coordinate ¢,
the perturbations ¢’ and qé, can be decomposed into normal modes with azimuthal

wavenumber m € N:

q = Z@j,m(r, ) eVt time 4o e, 4y = Z@g;j,m(r, z) eVim!Time ¢ e (2.11a,b)
R j.m

where the complex conjugate (c.c.) renders the perturbations real. The complex

growth rates of the normal modes with amplitudes g = (i, 0, w,p, ) and g, =

(itg, Vg, Wg, Py, 1A9g) are denoted v = ¥, € C, where the index j numbers the different

solutions for given wavenumber m.
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Inserting the ansatz (2.11) into (2.10), we obtain linear differential equations in r and z
for the perturbation amplitudes

0z

| 9 (Y ugwo) 1 dp 20 ([ ou
—ageRe |-+ — ) @ud) + 20 P i
*pe e|:<r+8r)( o) + 0z ap 8r+au ror r8r
10 3\ 2 ad o\ ou 2
2 — |0 — —_— — = "1, 2.12
— (m® + )2—|—m( o r2>v+(8z+8r> P 30:,38{] (2.12a)
viare (242 ;)+8(5w0) L. 3,0,
D+ Re| |-+ — ) (v =——>pPpta,|-m|5+—|u
rar) 0 0z o, T " r2 = or

19 ( a0 o 8 (o0 mw) 2
—— | r = =-Cm*+1 e A [ ap 2.12b
+r8r <r8r> @m"+1) 2+32<3Z r ) 3a58§:| ( )

1 9[r(woit + wu mwod owow
[[(o o)]Jr 0+20:|

i 3 1 0 N mugd 3 (uoW + oiw
Y(u— “ﬂwoﬁ) + Re |:<; + E) Quou) + ro + (o O):|

— 19 Re
V(W — agewod) + . o2

o, 0z

+ +a Li 15000 220 0], o
oy | —— —m? —— 4+ -0 — ) — —wgel' |, 12¢
M1 ror 8r dz \radr r 0z 3 pes

vd  19(rdug) a(éwo) 19[(1 — agedo)rid]
age | —— — — - + -
Re r or 0z r or

d'w3 19
_aﬂgReK )(z?uw)+ (awo)}_——a—er op Bd D
Z

—agedya  I[(1 —agedo)n
m—apedos AL —epedo)d] _ (2.12d)

r 90z

1 3[r(9oit + Dug — agedouod Sad
Y (D — agedy) + Re |: [r(oit + Suo — apedouo )] mdo0
r

ar r

8(190w + Dwoy — agedowod) ay |1a [ 8o 2 B L %0
-——\|\r—)—m
az ozc Pr|ror\ or 072
(2.12¢)

In these equations, the amplitudes of the azimuthal velocities have been transformed
according to 5 =ib and ﬁg =i, in order to render the coefficient matrix real and,
thus, save computational memory for the numerical solution (Theofilis 2003). For the
sake of brevity, we have abbreviated the term V .« arising in the rate-of-strain tensor
for the perturbation flow by V - &’ = age(’. These terms represent the deviation from a
solenoidal perturbation flow. As can be seen from (2.10b) they are of the orders of O(e)
and O(g,) for the liquid and gas phase, respectively.
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m=0 =0 =0 a/ar=0 39/dr=0
m= /dr=0 00/or=0 w=0 D=0
m> 1: =0 D=0 Ww=0 D=0

Table 3. Boundary conditions for the perturbation flow on r = 0.

2.2.3. Boundary conditions
To solve the two-dimensional version of (2.7) for the basic flow and of (2.12) for the
three-dimensional perturbation flow suitable boundary conditions must be defined for both
flows.

Solid walls. The velocity fields must satisfy the no-slip boundary conditions

up=uyn =0 and a=iu,=0 (2.13a,b)

on all solid walls, namely the support rods and the cylindrical tube confining the gas
radially. Since the support rods are always made from good thermal conductors (e.g.
Romano et al. 2017; Gotoda et al. 2019), constant temperatures are imposed on the rods
for the basic flow, while the perturbation temperature must vanish. The shield tube, on
the other hand, is typically made from a good thermal insulator to keep its thermal effect
on the gas flow at a minimum. Therefore, the heat fluxes due to both the basic and the
perturbation temperature field are required to vanish on the shield tube. This leads to the
thermal boundary conditions

hotrod: g =0 =1/2 and & =, =0, (2.14a)
coldrod: g =0 = —1/2 and & =1, =0, (2.14b)
shield tube:  8940/0r =0 and 8d,/dr = 0. (2.14¢)

Axis of symmetry. On the axis of symmetry at r = 0 the axisymmetric steady basic flow
must satisfy
B _ a0 _

ar ar
The boundary conditions for the perturbation flow can be derived from uniqueness
conditions for du/d¢ and d1/d¢ as r — 0 (see also Batchelor & Gill 1962; Xu & Davis
1984) and depend on the wavenumber m. They are given in table 3.

Liquid—gas interface. The flow in the liquid and in the gas phase are coupled through
the interface. Since the location of the interface, described by r = h(gp, z, 1), is part of
the solution, the flow and the location 4 must be computed in a coupled manner. In
the following we consider the axisymmetric steady basic flow and the corresponding
time-independent shape function /¢ (z).

Regardless of the shape of the interface, continuity of the temperature and of the heat
flux across the interface at r = ho(z) require the thermal boundary conditions

1o = (2.15)

r=hy: =1y, (2.16a)
r=hy: n-Vid=n- Vi, (2.16b)
where
n= % with N = /1 + (8,h0)2, 2.17)
978 A27-12


https://doi.org/10.1017/jfm.2023.944

https://doi.org/10.1017/jfm.2023.944 Published online by Cambridge University Press

Thermocapillary liquid bridges subject to an axial gas flow

is the unit vector on the interface directed from the liquid into the gas. The tangent vector
is defined as ¢ = [(d;ho)e, + e;]/N.

The velocity fields must satisfy kinematic and dynamic boundary conditions. The
kinematic boundary conditions

r=ho: wmo=mug and — =d.hg 2.18)
wo

ensure the continuity of the velocity and guarantee that a fluid element on the interface
remains on the interface. The dynamic boundary condition is decomposed into a normal
and a tangential stress balance by projecting the equilibrium of forces onto the normal (n)
and tangential (#) directions. The normal stress balance

1
—(po—pg0)+n-so-n+(——190>V-n
Ca

Bo = -
= —az — (0 — pBUg)Bdz+ un- S - 1 (2.19)
must be satisfied on r = ho(z). It is affected by the static Bond number Bo and the
Capillary number Ca defined as

_ d? AT
_ (o= peolgd” o VAT (2.20a,b)

00 00

Bo

They measure the relative importance of static and of hydrodynamic pressure differences,
respectively, to the characteristic capillary pressure o¢/d. Note that the ratio t = Bd/Bo =
poBoo/ly (po — pg0)] is a material constant and almost a proportionality factor between
¢ and Ca, since ¢ = (1 — p)tCa and typically p <« 1. In addition to (2.19) the tangential
stress balance

t-So-n=—t-Vig+ it S+ n (2.21)

must also hold on r = hg(z). The thermocapillary stresses are represented by —¢ - V.

The stationary axisymmetric version of the differential equations (2.7) and the above
boundary conditions for the basic state must be solved in a coupled way to yield the basic
flow including the interfacial shape ho(z). The numerical solution is described in § 3. To be
able to solve the problem two additional constraints for g are required, because the normal
stress balance is of second order in z. These are provided by the interface ho(z = +£1/2) =
1/I" being pinned to the sharp edges of the heated rods. In addition, for a non-volatile
liquid the mass of the liquid bridge must be conserved. Since 2-cSt silicone oil is slightly
volatile, accurate experiments (e.g. Yano et al. 2016; Yasnou et al. 2018; Gotoda et al.
2019) control the volume of the liquid rather than the mass. Therefore, we impose the
volume constraint

1/2
ﬂ/z%@&=v (2.22)
-1/

where V = V;/Vj is the liquid volume V; normalised by the volume Vj = J'rrl.zd of an
upright cylindrical liquid bridge. Throughout this investigation the liquid volume YV is
prescribed, not the mass of the liquid M = || y, P(X) dv.

In order to identify the flow-induced contribution to the surface shape resulting from
(2.19), and of its effect on the flow stability, we also consider the hydrostatic case
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(uo = ug,0 = 0) in which (2.19) becomes the Young—Laplace equation

V-n+Bo
Ca Ca

where Apy, is a constant overpressure (Kuhlmann 1999). The resulting static surface shape
is denoted hg s (subscript s denoting static). As long as the effect of the flow on the
shape of the interface is weak, hg s represents a good approximation to the true dynamic
surface shape /g 4 (subscript d denoting dynamic) which results from (2.19). To assess
the influence of the flow on the shape of the interface we define the dynamic surface
deformation Ahy = ho 4 — ho s as the difference between both surface shapes. Similarly,
Re. s and Re. 4 denote the critical Reynolds numbers assuming a static or a dynamic
interfacial shape, respectively, for the basic flow.

Finally, interfacial coupling conditions must be provided for the perturbation flow. To
reduce the computational effort, and motivated by the results of Carrion et al. (2020),
we neglect interfacial deformations due to the perturbation flow. In this approach, the
interfacial conditions

App = z, (2.23)

(2.24)

A

u=ug, ﬁ:ﬁg, n-Vﬁ:in-Vﬁg, }

and t-S-n=—t-VO+jt-8,-n,
where § = Vit + (Vi)™ — 2/3(V - @)1, are imposed at r = hq(z). This approximation a
priori precludes surface-wave instabilities which could possibly be triggered by the shear
flow due to thermocapillary and/or mechanical stresses from the gas phase. However, such
surface-wave instabilities have not yet been observed experimentally in the present flow
system.

Inlet and outlet. The gas enters the annular duct through the inlet located at z = z;,
with a dimensional mean inlet velocity wyg ;. It leaves the chamber through the outlet
at z = Zyyr on the opposite side. The oriented mean value wy ;, can be either positive or
negative depending on the direction of the through flow. To measure the intensity of the
gas flow we define the gas flow Reynolds number

Re, = P81% (2.25)

It can take positive and negative values. The Reynolds number (2.25) describes the forcing
of the liguid flow due to the gas motion. As shown in Appendix A, Re, is better suited to
correlate the effect of the gas motion on the liquid phase than the conventional Reynolds
number Re;, based on the gap width r, — r; and the kinematic viscosity of the gas g/ 0g0.

For Reg > 0 (Rey, < 0) the forced flow is directed in positive (negative) z direction.
Accordingly, the locations of the inlet and the outlet

Zin=4(1/2+ Toa/T) = =20 for Reg < 0 (2.26)

are determined by the sign of Re,. To avoid entrance-length effects we assume a fully
developed annular Poiseuille flow at z = z;;:

& 2 1In(n) In(I"r)
Re 2+ 1DIn(n) —n%+1 In(n)

where the factor Re~! arises due to the scaling. At the outlet z = z,,;, kinematic outflow
conditions

[1 ~ I+ = 1) :|ez, (2.27)

ugO(r) =

dugo _ dvgo _ Iwgo _

0 (2.28)
9z 0z 0z

978 A27-14


https://doi.org/10.1017/jfm.2023.944

https://doi.org/10.1017/jfm.2023.944 Published online by Cambridge University Press

Thermocapillary liquid bridges subject to an axial gas flow

are imposed. Since the in- and outflow boundaries in a planned space experiment are
realised by thermally conducting metallic porous media in contact with the support
cylinders (S. Matsumoto, private communication), the gas enters/leaves the chamber with
a homogeneous temperature

2=4(1/2+ Ta/T) : Vg0 = +1/2sgn(Re), (2.29)

corresponding to the temperature of the rod next to the inlet/outlet. In the limit Reg 1, 0
(2.27) and (2.28) are replaced by rigid boundary conditions.

Since the in- and outflow conditions are taken care of by the basic flow, the amplitudes
of the perturbation flow must satisfy the homogeneous conditions

Z=zin: g = Dg = Wg = g = 0, (2.30a)

2= 20w Oilg)/dz = dDg/dz = dg /07 = Dy = 0. (2.30b)

2.3. Energetics

The instability mechanism is investigated by the a posteriori energy analysis of the
perturbation flow (Wanschura er al. 1995). The equations for the rates of change of the
normalised kinetic and thermal perturbation energies in the liquid and in the gas phase

dEpin / _dv——1+M + M, + M, +Zl +B+K,+ A, (231a)
dt kadt ] - g
2
dEzh 9
- dv=-1 Jj+ Hps + Koo + 11 231h
dr @rhdt./ "‘j;: i + Hps + Kipg + 1 ( )

can be derived by multiplying (2.10a) and (2.10c¢) with &’ and 9, respectively, integrating
separately over the volume occupied by the liquid and by the gas, and normalising by
the dissipation Dy, and Dy, respectively. Detailed expressions and descriptions of all
terms appearing in (2.31) can be found in Stojanovic et al. (2022), who used the same
notation. For a derivation of (2.31) for a full temperature dependence of all thermophysical
parameters, we refer to Stojanovi¢, Romand & Kuhlmann (2023a). For the sake of
completeness the individual terms are reproduced explicitly here. The kinetic energy
budget contains the following terms which are identical with the ones known from the
Oberbeck—Boussinesq approximation (Nienhiiser & Kuhlmann 2002):

1/2
Din = oy, f (V x u)?dV + 8na, / (ho(3,cho)W* — 9%) dz, (2.32a)
Vi 1/2
5
72 1o ,28u0 L) ;0w /28W0
= — — — —)av, (2.32b
Z: ka,/,(v r+u 8r+uw 0z uw or v 0z ( )
4 172 ow il
M, =+ / ho(9:ho)it (—W — —u> dz, (2.32¢)
kin J—1/2 ar 0z
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dra, (V2 v 02 aD
M, =+—H / ho? <— —— =@ ho)—> dz, (2.32d)
Y Dkin J-12 ar  ho Tz
4 1/2 M M
M, = 4 / hoiw (—W + (85ho)i — (8Zho)—w) dz, (2.32¢)
Diin J-172 ar dz
_op Bd L,
B= W' dv, (2.32f)
Diin Vi

where the volume integrals are evaluated in both volumes, occupied by the liquid and the
gas, respectively, i.e. i € [I, g]. Due to the opposing orientations of the normal vectors for
the liquid and the gas, the surface integrals carry different signs, where the upper (lower)
sign applies to the liquid (gas) phase. The terms /; describe inertial processes, while M,
M, and M, represent Kinetic energy production terms due to thermocapillary forces caused
by the perturbation flow, and B represents the energy production rate due to buoyancy
forces.

The terms entering the thermal energy budget in the framework of the
Oberbeck—Boussinesq approximation are

Dy = -2 | (voh2av, (2.33a)
Aeplt Jy;
2
R 90, 90,
Y=t / 9’ (u/—o ~|—w/—0)dV, (2.33b)
=1 Dzh Vi or 82
270 172 32 92
Hp =+ 1% ho [ 22 = (0.hp) 2= ) dz. 233
s %Dm/_]/z o5, — @) ) (2.330)

Here, the terms J; abbreviate the production rates of thermal energy by advection of
basic state temperature caused by the perturbation flow and Hy, represents the rate of heat
loss/gain by the heat flux through the free surface due to the perturbation flow.

When the linear temperature dependence of the densities is considered in the entire
governing equations, the terms

Ay, = —age ke f »'u’ -« (uo - Vug) dV + age ! / p'c’dv
2Dyin Jv, Drin Jv,
— (ape)? f % av, (2.34q)
3Dkin Jv;
. e ” » Re ” 2
, = —age Boug - V2V — (age) 9%uy - VoS AV (2.34b)
A 2D Jy,

arise in addition to (2.32) and (2.33). The expressions A, and [T, describe
non-Oberbeck—Boussinesq effects and represent the rates of change of kinetic and thermal
perturbation energy, respectively, caused by the non-uniform density distribution in the
weakly compressible flow. Both terms are of the order of O(age) and small compared
with the other O(1) terms in (2.31). In the presence of an external gas flow, the additional
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terms
2ntRe [T "2
Kg = — Dy Wg(Zout)WgO(Zout) dr, (2.35a)
in J1/I"
2nRe ("1 .,
King = — Dy Vg Zour) We0 (Zour) dr (2.35b)
in J1/I"

appear in the kinetic and thermal energy budget, respectively. For open gas tubes, K,
represents the loss of kinetic energy of the perturbation flow by transport out of the gas
domain. For a closed gas container (Re; = 0), K, = 0 vanishes. Similarly, Ky, ; can only
be non-zero for open gas tubes. However, owing to the prescribed temperatures at the in-
and outlet, l§g (Zour) = 0(2.30). Thus, Ky, ¢ = 0 vanishes also for open gas tubes.

To monitor the conservation of perturbation energy, we consider the normalised
residuals of the kinetic and thermal energy balances as given in Nienhiiser & Kuhlmann
(2002), supplemented with the new terms:

5
dEy;
SEpin = |— d"’”—1+Mr+M¢+MZ+ZIj+B+Ap+K , (2.364)
t p
dEy, 2
1
SEy = —?—1+ij+Hf-s+np : (2.36b)

j=1

Throughout, we find §Ey;, = 0(1072) and 8E; = 0(1073), signaling conservation of
kinetic and thermal perturbation energy.

3. Numerical methods
3.1. Basic flow

The computation of the steady axisymmetric basic flow depends on the treatment of
the liquid—gas interface (see §2.2.3). In the simplified approach in which the shape
of the liquid—gas interface is independent of the flow, the static surface shape hg (z)
is computed beforehand by solving the Young—Laplace equation (2.23). Thereafter, the
volume equations are solved using finite volumes and body-fitted coordinates (¢ = r/hg, z)
as described in Stojanovic er al. (2022). In the case of flow-induced free surface
deformations, the volume equations are discretised by the same method, but now the
normal stress balance (2.19) is solved fully coupled to the basic flow. After each iteration
the body-fitted coordinates are updated, since the transformed coordinate € is based on the
current surface shape.

Regardless of the treatment of the interface, the nonlinear algebraic equations resulting
from the discretisation of the Navier—Stokes equations (2.7) are solved iteratively using

the Newton—Raphson method. If q(()k) is a known approximation to the solution of (2.7) at
the kth iteration step, an improved approximation is

k41 k
gy =g +3q. 3.1)
where the increment 8¢ satisfies
k k
Ty - 8q=~f gy, (3.2)
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with J (q(()k)) being the Jacobian operator and f (qék)) the nonlinear residual of the
Navier—Stokes equations. Equation (3.2) is obtained by inserting the ansatz (3.1) into the
steady axisymmetric version of (2.7) and linearising with respect to §g. We obtain

1
Re(1 — aﬂaﬁék))(éu . Vu(()k) + u(()k) Viéu) — aﬂeReu(k) Vu(()k)Sﬁ + —Vép
%p
— ap Bd 80e, — a,V8S = —Re(1 — apedP)uld - vul
1
——Vp +agBdoe, +a, VS, (3.3a)
o

P
V- Su—ageV - @l80) —apeV - 0 su) = =V - uld + apev - 0P ul),

(1 —aped ) Gu- Vo) +ul - Vo) — ageul’ - Vﬁé’”w—LMaVzBﬁ (3.3b)

‘ch

= (1 —apeduf) - Vo® £ v b, (3.3¢)
p

In the case of dynamic surface deformations the general solution vector of the basic
flow gqq = (uop, 0, wo, po, Do, ho) also contains the free surface shape hg. Therefore, the
linearised version of the normal stress balance (2 19)

— (6p —pe) +n® .55 n® + n® . 5" .50+ sn. S . n®

1 B
+ <— - ﬁ(k)> V.sn—V.n®s9 + (50 — 550, Bdz

Ca
— i(n® .88, - n® + 1M . 8. 8n+8n - Sy - n®)
1
(k) (k) k) n® (k) (k)
= - S, — = -9 V.
=Py — Py — (Ca 0 ) n
2 B0 oW 5pr®) Bz an® . s . p® (3.4)
Ca PPYg0 ’ £0 ’
enters the Newton—Raphson method, where the increment
— 3 k+D) (k)
Sh=hy, " —hyy (3.5)
appears implicitly in the increment of the normal vector
sn=n*th — p® (3.6)
with
k) K\ 2
1 dhgydsh I 1 (g | dsh 4
TONO a4 7T NG N®&* \ dz & '
and its divergence
V.$ !
Ol = ————
(k)3 Ar(k)3
ho.a N ®
*? 327 (k) (k)
0,d dzz N(k)z dzz 0,d dZ dZ 0,d : :
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The iteration is considered converged after both the infinity norm [|8¢q,|lcc and the Lo
norm ||éqqll2 of the residual have dropped below 10-6. Using a standard initialisation
(up =wo =99 =0 and hg = 1/I"), this typically requires around 12 Newton iteration
steps.

3.2. Linear stability analysis

To carry out a linear stability analysis of the basic flow, the set of linear equations (2.12)
for the amplitudes of the normal modes ¢ and g, (2.11) are discretised exactly as for the
basic state. The resulting large system of algebraic equations is a generalised eigenvalue
problem, where the eigenvalues are identified as the complex growth rates ; ,,. The
perturbation amplitudes &j’m and &g; ;.m represent the corresponding eigenvectors. For a
given wavenumber m, a vanishing growth rate Re(v; ,,) = 0 defines a neutral hypersurface
in parameter space. With respect to a variation of Re, this condition provides a neutral

Reynolds number Re);". Minimisation with respect to j and m then yields the critical

Reynolds number Re. = min; ;>0 Re;". The imaginary part of the growth rate represents
the angular frequency w. = Im[; ;,(Re.)] of the critical mode. To find the eigenvalues
with the largest real part we follow the method described in Stojanovic et al. (2022), using
an implicitly restarted Arnoldi method provided by ARPACK (Lehoucq, Sorensen & Yang
1998).

As we are interested in the dependence of the critical thermocapillary Reynolds number
Re. on the gas flow Reynolds number Re,, the envelope of the neutral curves in the
(Re, Reg) plane are constructed by arclength continuation (Keller 1977) for prescribed
step sizes AReg, = 10 and ARe = 15.

3.3. Implementation

All necessary numerical operations are implemented in the MATLAB code MaranStable
which was initially developed by M. Lukasser (Kuhlmann, Lukasser & Muldoon 2011).
It is available from https://github.com/fromano88/MaranStable. Early results have been
published in Shevtsova et al. (2014) and Stojanovic & Kuhlmann (20200). Here we employ
a revised version of the code to solve for the basic state, perform the linear stability
analysis and to evaluate the perturbation energy balances. For statically deformed liquid
bridges, the grid convergence of MaranStable has been tested extensively by Stojanovic
et al. (2022), who also verified and validated the code for closed chambers. Additional
verifications of MaranStable regarding the dynamic interface shape and the coaxial through
flow in the gas phase, are provided in Appendices C and D. The solver has recently been
introduced by Stojanovi¢, Romano & Kuhlmann (2023b). Further documentation is shared
on https://github.com/fromano88/MaranStable/tree/main/docs.

4. Results

The linear stability problem involves numerous parameters. Here we focus on the
dependence of the critical thermocapillary Reynolds number Re. = Re.(Reg) on the
through flow in the gas phase, parameterised by Re,. The gas flow Reynolds number
is varied in the range Re, € [—3500, 1500], including the closed chamber configuration
(Reg = 0). All other non-dimensional parameters are kept constant at values of the
reference case defined in Stojanovic et al. (2022), namely, Pr = 28, t = Bd/Bo = 0.32,
I' =0.66, I,,g =0.4,7n =4 and V = 1. The liquid bridge is heated from above or below
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under terrestrial gravity such that Bd = 0.41, corresponding to the radius r; = 2.5 mm
used in the experiments of Romano et al. (2017) and others (e.g. Yano, Hirotani & Nishino
2018a; Oba et al. 2019).

We consider two models: (a) a simplified model in which the shape of the liquid bridge
is independent of the flow and given by its static shape; and (b) a model in which the
flow-induced interfacial deformations are taken into account for the basic flow, but not for
the perturbation flow. For both models the effect of the forced gas flow on the critical
Reynolds number and the critical mode is computed and analysed. Furthermore, both
models are compared with each other and the relevance of dynamic surface deformations
in the basic state is assessed.

Since Appendix C contains various comparisons with the results of other authors it
might be of interest in itself. The interested reader may, therefore, directly consult this part
of the paper.

4.1. Hydrostatic surface shape

4.1.1. Linear stability boundary

The dependence of the neutral and critical Reynolds numbers and oscillation frequencies
on the gas flow Reynolds number Re; for a static interface shape are shown in figure 2. The
wavenumber of the critical mode is colour coded. For zero gravity conditions (Bd = 0) the
critical Reynolds numbers must be symmetric with respect to (Reg, Re.) — —(Reg, Re,)
and w¢(Reg) = —w:(—Reg) (not shown). For the present Bond number Bd = 0.41 this
symmetry is broken. Due to the combined effect of thermocapillarity, buoyancy and
gas flow the critical Reynolds number exhibits a complex behaviour. Throughout, the
instability is time-dependent.

For heating from above (Re > 0) and if the liquid bridge is exposed to a cold, upward
gas flow opposing the thermocapillary-driven surface flow (first quadrant in figure 2a),
the critical wavenumber is m. = 3 and Re. decreases from Re.(Re, = 0) = 616 when
Reg is increased. Except for a very shallow minimum of Re. at Re, = 450, the critical
Reynolds number Re.(Re,) almost saturates near Re. ~ 390, already for Re, 2 100. If,
on the other hand, Re, is decreased from zero (hot, downward gas flow parallel to the
thermocapillary surface flow, second quadrant in figure 2a), the critical Reynolds number
strongly increases up to Re. ~ 2000 for Re; = —60. This stabilisation was also found
experimentally by Ueno et al. (2010) for the slightly different aspect ratio I” = 0.64 with
the same critical wavenumber m,. = 3 (cf. green dots in figure 2a). For a stronger flow
of the hot gas (Re < —60) different modes become critical and the critical curve is made
of segments of neutral modes with different azimuthal wavenumbers. This is illustrated in
figure 3 by zooming into the region (Reg, Re.) € [—200, 20] x [1700, 2200]. Most notable
is the local minimum of Re. at Re, = —414 for wavenumber m = 1 (blue). A similar local
minimum of Re, for hot co-flow and a mode with m = 1 arises for long liquid bridges with
I' = 1.8 of Pr = 68 under zero gravity (Stojanovic & Kuhlmann 20205). The mode with
m =1 (blue) is critical in the range Re, € [—1850, —100]. The codimension-two points
(Reg, Re:)™" at which two neutral curves for different wavenumbers m; and m; intersect
are listed in table 4 (columns labelled ‘static’). Interestingly, the critical Reynolds number
for strong gas flow is not a unique function of Re, in the range Re, € [—2672, —1920].
In this region the most dangerous mode has a wavenumber m = 3 (green). For even
larger downward flow rates (Re, < —2672), the critical Reynolds number saturates near
Re. ~ 400, within the range of Re, considered.

In case of heating from below (Re, < 0 in figure 2a) the critical Reynolds number for
a closed chamber is Re.(Re, = 0) = —811 with m, = 2. Like for heating from above,
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Figure 2. (a) Neutral (thin lines) and critical (thick lines) Reynolds numbers Re, ; as functions of the gas
flow Reynolds number Re,. The neutral and critical wavenumbers are coded by colour (legend). The region
of linear stability is filled in grey. The insets serve to symbolise the direction and the temperature (hot/cold)
of the mean gas flow. The vertical dashed line indicates a vanishing gas flow (closed chamber) and the circles
represent the associated critical points. Green dots represent critical Reynolds numbers measured by Ueno
et al. (2010) for the slightly different aspect ratio I" = 0.64. (b) Corresponding neutral and critical frequencies
ws (for modes propagating in the negative ¢ direction). Full and dashed lines correspond to Re, ¢ > 0 and
Rey s < 0, respectively. An enlarged view of (@) and (b) is provided in figure 3 for Re > 0 around Re, ~ 0.
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Figure 3. Neutral Reynolds numbers Re, ¢ (thin solid lines) and neutral frequencies (thin dashed lines) as
functions of the gas flow Reynolds number Re, € [—200, 20] for heating from above (Re, s > 0). Critical
Reynolds numbers Re, s and frequencies w, s as shown as thick lines.

Relym Rec(Re)1"™)
m Static Dynamic Static Dynamic
32 —2618 —2625 1765 1753
21 —2670 —2672 1952 1932
10 —2547 —2564 2094 2068
0«2 —2113 —2114 2319 2311
21 —1997 —1898 2260 2207
1< 0 —131 —123 2043 2046
01 —78 —74 1993 1998
12 —70 —65 1981 1986
243 —61 —57 1951 1957

Table 4. Codimension-two points (Re,, Re.)™!" for heating from above (Re > 0). Data are given for a
static as well as for a dynamically deformed free surface of the basic flow.

the critical threshold near Re, =~ 0 is very sensitive with respect to a variation of the gas
flow rate. When the liquid bridge is exposed to a cold gas flow from above opposing the
thermocapillary flow direction (third quadrant in figure 2a), the basic flow is destabilised
and the critical Reynolds number readily saturates near Re. =~ —580. For a hot gas flow
from below (Re, > 0, co-flow direction, fourth quadrant in figure 2a), the basic flow is
strongly stabilised, the critical wavenumber changes to m. = 1 at Re; = 58.5 and, for
1000 < Reg < 1500, the critical Reynolds number seems to saturate near Re. ~ —1800.
For an open shield tube and outflow boundary conditions (2.28) for the basic flow we
find slightly different critical Reynolds numbers as Re, = 0 is approached from above or
from below. For heating from above, for instance, we obtain Re.(Re; — 07) = 622 and
Re.(Rey — 07) = 620. Both these values deviate less than 1 % from the critical Reynolds
number Re.(Reg = 0) = 616 for a closed tube, using rigid boundary conditions (ugy = 0)
at the outlet. Therefore, and due to the practical relevance of a truly closed ambient
gas space, we used rigid boundary conditions only for Re, = 0. Graphically, the minute
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discontinuity at Re, = 0 is not visible with the bare eye in figure 3 (see dashed lines close
to Re, = 0). Moreover, the discontinuity disappears for I, — o0, which is consistent
with the critical Reynolds numbers being rather insensitive with respect to increasing I ;.
In Appendix B it is shown that for [Rey| > 90, the critical Reynolds number varies by less
than 2 % when I}, is increased from 0.4 to 8. The results obtained are thus applicable for
a wide range of experimental designs with different I,4.

4.1.2. Sensitivity of Re. with respect to the direction of the gas flow

Basic state. In order to understand the strong sensitivity of the critical Reynolds number
with respect to the direction and strength of a weak axial gas flow we inspect the basic
flows for four cases, each in one of the four quadrants of figure 2(a). For heating from above
we consider (Reg, Re) = (£40, 616), where Re = Re.(Reg = 0) = 616. For heating from
below we similarly select (Reg, Re) = (£40, —811), where Re = Re.(Reg = 0) = —811.
The basic flows for the four parameter sets are shown in figure 4. For the counterflow
configurations in figure 4(b,c) a weak recirculation zone is created in the gas phase next to
the free surface, visible by the separation streamline shown. This type of separated flow in
the gas phase has been confirmed experimentally by Irikura et al. (2005) and Ueno et al.
(2010).

For the present Prandtl number Pr = 28 the thermal conditions in the gas phase are
much more important for the stability than the viscous stresses exerted on the interface
by the gas flow. In particular, the flow along the free surface is primarily driven by
thermocapillary forces near the hot corner (Kamotani & Ostrach 1998; Kuhlmann 1999).
The cold corner region is of lesser importance, because the strong gradients of the surface
temperature near the cold corner are located very close to the rigid wall. Therefore, they
cannot contribute significantly to the global flow.

Figure 5(a) shows velocity (blue) and temperature profiles (red) of the basic flow along
the free surface for the case of heating from above (Re > 0). The direction of the gas flow
is distinguished by line type. For a hot (cold) gas flow the interface is heated (cooled)
for Re; = —40 (Reg = 40) as compared with the case of a closed chamber (Re, = 0, full
line). For a hot downward flow with Re; = —40 (dashed lines), the plateau temperature
is increased. This reduces the thermocapillary stresses near the hot corner. As a result,
the magnitude of the surface velocity decreases. The cooling of the interface for Re, = 40
(dotted lines), on the other hand, reduces the surface temperature in the plateau region
and increases the thermocapillary stresses near the hot corner. This gives rise to a larger
surface velocity as compared with Re, = 0. Viscous stresses from the gas phase would
have the opposite effect, but for Re, = 440 they are of minor importance compared with
thermocapillary stresses. The stronger flow for Reg, = 40 as compared with Re, = 0 (both
at Re = 616) is equivalent to a stronger effective thermocapillary driving and can, thus, be
identified as the reason for the instability of this flow (shown in figure 4b). Likewise, the
weaker thermocapillary driving is responsible for the stability of the flow for (Reg, Re) =
(—40, 616) (figure 4a).

Apart from the strength of the surface flow, the whole structure of the vortex in the
liquid phase and the associated temperature field changes: the radial extent of the stronger
vortex (cold upward counter-flow, Re, = 40, figure 4b) is significantly larger than that
of the weaker vortex (hot downward co-flow, Re, = —40, figure 4a). This effect results
from the interplay between buoyancy and inertia forces. Heating the liquid bridge from
above, hot liquid is transported downward along the free surface and returns upward in
the bulk. Since the upward motion in the bulk is assisted by buoyancy forces, the radial
extension of the vortex is reduced compared with the case of zero gravity. This effect
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Figure 4. Streamlines and temperature fields of four basic states for (a) (Reg, Re) = (—40, 616) (stable);
(b) (Reg, Re) = (+40, 616) (unstable); (c) (Reg, Re) = (—40, —811) (unstable); and (d) (Reg, Re) =
(440, —811) (stable). Streamlines are drawn equidistantly. The steps size Ay is pairwise identical in the
liquids of (a,b) and in the gases of (a,b). The same applies to (¢,d), but with different levels due to the different
Reynolds number Re. Note the flow separates from the cold wall in (a,b).

is most pronounced when the thermocapillary-driven vortex flow is weak Re, = —40
(figure 4a). For the stronger basic flow at Re, = 40, inertia prevents a premature buoyant
rise of the liquid in the bulk and the vortex has a larger extent in the radial direction
(figure 4b). Associated with this change of the vortex structure, the region of large (mainly
radial) internal temperature gradients is displaced radially inward for Re, = 40 (figure 4b)
and radially outward for Re, = —40 (figure 4a). This structural change has implications
for the respective critical mode and the stability boundary, because a hydrothermal wave
draws its energy primarily from the internal basic state temperature gradients (Smith &
Davis 1983a; Wanschura ef al. 1995).

For heating from below (figures 4c,d and 5b) similar arguments hold. For example, for
Re, = 40 > 0 (figure 4d), the free surface is heated (dotted red line in figure 5b), which
reduces the thermocapillary driving near the hot wall. As a result, the flow for Re, = 40 is
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Figure 5. Tangential velocity u;0 = ¢ - ug (blue) and temperature distribution ¥ (red) of the basic flow along
the free surface (parameterised by z). (¢) Heating from above with Re = 616. (b) Heating from below with
Re = —8l11. The gas Reynolds number is distinguished by line type: Re, = —40 (dashed lines), Re; = 0 (full
lines) and Re, = 40 (dotted lines). The insets resolve the velocity peaks near the cold wall.

much weaker and more stable than that for Re, = 0 and Re; = —40 (both at Re = —811).
While the structure of the basic vortices is similar for both directions of the gas flow
(Reg = %40, figure 4c,d) and heating from below, they differ markedly from those for
heating from above: for heating from below, buoyancy is assisting the upward free surface
flow but tends to prevent the hot return flow from descending. This leads to a much larger
radial width of the vortices (figure 4a,b) associated with a further inward displacement of
the internal temperature gradients than for heating from above (figure 4a,b).

In summary, for a weak gas flow, the basic flow is stronger in the counter-flow
configuration, due to the heat transfer between liquid and gas. Furthermore, buoyancy
forces cause the flow structures to be located closer to the free surface for heating from
above, while they are displaced radially inward for heating from below.

Critical modes. The instability for Re, = 0 is due to hydrothermal waves (Smith &
Davis 1983a; Wanschura et al. 1995). They are generated in the liquid phase and depend
on the structure of the flow in the liquid. Taking into account the gas phase, Stojanovic
et al. (2022) have shown that the temperature amplitude of the hydrothermal wave is
very weak in the gas phase. Therefore, the gas phase only plays an indirect role for the
instability process by affecting the basic velocity and temperature fields in the liquid
phase. Since the hydrothermal waves depend on the particular basic flow structure, we
consider representative critical modes with w, > 0, corresponding to waves propagating
in the negative ¢ direction.

Let us compare the critical mode for heating from above and Re.(Re, = —40) =
1786 (hot downward gas co-flow) with that for Re.(Re; = 40) = 431 (cold upward
gas counter-flow). Both modes have the wavenumber m,. = 3. From figure 6(a,b) the
location of the regions of high basic state temperature gradients is qualitatively similar
as in figure 4(a,b) for Re = 616. However, for cold upward gas counter-flow (figure 6b,
(Reg, Re.) = (40,431)), the temperature gradients of the basic flow from which the
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hydrothermal wave draws its energy are located more distant from the free surface than
for hot downward gas co-flow (figure 6a, (Reg, Re.) = (—40, 1786)). This provides more
space for the evolution of the perturbation vortices which feed the perturbation temperature
extrema by advecting basic state temperature (Wanschura et al. 1995). Figure 6(a—d)
shows that the perturbation vortices at criticality are well developed for Re, = 40, whereas
they are more confined to the free surface region for Re, = —40. Therefore, the critical
mode for (Reg, Re.) = (40, 431) can draw its energy from a larger region of high basic
state temperature gradients than the critical mode for (Reg, Re;) = (—40, 1786) and the
perturbation temperature field for Reg = 40 is more compact, presumably suffering less

thermal dissipation than the less compact one for Re, = —40. While the structures of the
two critical modes differ in the bulk, their footprints on the free surface are very similar
(figure 6Ge, ).

For heating from below the critical modes for (Reg, Re.) = (—40, —686) and
(Reg, Re.) = (40, —1348) are shown in figures 7(a,c,e) and 7(b.d,f), respectively. In
contrast to heating from above, both critical modes have wavenumber m, = 2 and they
may appear very similar for Re, = £40 (figure 4c,d). But the stronger basic vortex at
constant Re for Re, = —40 as compared with Re, = 40 explains why the former is more
unstable than the latter. Another contributing factor, visible from figure 4(a—d), is the
radial temperature gradients of the basic flow arise closer to the axis for Reg = 40 as

compared with Re, = —40. Therefore, the coupling between internal temperature extrema
and the surface temperature fluctuations driving the perturbation velocity field is weaker
for Re, = 40.

8

The thermal energy budgets for the four critical modes considered are presented in
figure 8. From figure 8(a) all critical modes are hydrothermal waves for which the
perturbation energy is mainly created by radial advection of basic state temperature,

represented by the total normalised production term J := —ReZ)Jil fV,- j1dV =
—ReZ);Z1 fVi ¥/ 9,90 dV. The thermal production by axial advection J, := —ReZ)t;1 fVi J2

dv = —Rel)tjll fVi ¥'w' 9,90 dV plays a minor role. For heating from above (solid colours)
the critical mode for Re; = —40, which is confined to the very vicinity of the free
surface, has the smallest production J; = 0.778 (full red bar) and deviates the most
from the reference value of J; for Re, = 0O (full orange bar). It is also seen that the
heat loss of the liquid phase through the free surface, i.e. the thermal coupling, is
generally vanishingly small compared to the thermal production due to advection (J1, J2)
in the liquid (figure 8a). This small heat loss of the perturbation flow in the liquid
Hp = ZJTD;ZIPFI fi)i)s.s h(d,9% — azhoazfﬂ) dz appears as a heat gain Hp o = —inS of
the perturbation flow in the gas phase. There it is the main source of thermal energy. But
this gain is almost completely balanced by the thermal dissipation in the gas phase Dy, g.
This proves quantitatively the gas phase does not play an active role in the instability
mechanism. As a side, the relative thermal production rates 1T, < 0.1% and IT, , < 1%
associated with the density variations in the liquid and in the gas, respectively, are
negligible.

In conclusion, we find the sensitivity of the critical Reynolds number with respect to
a weak axial gas flow is mainly related to the changed strength of the basic flow, caused
by the heating or cooling of the free surface by the gas flow. The strength of the basic
flow affects the strength of the basic state temperature gradients and, thus, the stability
boundary. The critical wavenumbers differ for heating from above (m. = 3) and from
below (m, = 2). But the spatial structures of the critical modes do not change very much,
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Figure 6. Critical velocity (black arrows) and temperature fields (colour) for heating from above and hot
co-flow (Reg, Re.) = (—40, 1786) (a,c.e) and cold counter-flow (Reg, Re.) = (40, 431) (b.d.f). The colour
bars are normalised with respect to the maximum temperature perturbation for each subfigure. The critical
wavenumber is m. = 3. (a,b) Vertical (r, z) planes in which the local thermal production (not shown) takes
its maximum (white cross) in the bulk. Lines in (a,b) indicate equidistant isotherms of the basic state.
(c,d) Horizontal cross-sections in the planes z = —0.36 (¢) and z = 0.03 (d) in which the respective total
local thermal production —%'u’ - V¥ (isolines) takes its maximum (white crosses) in the bulk. (e,f) Radial
projections of the free surface velocity and temperature. The grey arrows in (c¢,d,e) indicate the direction of
propagation of the critical mode. The dashed lines represent the location of the vertical and horizontal cut
planes.

except for heating from above with Re, < 0 in which the weaker vortex is also radially
more confined to the interface as a result of buoyancy.

4.1.3. Critical modes for large gas flow rates: heating from above
Three-dimensional views of the critical modes for heating from above are
shown in figure 9(a—e) by isosurfaces of the perturbation temperature ¢ for
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Figure 7. Critical modes for heating from below and for (Reg, Re.) = (—40, —686) (a.c,e) and for
(Reg, Re.) = (40, —1348) (b.d.f). Lines, arrows and colours as in figure 6. The horizontal cuts are located
at z = 0.04 (a,e) and z = 0.1 (b,f). The critical wavenumber is m, = 2.

Reg = (=3000, —1000, —40, 40, 1000), covering the full range of gas flow Reynolds
numbers. All waves propagate in clockwise, i.e. in the negative ¢ direction. Since the
dynamic Bond number is constant with Bd = 0.41, buoyancy forces are proportional
to the thermocapillary forces. The critical wavenumber of the modes shown is m, = 3,
except for Re, = —1000 for which m. = 1. Throughout, the temperature perturbations
exhibit the typical behaviour of a hydrothermal wave. Merely, for Re, = —1000 (figure 9b)
and Re, = —40 (figure 9¢) where the critical Reynolds numbers are relatively large with
Re. =~ 1750, the critical modes differ. In these cases buoyancy forces are strong as well,
while the surface flow is weakened due to the hot gas co-flow (Re; < 0). In these cases

the Rayleigh number Ra = 11.48 x Re can reach values of the order of O(10%) (stabilising
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Figure 8. Thermal energy budgets of the critical modes for Reg € {—40; 0; 40}. (a) Liquid phase; (b) gas
phase. Full bars: heating from above with Re. € {1786; 616; 431} and m, = 3. Checkered bars: heating from
below with Re. € {—686; —811; —1348} and m, = 2

thermal stratification). Thus, buoyancy shapes the basic vortex close to the free surface to
have a much smaller radial extent (for Re; < 0) than for smaller Reynolds (and Rayleigh)
numbers and the temperature extrema of the hydrothermal wave for Re = —1000 and —40
arise much closer to the free surface (see e.g. figure 6a,c). These perturbation modes also
have a more spiral behaviour such that the perturbation temperature field exhibits a more
complex structure in a plane ¢ = const. with temperature minima and maxima, visible in
figure 6(a).

For a discussion of the saturation of the critical Reynolds numbers seen in figure 2(a),
we note that the viscous stress from the gas phase has very little influence on the basic
flow for the range of gas Reynolds numbers considered. Estimating the magnitude of the
thermocapillary stress by y AT /d and the viscous stress due to the gas flow by ugwg/(r, —
r;), the order of magnitude of the ratio of the viscous gas stress to the thermocapillary stress
is I'ft(Reg/3Re). For Reg = 3000 and Re = 500 this amounts to about 1 %. Therefore,
within the range of Re,, the effect of the gas flow on the basic state is essentially thermal.

For heating from above and cold counter-flow (Re, > 0) the critical Reynolds number
saturates at relatively small gas flow rates of Reg ~ 100 at a value of Re. ~ 390. For
this Reynolds number the basic vortex flow and temperature field in the liquid are
almost independent of the gas Reynolds number in the range Re, € [100, 500]. This can
be explained by two opposing thermal effects of the gas flow on the strength of the
vortex which nearly balance each other at Re = 390. To understand these effects, radial
profiles of the vertical velocity w(r) at midplane z = O are shown in figure 10 for several
thermocapillary Reynolds numbers (colour coded) and Reg = 40 (dashed lines) and 1000
(full lines).

For a vanishing thermocapillary Reynolds number Re = 0, the flow in the liquid is only
driven by the gas (orange lines) and the interface moves in the positive z direction with
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Figure 9. Isosurfaces of the critical perturbation temperature ¥’ in the liquid for heating from above:
(a) Re. = 404; (b) Re. = 1733; (c) Re, = 1786; (d) Re. = 431; (e) Re. = 389. The isosurface values are
+0.25 x max 9’| (light colours) and +0.75 x max || (dark colours). A single isosurface of the total local
thermal production rate at j; + jo, = #'u’ - V¥ = 0.7 x max |¢'u - V| is shown in grey.

w(r = ho(0)) > 0. As Re is increased the surface flow becomes readily dominated by
thermocapillary forces and for Re = 100 the direction of the surface velocity is downward
with w(r = hp(0)) < 0 (red lines). For Re = 100 and weak gas counter-flow (Re, = 40,
dashed red line) a separation bubble of considerable size exists in the gas phase next to the
free surface (see e.g. figure 4b), visible in figure 10 by the downward gas flow between the
free surface (r ~ 2.50 mm) and the zero of wg(r) in the gas phase at r ~ 2.53 mm. For
the stronger gas counterflow (Re, = 1000, full red line) the region in which wgo < 0 in the
gas phase adjacent to the free surface has become very thin due to the higher shear stress in
the gas phase. The zero of wgo has moved very close to the free surface (almost invisible
on the scale shown) and wg (full red line) increases nearly vertically for r > hp(0). As
expected, the stronger gas flow has a retarding effect on the downward surface flow due to
the increased viscous stresses from the gas on the interface. Associated with the reduced
surface velocity is a weaker vortex in the liquid. As the thermocapillary Reynolds number
is increased to Re =~ 400 (blue lines), which roughly coincides with the saturation of
Re(Reg), the retardation of the surface velocity diminishes. For Re 2 400 the gas flow
has an augmenting effect on the magnitude of the interfacial velocity, despite of the
retarding action of the viscous shear stresses from the gas side. As a result, the magnitude
of the surface velocity for Re = 1000 is larger for Re, = 1000 (full green line) than for
Reg = 40 (dashed green line). The reason for the augmenting action of the counterflow is
related to the characteristic surface temperature profile when the thermocapillary Reynolds
number is large and the flow is mainly driven near the hot corner (the argument was used
in explaining the velocity profiles in figure 5): the gas has a cooling effect such that
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Figure 10. Dimensional axial velocity component w(r,z = 0) at midplane for different thermocapillary
Reynolds numbers (colours) and for gas flow Reynolds numbers Re, = 40 (dashed lines) and Reg = 1000
(full lines). The inset serves to show the scale of the gas flow relative to the liquid flow for Re = 1000. The
location of the interface is at hp(z = 0) = 2.5 mm.

the plateau temperature for large-thermocapillary-Reynolds-number flows is decreased.
Along with a decrease of the plateau temperature the thermocapillary driving force near
the hot wall increases and reinforces the thermocapillary flow, overcompensating the
viscous retardation effect. For Re = 400 the increase of the surface velocity at midplane by
the cooling effect is larger than the decrease of the surface velocity due to viscous stresses
from the gas side which, on the other hand, dominates for Re < 400.

The Reynolds number Re ~ 400 at which both effects on the surface velocity w(r =
ho(0), 0) balance seems to be almost independent of Re, € [100, 500]. Therefore, the
whole basic flow for Re ~ 400 is almost independent of Re, in this range, and a
critical Reynolds number Re. ~ 400 will also be independent within Re, € [100, 500].
In fact, the radial temperature gradients for Re = 400 from which the hydrothermal-wave
instability draws its energy are almost independent Re, € [100, 500]. This is demonstrated
in figure 11 which shows basic temperature profiles ¥y (r, z = 0) at midplane for Re = 400
(= saturation level of Re,) and different gas Reynolds numbers Re, = 20, 50, 100, 200 and
500. In the region r < 1.1 of largest slopes, the temperature profiles are almost identical,
regardless of the temperature gradients in the gas phase. This indicates the perturbation
mode finds the same basic-flow conditions for the major energy production term J; which
builds on 9,1 in the liquid phase, independent of Re,. On the other hand, the slope for
Reg =500 and Re = 200 (black dashed line) is smaller, while the one for Re, = 500
and Re = 600 (black dash-dotted) is larger. These flow states are stable and unstable,
respectively. From figure 11 one can also identify the continuous decrease of the surface
temperature as Re, is increased.

The major integral (global) energy production terms J; and J, for the liquid phase
are displayed in figure 12 as functions of Re,. For the major critical modes with m, = 1
(blue), m, = 2 (red) and m, = 3 (green), the thermal energy is mainly produced by radial
advection of basic state temperature J; (full lines). The axial advection (dashed lines)
is almost negligible or even acts stabilising. This applies to both gas flow directions.
Hence, the instability mechanism as such is not much affected by the direction of the
gas flow, i.e. by the heating or cooling of the liquid through the gas in the basic flow.
The peak values of the total local energy production j; + jp are located inside the grey
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Figure 11. Radial basic temperature profiles 9 (r, z = 0) for Re = 400 and different gas Reynolds numbers
Reg, = 20, 50, 100, 200 and 500 (full lines colour coded, see legend). In addition, the temperature profiles are
shown for Re; = 500 and Re = 200 (black dashed) and Re = 600 (black dash-dotted). The vertical dotted line
marks the free surface.

@ (b)

Figure 12. (a) Normalised global energy production rates J; (full lines) and J, (dashed lines) of the critical
(and neutral) modes in the liquid phase for heating from above shown as functions of Reg. The colour indicates
the wavenumber. The vertical dotted lines indicate the codimension-two points listed in table 4. (b) Enlarged
view of the grey rectangle shown in (a).

isosurfaces shown in figure 9. Typically, the production maxima are azimuthally displaced
from the temperature extrema with the displacement direction determining the direction
of propagation of the wave.

For all Reg considered, |I1,| < 0.002 and —0.007 < Hg < 0 in the liquid phase. The
greatest impact of the density variation on the thermal energy budget is observed in the
gas phase and for heating from above with 1, , = —0.021 for m. = 2, Re, = —2114,
Re. = 2311. This conditions corresponds to A7 = 70K and ¢ = 0.087. For heating from
below, the maximum impact of I, , on the thermal energy is found to be even smaller
(not shown).
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Figure 13. Isosurfaces of the critical perturbation temperature ¥’ in the liquid for heating from below:
(a) Re, = —515; (b) Re, = —615; (¢) Re, = —686; (d) Re, = —1348; (¢) Re. = —1778. Colours and isosurface
values as in figure 9.

4.1.4. Critical modes for large gas flow rates: heating from below

Figure 13 shows temperature isosurfaces of the critical modes for heating from below
and for the same gas flow Reynolds numbers as in figure 9. Now the dominant critical
wavenumber is m, = 2 and most critical modes have the expected structure with strong
internal temperature extrema in the shear layer of the return flow of the basic vortex. Only
for stronger hot co-flow from below with Re = 1000 the wavenumber changes to m, = 1
and the critical mode is very different from the others with a pronounced spiral character
and temperature extrema very close to the axis. In this case the basic flow is affected by
the gas flow in an opposite manner than for hot co-flow when heating from above: instead
of a small radial extent of the basic vortex for heating from above, the basic vortex is
radially extended for heating from below, because the hot fluid transported upward along
the free surface has the tendency to stay near in the upper half of the liquid bridge such
that the return flow arises closer to the axis. This facilitates an m, = 1 mode with a flow
across the axis to extract thermal energy from the basic temperature field. The trend that
the temperature extrema move closer to the axis (following the location of high basic
temperature gradients) is already visible for Re, = 40 in figure 13(e).

The critical modes for Re, = 40 and Re, = 1000 are displayed in figure 14. It can be
seen that the critical velocity field for Reg = 1000 is oblique to the basis state isotherms
near the point of maximum thermal energy production (white cross). Therefore, the critical
mode can also gain energy from the vertical temperature gradients such that J has a bigger
share in the thermal energy budget, which is shown in figure 15. Remarkable is the spiral
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(a) Re, =40 (b) Re, = 1000

Figure 14. Critical modes for heating from below and hot co-flow with Re; =40 (a) and Re, = 1000
(b) in planes ¢ = const. in which the local thermal energy production has its maximum (white cross). The
perturbation velocity fields (arrows) and the perturbation temperatures (colour) are shown. Isolines of the basic
temperature field are drawn in black.
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Figure 15. Normalised global energy production rates J; (full lines) and J; (dashed lines) of the critical mode
in the liquid phase for heating from below shown as functions of Reg. The colour indicates the wavenumber.
The vertical dotted line marks the codimension-two point at Re, = 58.5. The horizontal dotted line represents
J1(Reg = —3000).

character of the isosurfaces of the perturbation temperature near the upper cold wall in
figure 13(e). These spiral arms show in figure 14(b) as a sequence of hot and cold spots in
the upper part of the region with high temperature gradients. A similar hydrothermal wave
with an even more pronounced spiral character arises in liquid bridges with the still higher
Prandtl number Pr = 68 (Stojanovic & Kuhlmann 2020a).

4.2. Dynamic surface shape

In this section we first discuss the causes for and the properties of the dynamic surface
shape of the liquid bridge in the basic state. Thereafter, the influence of the dynamic
deformability of the interface on the linear stability is discussed.
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Figure 16. (a) Hydrostatic shape ho s — 1/I" of a liquid bridge for the present geometry, different liquid
volumes V (colour), zero gravity (Og, dashed lines) and normal gravity (1g, full lines). (b,c) Dynamic surface
deformation Ahg of the static shape in zero gravity due to a gas flow in positive z direction with Re, = 825
(Re =0): (b)V < 1; (c) V > 1. Colours and line types as in (a).

4.2.1. Static surface shape and dynamic deformation due to the gas flow alone

Static shapes hg s of an isothermal liquid bridge, i.e. solutions of (2.23), are shown in
figure 16(a) for different filling factors V' (colour) and gravity levels (line type) in the
absence of any flow. When an axial flow is imposed in the gas phase, with the liquid
bridge still being isothermal (Re = 0), the dynamic pressure and the normal stresses along
the interface modify the static shape. The dynamic deformation Ahg of the static shape
under zero gravity (0g) due to a vertically upward gas flow with Re, = 825 is shown in
figure 16(b) for an underfilling (V < 1) and in figure 16(c) for an overfilling (V > 1)
of the liquid bridge. It can be seen that a constant gas flow rate induces a dynamic
deformation which is more than 10 times larger in case of an overfilling as compared with
an underfilling. Nevertheless, for this gas flow rate and volume ratios up to V =1 (full
blue line figure 16a) the dynamic deformation Ahyg is at least three orders of magnitude
smaller than the axial variation hg s(z, 1g) — ho_s(z, Og) of the hydrostatic shape due to
gravity. A gas flow with Re, = 825 thus hardly perturbs the interface. For an upright
cylindrical liquid bridge (V =1 and zero gravity, blue dashed line in figure 16a) the
shape perturbation Ahg (dynamic deformation) is caused by the streamwise pressure
drop in the gas flow and leads to a constriction of the bridge in the upstream half and
a bulging in the downstream half. The same holds true under gravity conditions. Due
to the hydrostatic surface deformation for normal gravity (1g), the isobars in the gas
phase shown in figure 17(a) are more distorted than for zero gravity (0Og). As the volume
ratio deviates from V = 1, the contact angles change and the pressure in the gas in the
immediate vicinity of the liquid bridge can be strongly affected (figure 17). Typically, a
local minimum and a local maximum of the pressure arise. For a large volume (V > 1)
with contact angles « > 1/2 on the liquid side, these pressure extrema lead to qualitatively
the same dynamic deformation as expected from the pressure drop in the gas far from
the liquid bridge: bulging in the downstream half of the liquid bridge and necking in the
upstream half (figure 16¢). For small volume ratios (V' < 1) with contact angles o < 1/2
on the liquid side, the locations of the maximum and minimum pressures in the gas are
approximately exchanged and the resulting dynamic deformation A/g exhibits the opposite
behaviour: the interface is bulging upstream and constricting downstream (figure 16b0).
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Figure 17. Isobars in the gas phase for Re = 0 and Re, = 850: (@) V = 1 and 1g; (b) V = 1.2 and Og;
(c) V = 0.85 and Og.

The gravity level does not play an important role for the dynamic deformation, but
moderately changes the hydrostatic shape of the bridge.

For contact angles o < 7/2 on the liquid side (contact angles o, > 7 on the gas side)
the pressure distribution in the gas is strongly affected by the flow singularities which
arise due to the sharp corners. The singularity of the pressure along the inner boundary of
the gas space is clearly seen in figure 18. While a detailed analysis would have to include
also the liquid phase, we note that the pressure distribution does not change much if the
liquid phase is artificially replaced by an indeformable solid with the same shape as the
hydrostatic shape (not shown). The reason is the viscosity of the liquid (i = 0.010597) is
almost 100 times higher than that of the gas. This observation suggests a comparison with
the local flow over a corner with opening angle o, > m made by two plane rigid walls.
The pressure which results from the Stokes flow asymptotics close to the corner (Moffatt
1964) diverges and makes a jump when the corner is passed. For the present liquid bridge,
we find qualitatively the same behaviour for o, > 7. The signs of the pressure divergence
near the contact lines obviously determine the pressure gradient in the gas and along the
interface leading to the pressure extrema shown in figure 17. The pressure variation in the
gas flow due to the expansion of the cross-section of the gas flow contributes as well.

For large volume ratios V > 1 with ag < T, the corner flow analysis of Moffatt (1964)
does not yield corner singularities. In fact, the flow over the contact lines for V > 1 is
smooth (figure 18), except for a small indentation in the pressure profile for V = 1.2 at the
upper corner. Therefore, the pressure distribution is mainly due to the gas flow deceleration
near the upstream half of the liquid bridge and the acceleration near the downstream half.
While these considerations can explain the gross features of the pressure distribution and,
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Figure 18. Profiles of the pressure p, along the free surface and the solid rods for a dynamically deformable
liquid bridge. The parameters are: Og, Re = 0, Re, = 825 and volume ratios V as indicated.

thus, the qualitative shape of the dynamic deformation Ahyg, the details are also affected
by the liquid flow (driven by the gas flow) and the pressure singularities which exist on the
liquid side as the contact lines are approached.

An overview of the dynamic deformation Ahgy due to the isothermal gas flow over a
liquid bridge with V =1 in the absence of the thermocapillary effect (Re = 0) and for
normal gravity condition (1g) is shown in figure 19. For downward gas flow (Re; < 0)
parallel to the acceleration of gravity the dynamic deformation leads to a very slight
necking tendency of the liquid bridge for z 2 0 and slight bulging tendency for z < 0,
since the pressure gradient in the gas phase along the interface (not shown) has the same
sign as the pressure difference between the inlet and the outlet. Upon a reversal of the gas
flow direction, the slight necking tendency arises for z < 0 and the bulging for z 2 0. The
black lines in figure 19 indicate the locus z;,4x of the maximum of the dynamic deformation
Ahyg and its projection to the (z, Rey) plane. The line is interrupted near Re, = 0, where
the maximum dynamic deformation drops below Ahy(z) < 5 x 10~°, which marks the
precision by which the dynamic deformation can be computed by the present numerical
approach.

Even though the dynamic deformation is insignificant on the scale of the hydrostatic
deformation in the gravity field, the dynamic deformation for V =1 and 1g slightly
amplifies the static deformation for Re, < 0 such that max hg 4 > max ho s and min hg 4 <
min hg g. For Re, > 0 the reverse holds true (see also figure 16).

4.2.2. Dynamic surface deformation due to the thermocapillary flow alone

The dynamic surface shape hg 4 strongly depends on both Re and Pr; examples are given
in figure 30 in Appendix B. For the present liquid with Pr = 28, Re #0, zero gravity
(0g), V =1 and neglect of the gas phase (single phase flow) the dynamic shape /o 4 =
ho.s + Ahg is always S-shaped, i.e. the dynamic deformation Ahy is negative (positive)
close to the hot (cold) corner with the extrema of A 4 depending on the magnitude of the
Reynolds number Re (not shown).
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Figure 19. Dynamic surface deformation Ahg as function of z and Reg for V = 1, Re = 0 and 1g. The grey
contour lines indicate surface deformations for constant Re, € [—3500; 1500] incremented by ARe, = 500.
The black lines show the loci of maximum of Ahg and its projection to the (z, Reg) plane.

Here we investigate the influence of the thermocapillary flow alone on the dynamic
surface deformation Ak under normal gravity (1g) and in the presence of the gas phase
(two-phase flow), but for Reg, = 0, i.e. for a closed gas container. The dynamic surface
deformation is shown in figure 20 for heating from above (Re > 0, figure 20a) and for
heating from below (Re < 0, figure 20b). The dynamic deformation amplifies (reduces)
the static deformation for heating from above (below). For heating from above (Re > 0,
figure 20a), the dynamic deformation has a sinusoidal shape and its strength, measured by
its maximum value, depends approximately linearly on Re. The maximum of Ahg arises
near the lower cold wall. For heating from below (Re < 0, figure 20b) the maximum of
Ahg also arises near the cold wall, which is now the upper wall. But the extrema of Ahyg
arise much closer to the wall such that the dynamic deformation for large absolute values
of Re < 0 takes a more complex shape.

The maximum dynamic deformation due to the thermocapillary flow for Reynolds
numbers of the order of O(2000) and heating from above is approximately four times larger
than the maximum dynamic deformation when the heating is from below. For heating from
above with Re = 0(2000) the thermocapillary-flow-induced dynamic deformation for
Reg, = 0 is also about four times larger than the dynamic deformation due to a downward
gas flow alone with Re = 0 and [Re,| = O(2000) (figure 19).

4.2.3. Dynamic surface deformation: dependence on Re and Reg,

Both the flow in the liquid and in the gas contribute to the flow-induced interfacial shape
deformation Ahg. To quantify this dynamic deformation we show in figure 21 the absolute
maximum of the dynamic deformation Ahg ;,,.x = max;(Ahg) > 0 for V = 1 and normal
gravity (1g). The minimum dynamic deformation Ahy = min;(Ahg) < 01is not monitored.
From figure 19 the locus z,c of the maximum dynamic deformation can jump upon
a variation of Reg. Therefore, the first derivative 9[Ahg nax]/0Re, is discontinuous at
this locus. As will become clear later, this discontinuity is not visible by the eye in
figure 21. As expected from the foregoing, the Reynolds number Re has a larger influence
on Ahg than Re,. While this depends on the definition of the Reynolds numbers, such
behaviour is expected because the density of the liquid, which enters the pressure scale,
is much higher than that of the gas (5 = 1.359 x 1073). From figure 21 the maximum
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Figure 20. Dynamic surface deformation A/ in the absence of an imposed gas flow (Rey, = 0), for V =1,
normal gravity (1g) and different Re as indicated: (a) heating from above; (b) heating from below.
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Figure 21. Maximum of the dynamic surface deformation Ahg jq = max;(Ahg) as function of Re, and Re
(equal scales) for V = 1 and normal gravity (1g). Isolines are equidistant with step size 1.25 x 10~* (colour
bar).

dynamic deformation Ahg 4, depends approximately linearly on Re for Re > 0 (heating
from above). Moreover, Ahg ;. depends monotonically on Re, for Re > 0, except near
Reg ~ 0 where a wiggle arises which can be smoothly resolved. The wiggle on the
isolines of Ahg uax(Reg) near Re, = 0 becomes more pronounced as Re increases. It
arises due to the sensitivity of the thermal conditions in the gas phase due to a weak
gas flow. Depending on the direction of the gas flow the interface is heated or cooled,
where the heating/cooling effect on the surface temperature rapidly saturates for increasing
|Reg| when the gas temperature changes from a conductive to a convective regime (see
e.g. §4.1.3).

The maximum dynamic surface deformation A#hg .,y is smaller for heating from below
(Re < 0) than for heating from above (Re > 0), as already observed for the closed chamber

978 A27-39


https://doi.org/10.1017/jfm.2023.944

https://doi.org/10.1017/jfm.2023.944 Published online by Cambridge University Press

M. Stojanovié, F. Romano and H. C. Kuhlmann

(@) (b)
0.50 0
z 025 . -0.25 - e
—— Re,=-1500
i | | — Reg =-19 |
— Reg =0
Re,=1500
0 ‘ ‘ -0.50 ‘ ‘
-12 -8 —4 0 0 4 8 12
Ahg (<107 Ahg (<104

Figure 22. Dynamic surface deformations Ahg for Re = 1700 and different Reg with an enlarged view of the
black rectangle: (@) upper half of the liquid bridge z € [0; 0.5]; (b) lower half of the liquid bridge z € [—0.5; 0].

in figure 20. For heating from above (Re > 0), the dynamic deformation due to the
thermocapillary flow is dominant and the dynamic deformation caused by the gas flow for
comparable Reynolds numbers |Re| ~ |Re,| can be considered a small perturbation of the
already small deformation due to the thermocapillary flow. This is illustrated in figure 22
for heating from above with Re = 1700 and different gas flow rates. For Re = 1700, the
smallest value which the maximum positive deformation takes arises for Re, = —19 (full
red line in figure 22b). This marks the above-mentioned transition from the conductive to
the convective regime in the gas phase.

For heating from below (Re < 0) the dynamic surface deformation due to the
thermocapillary flow and that due to the gas flow have comparable magnitudes. This leads
to qualitatively different dynamic surface deformation profiles as compared with heating
from above. This is demonstrated in figure 23(a) for heating from below with Re = —1700
and different gas flow rates in the range Re, € [—3500, 1500]. For a weak heating from
below with Re = —100, a strong gas flow from above leads to a bulging near the hot
and the cold corner, where the two relative maxima arise with comparable magnitudes.
Figure 23(b) shows typical profiles for Re ~ —1605 at which the locus zyqx 0f Aho max
makes a jump. Comparing figures 22(a) and 23(a), we note that Ahg is considerably more
sensitive to the strength of the gas flow when heating from below as compared with heating
from above.

The vertical coordinate z,,,, at which the maximum surface deformation A/ .y arises
is shown in figure 24 as a function of the gas flow Reynolds number Re, for V =1 and
normal gravity (1g). The black lines correspond to the projected black lines in figure 19 for
Re = 0, taking into account the gas flow alone. The effect of the thermocapillary-buoyant
flow on z;,4, is shown by coloured lines for different values of Re. For heating from above
(full coloured lines), we observe a small smooth wiggle near Re, ~ 0 that is related to
the already discussed transition from the conductive to the convective regime in the gas
phase. In addition, for small Reynolds numbers 0 < Re < 50 (blue and red full lines) a
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Figure 23. Dynamic surface deformations Ahg for V = 1, normal gravity (1¢) and different Re, as
indicated. Heating is from below with (@) Re = —1700 and (b) Re = —100.
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Figure 24. Axial position z,,4y of the maximum dynamic surface deformation Ahg ;4 = max;(Ahg) for
V =1 and normal gravity (1g) as function of Re, for several Re (indicated by colour and line type).

strong gas flow from below sizably affects z,,,., because the dynamic deformations due to
the thermocapillary and the gas flow are of comparable magnitude, but of different shape.
For heating from below (coloured dashed lines), the locus z,,,, makes a jump from near
the upper cold wall to near the lower hot wall when the cold counter-flow is intensified. For
Re = —100 this jump occurs near Re, ~ —1605, as illustrated in figure 23(b). The stronger
the thermocapillary flow (the larger |Re|), the stronger the cold downward counter-flow of
the gas (Re, < 0) must be for the maximum bulging to occur on the lower (hot) side of
the liquid bridge.
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Figure 25. Critical Reynolds numbers for V =1 and normal gravity (1g). Shown are Re.  (blue, static
interface) and Re, 4 (red, dynamic deformable interface) for heating from above and (a) Re, € [—2500; —1800]
and (b) Reg € [—1000; 0]. The deviation € and € between the two critical curves are defined graphically in (a).

4.2.4. Linear stability of the basic flow with a dynamically deformed free surface

The linear stability boundary for a static interface Re. s as function of the gas flow rate
Reg for heating from above and from below has been presented in figure 2(a). Since the
dynamic deformations are small, they are expected to have only a weak influence on the
linear stability boundary. This was already noticed for the test case considered during the
code validation (figure 33) in Appendix C.4.

Two regions within which the critical Reynolds number for a static interface Re. ;(Reg)
deviates the most from that for a dynamically deformed interface Re. 4(Reg) are shown in
figure 25. To quantify the small difference between the two critical curves we define the
deviations

€(Reg) 1= Rec 4(Reg) — Rec 5(Rey), (4.1a)
é(Re) := Re(Re) — Re§* (Re), (4.1b)

where Reg;d and Rey* are the critical gas Reynolds numbers for given Re and dynamic and
static interface, respectively. The meaning of € and € is graphically indicated in figure 25.
We also define the relative deviation

€(Reg)

E(Re,) = ——8
(Reg) = e (Rep)

(4.2)

We do not define the corresponding relative deviation €(Re), because the normalising
denominator Reg’s(Re) would vanish at the critical point Re = Re. ;(Reg = 0), i.e. for a

closed container. The deviations ¢ (blue) and € (red) are shown in figure 26 over the full
range of gas Reynolds numbers considered, where €(Re) is evaluated as €[Re. s(Reg)].

Naturally, ¢ becomes largest when the slope of the critical curve dRe.;/0Re; — 00

diverges. The deviation of € at such points, which is also illustrated in figure 25(a)
for Re, = —1921, can be larger than 10 %. Similarly, ¢ becomes large at extrema of
the critical curve, i.e. when dRe. ;/dRe, — 0. An example is shown in figure 25(b) for
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Figure 26. Relative deviation of the critical Reynolds number é = (Re. 4 — Rec,s)/Rec s (blue lines) and
absolute deviation of the critical gas Reynolds number é = Reg;d(Re) — Re;}‘ (Re) (red lines), both as functions
of Re,. Full and dashed lines correspond to heating from above (Re. > 0) and from below (Re. < 0),
respectively.

Reg = —424. Near extrema of Re, 4 the deviation normal to the critical curve represents
the meaningful measure. From figure 26, the relative deviation € typically amounts to a few

percent, except possibly at the mentioned extrema. Since the deviation € can take positive
and negative signs for either heating direction, the dynamic surface deformation can act
slightly stabilising or slightly destabilising. The absolute deviation € is typically less than
25, a value which must be compared with the gas Reynolds number which varies over a
much wider range (0(10%)). The weak effect of a dynamically deformable interface in the
basic flow on the stability boundary is also reflected in the minute displacement of the
codimension-two points listed in table 4.

5. Summary and conclusions

The thermocapillary flow in a liquid bridge made from 2-cSt silicone oil (Pr = 28)
has been investigated for heating from above and from below under axial gravity. The
thermal and mechanical coupling between the liquid bridge and the surrounding air is
fully accounted for, including the hydrostatic shape of the liquid—gas interface and its
flow-induced dynamic deformation. The flow in the liquid is driven by three mechanisms:
(a) the thermocapillary stress on the liquid—gas interface, (b) buoyancy forces in the bulk
and (c) an axial gas flow imposed on the annular inlet of the gas space which is confined
between the liquid bridge and an out shield cylinder. Thermocapillary and buoyancy forces
(a) and (b) depend on the applied temperature difference, while the gas flow (c) can
be imposed independently. The steady axisymmetric multiphase flow problem is solved
numerically, fully taking into account the dependence of the density on the temperature.
Thereafter, this basic flow is analysed with respect to its linear stability.
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The linear stability boundary of the axisymmetric flow for Pr = 28 and V = 1 has been
established as a function of the gas flow rate, which can take positive or negative values,
and for both heating from above and from below. Throughout, the instability is due to
hydrothermal waves (Smith & Davis 1983a; Wanschura et al. 1995; Stojanovic et al. 2022).
The waves can have different wavenumbers and exhibit different structures. For a moderate
gas flow the linear stability boundary depends sensitively on the imposed gas flow in the
range of gas flow Reynolds numbers Re, € [—50, 50]. This sensitivity was noted before
by Kamotani, Chang & Ostrach (1996), Kamotani ef al. (2003) and, more recently, by
Yano et al. (2016) and Gaponenko et al. (2021). The sensitivity results from the heating
or cooling of the free surface due to the gas flow such that the plateau temperature near
midplane changes. This affects the strength and structure of the basic vortex and, thus,
the basic temperature field from which the hydrothermal wave extracts its energy. These
changes modify the energy supply to the temperature field of the hydrothermal wave via the
advection of basic state temperature by the perturbation flow. Typically, radial advection
of basic state temperature is by far the most important instability mechanism. The heat
exchange through the free surface between the liquid and the gas due to the perturbation
flow itself is unimportant.

For larger gas flow rates, but still within Re, € [—3500, 1500], the linear stability
boundary approximately saturates, independent of its direction. In all cases, the reason
for the saturation of the critical Reynolds number is an insensitivity of the flow and
temperature field inside the liquid phase with respect to an increase of the gas flow rate.
The critical thermocapillary Reynolds number for large gas flow rates is of the order of
Re. = 0(500), except for heating from below and a hot co-flow of the gas, for which
the stability boundary saturates at Re, = O(1800). The saturation of the critical Reynolds
number is reached monotonically with an increase of the strength of the gas flow, except
for heating from above and a hot co-flow of the gas. In this case the basic flow is very
stable up to about Re. ~ 2000 in the range approximately Re, € [—2000, —100] before
saturation occurs for Re, 5 —2000. In the range Re, € [—2672, —1921] and heating from
above the linear stability boundary is not unique. Therefore, the unstable basic flow is
possibly stabilised again at higher Reynolds numbers within a certain range of Re. In the
full range of gas flow rates considered the mechanical driving of the flow in the liquid
phase by viscous stresses on the interface exerted by the gas motion is insignificant.

The linear stability boundaries have been computed for a constant volume fraction
YV =1 and a liquid—gas interface which is statically determined by the mean surface
tension and by the hydrostatic pressure. In addition, the stability boundaries have been
computed taking into account the flow-induced dynamic interface deformation due to
the basic flow, while neglecting the dynamic deformation due to the perturbation flow.
Dynamic deformations of the interface are caused by the variation of the surface tension
with temperature, viscous normal stresses from the gas and the liquid, and by the dynamic
pressure in the gas and the liquid. The dynamic deformation of an isothermal liquid bridge
caused by the gas flow alone was found to be consistent with the pressure distribution in
the gas near the interface. The distribution of the pressure in the gas is mainly determined
by the shape of the static interface and the corner singularities which arise in the gas
flow when the liquid contact angle is less than /2. For non-isothermal liquid bridges and
heating from above the dynamic surface deformation due to the thermocapillary forcing
is typically dominant over the gas-flow-induced deformation and leads to a sinusoidal
dynamic deformation supporting bulging near the cold wall and necking near the hot wall,
superimposed to the static shape. But for heating from below, the dynamic deformation due
to the thermocapillary flow can have the same order of magnitude as that due to the gas
flow (for comparable Reynolds numbers). Therefore, the shape of the dynamic deformation
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can be more complicated. Regardless of the shape of the dynamic surface deformation, its
effect on the critical threshold is weak.

With the present study we have accurately established the dependence on a forced
gas flow of the linear stability boundary of the axisymmetric thermocapillary flow in
liquid bridge of Pr = 28. We have incorporated in the analysis static and dynamic
interface deformations, the presence of a gas phase, a forced flow in the gas phase,
and non-Oberbeck—Boussinesq effects due to the linear dependence of the density on
temperature in all terms. Even though the Bond number was considered constant,
the analysis should guide the interpretation of data measured or computed in future
investigations of similar flow problems.

As was already pointed out by Shevtsova ef al. (2014), the sensitivity of the critical
onset of three-dimensional hydrothermal wave on the flow rate and direction of the hot or
cold gas bares the potential to controlling the critical onset of flow oscillations. Their
linear stability boundaries for 5-cSt silicone oil, n =2 and zero gravity (figure 7 of
Shevtsova et al. 2014) are similar to the present stability boundaries (figure 2a) for heating
from above: a very stable basic flow for a certain range of Reg; < 0 and an approximate
saturation of Re. for Re, > 0. The details, however, are more complicated. In particular,
we did not find the stationary m,. = 1 mode at very low Reynolds number of the order
of 200 for Reg > 0. This may partly be related to the relatively tight air gap with n = 2
considered by Shevtsova et al. (2014). Probably for the same reason, the two-dimensional

instability found for 7 = 1.6 by Shevtsova et al. (2013) for Reg > 0 does not arise in
the present system. We also did not find indications for a classical Marangoni instability
(different from Shevtsova et al. 2013), even though the production of thermal perturbation
energy is dominated by radial advection of basic state temperature (J1): The region
below the free surface in the plateau region of the surface temperature profile is found
to be almost isothermal. For the Pearson mechanism (Pearson 1958) to arise the basic
temperature field should exhibit a significant temperature gradient next to the interface.
However, for the range of parameters investigated, as in the classical hydrothermal wave
(Wanschura et al. 1995), the radial temperature gradients arise only deep inside the liquid
bridge due to the return flow of the basic toroidal vortex which is absent in the Pearson
problem.

Owing to the large parameter space, other important influence factors have not been
included in the present analysis. Among these are the dependence of the viscosity on
the temperature (Kozhoukharova et al. 1999; Shevtsova, Melnikov & Legros 2001) and
evaporative cooling for large AT (Simic-Stefani, Kawaji & Yoda 2006; Yano et al. 2016).
In addition, an extension of the analysis to other Prandtl numbers and volume fractions
of the liquid would be of interest. With respect to future space experiments which allow
for larger liquid bridges it would also be desirable to take into account dynamic surface
deformations in the perturbation flow. The would allow for surface wave instabilities which
have been found to become critical for pure thermocapillary flow in plane layers of low
Prandtl number (Smith & Davis 1983b) and in flat migrating droplets (Hu et al. 2023).
At higher gas flow rates, for which the shape of the liquid bridge is sizably affected
by dynamic deformations, surface waves can also be triggered by the Kelvin—Helmholtz
mechanism. These effects suggest corresponding extensions of the present work.
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Case r, (mm) n We in (Mm s7h Reg Re;, Re 4 8 (%)
Ref 10 4 —48.48 —40 —46.65 1786 -
1 17.5 7 —24.24 —20 —46.65 1215 =319
2 6.25 2.5 —-96.97 —80 —46.65 2212 23.9
3 17.5 7 —48.48 —40 —-93.29 1605 —10.1
4 6.25 2.5 —48.48 —40 —23.32 1952 9.3

Table 5. Critical thermocapillary Reynolds number Re. 4 for different tube radii r, and mean inlet velocities
W, in under zero gravity. The remaining parameters correspond to the reference parameters specified in § 4.

Also given are the gas flow Reynolds numbers Re;, and Re; and the percentage deviation $ of the critical

Reynolds number from the one for the reference case (denoted ‘Ref’). Equal values of Re;Z (Re,) are shown in
red (blue).
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Appendix A. Reynolds number for the gas motion

The motion of the gas resembles the flow through an annular pipe for which the Reynolds
number is usually defined as Re, = 2Wg inPg0(ro — 1i)/ILg, based on the kinematic
viscosity of the gas and the width of the annular gap. In the thermocapillary liquid bridge
under investigation, however, the flow instability is triggered in the liquid phase, while the
gas phase is mainly passive. Therefore, the effect of the gas motion on the liquid phase is
better represented by using the kinematic viscosity of the liquid w/pg and the length scale
d of the liquid phase, leading to Reg = wyg indpo/ 1. Both Reynolds numbers are related to
each other by

,_2=Dp

Re = = =Req. (AD)

through the ratio of the kinematic viscosities p /it and twice the ratio of the length scales
20— D/T.

The relevance of Reg for the flow instability can also be inferred from table 5 which
shows the critical thermocapillary Reynolds number Re. 4 when the liquid—gas interface
of the basic state is dynamically deformable (subscript d). Based on the reference case
(Ref) for Re, = —40 and Re; = —46.65, we consider the deviation of the critical Reynolds

number § = Re. — ReZef from the reference value Reze]:l = 1786 when the dimensional

radius of the gas tube r,, and thus the gap width 7, is varied. Keeping Reg constant
(data shown in blue) the critical Reynolds numbers deviate much less from the reference
value than when Reé, is kept constant (data shown in red). For that reason we used Re, to
characterise the strength of the gas flow.
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Appendix B. Dependence of the critical Reynolds number on the rod length I,4

The temperatures at the in- and outlet of the gas space as well as the inlet velocity profile
are prescribed. To estimate the length / over which the downstream boundary conditions
affect the velocity field upstream the equilibrium between momentum advection and
diffusion over the influence length / can be estimated by the condition

"_Vg,inlogol N
Mg

Pe = 1 (B1)

for the Péclet number Pe. Expressed by the gas flow Reynolds number Reg, this yields
I p 78

N — N —. (B2)
d pRe; Reg

Thus, in order that the dimensionless influence length //d is less than the dimensionless
rod length d,pq/d = Ioq/I" = 0.606, the gas flow Reynolds number should satisfy
|Reg| 2 13. With Pry = 4cpg/Ay = 0.704 a similar estimate, |Reg| 2 13/Pr = 18, holds
for the thermal influence length. Thus, the critical Reynolds number should not be affected
by the relatively short length of the rods with I;,; = 0.4, except for very small gas flow
rates.

This is confirmed by figure 27 which shows the critical Reynolds number as a function
of I',oq is independent of I,4 for I'q > 0.4 and Re, = 500 with heating from above
(full lines) and heating from below (dashed lines). The deviations of Re (1 ,q = 0.4) from
Re (I';oq = 8) are less than 1 %. Even for Re, = 0 and heating from above independence
from I, is achieved for I,y = 0.5 with Re.(I,q = 0.4) deviating from Re.(I},q = 8)
by less than 8 %. For Re, = 0 and heating from below, however, the critical Reynolds
number exhibits a strong dependence on I,4 with changes of the critical mode (dashed
orange lines in figure 27). The critical mode for small I}, is due to a hydrothermal wave
in the liquid with m, = 2 (see figure 2a). The critical mode changes at I,; = 1.77 to a
stationary mode with m. = 2 which is triggered in the gas phase. At I},4 = 2.85 a further
change is found to another stationary mode with m. = 1. Since the latter instabilities were
the only ones found where the flow becomes unstable in the gas phase, the instability for
Iyoq = 8 is briefly described.

The critical Reynolds number for I},; = 8 is Re, = —146 (corresponding to AT, =
—4.4 K). The basic state and a cross-section of the critical mode are shown in figure 28.
The critical mode involves a large-scale circulation in the full annular gas space
(figure 28b). The air rises on one side of the annular pipe and descends on the other
side. The critical velocity and temperature fields in the liquid are much weaker than in the
gas phase. Obviously, the instability is due to buoyancy. To estimate the magnitude of the
buoyancy in the gas phase we evaluate the Rayleigh number in the gas based on the height
of the gas tube. For the present reference parameters the Rayleigh number is

/52,5517 Toa 3 2 3
Rag, = = (1 +2 T ) PrBdRe ~ 1.30 x 107°(1 4 3.03 x Iyq) Re. (B3)

For the rod aspect ratio I,; = 8 and for |Re| = |Re.4(Ioq = 8)| = 146, the Rayleigh
number is Ra. = Ra(Re. 4) ~ 30500 which is of the same order of magnitude as the
critical value of Ra, =~ 51 000 according to the correlation of D’Orazio, Cianfrini &
Corcione (2004) for the onset of convection in a rectangular two-dimensional container
heated from below with adiabatic sidewall and the same aspect ratio (d + 2dypq) /(1o —
r;) = 5.55.
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Figure 27. Dependence of the critical Reynolds numbers Re. 4 for V =1 and 1g on the dimensionless rod
length I, for Re, € {—500; 0; 500} and heating from above (full lines) and heating from below (dashed
lines). The grey stripes indicate an error of £5 % with respect to Re. (104 = 8). The vertical dotted line
marks the rod aspect ratio [,s = 0.4 employed.
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Figure 28. (a) Basic state at criticality Rec g = —146 for I';pq =8, V =1, 1g, Reg = 0 and heating from
below. (b) Corresponding stationary critical mode with m = 1, shown in the plane ¢ = const. in which the
local thermal energy production has its maximum.

The presence of the buoyant instability in the gas phase shows that the above estimate
based on advection and diffusion is incomplete to estimate the effect of I, in the presence
of gravity. Therefore, we compare in figure 29 the neutral curves Re,(Reg) for I'oq =
0.4 (dashed lines) with those for I, = 8 (full lines) for both heating from above (red
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Figure 29. Neutral Reynolds numbers as functions of Re, for I,4 = 0.4 (dashed lines) and I, = 8 (full
lines). Results are shown for heating from above (red lines, left axis) and for heating from below (blue lines,
right axis, Re, 4 < 0). The neutral wavenumbers m = 1, m = 2 and m = 3 are indicated by labels. The grey
region indicates a deviation of £2 % with respect to the neutral curves for I}, = 8. The blue square indicates
the conditions of figure 28.

curves) and below (blue curves). For sufficiently strong gas flow, the rod aspect ratio (up
to I,q = 8) does not significantly affect the instability. For weak gas flow in the range
Reg € [—80, 20] and for heating from below (blue lines, Re, 4 < 0), however, stationary
buoyant instabilities (as in figure 28) can arise in the gas phase and break the axisymmetry
before hydrothermal waves become unstable.

Considering I},q = 8 sufficiently large to suppress effects due to the inlet and outlet
length on the basic flow, we define a tolerance of £2 % for the critical Reynolds number
for hydrothermal waves (grey shaded region in figure 27). Comparing Re. 4({0q = 0.4)
(dashed lines) with Re. 4(I,q = 8) (full lines), we find that using I},4 = 0.4 provides a
good approximation of the critical Reynolds number for hydrothermal waves in the axially
extended system with I},q = 8, if |Rey| > 17 in the case of heating from below (blue
lines). For heating from above (red lines) the restriction is similar with Reg > 21 for hot
downward co-flow, whereas for cold upward counter-flow the restriction is more severe and
Reg < —90 must be satisfied. Since the length of the support rods in typical experiments
is limited and the heating is usually from above, buoyant instabilities such as that shown
in figure 28 do not arise. Therefore, I},; = 0.4, also employed by Romano et al. (2017), is
a reasonable choice for the length of the support rods, if one keeps in mind that the critical
Reynolds numbers for weak gas flows depends on [4.

Appendix C. Verification and validation of the dynamic surface deformation

To check the implementation of dynamic free-surface deformation the surface shapes
obtained using the code MaranStable are compared with available experimental and
numerical results. Some comparisons are made for the single-fluid model in which viscous
stresses from the gas phase are absent. In most tests a quantitative agreement is found.

C.1. Comparison with Kuhlmann & Nienhiiser (2002)

Kuhlmann & Nienhiiser (2002) have carried out an asymptotic expansion of the
thermocapillary flow and interface shape for the limit Ca — 0. The same approach
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Figure 30. Comparison of the scaled dynamic surface deformations Ahg (lines) with the first-order correction
hV Ca of Kuhlmann & Nienhiiser (2002) (dots, taken from their figure 2a) for I' =1,V =1, Bd = Bo =
0, Ca = 10~°, adiabatic free surface and (Pr, Re) = (0.02, 10~%) (blue), (0.02, 2130) (red) and (4.38, 951)
(orange). Viscous stresses from the gas phase are neglected.

was used by Shevtsova et al. (2008). For a comparison with the results of Kuhlmann
& Nienhiiser (2002) we consider a liquid bridge with I =1, V =1, an adiabatic
free surface, zero gravity and a Capillary number Ca = 107%. Under zero gravity
(Bd = Bo = 0) the static shape is cylindrical with hg (z) = 1/I". Figure 30 shows the
deviation Ahg of the surface shape from cylindrical obtained by MaranStable (lines)
in comparison with the first-order correction 2"’ Ca to the cylindrical shape computed
by Kuhlmann & Nienhiiser (2002) (dots) for different combinations of Re and Pr. Our
results agree very well with the literature data, particularly for the viscous—conductive case
Re = 10~*, Pr = 0.02 (blue). Deviations among the two results slightly increase for larger
Marangoni numbers, i.e. for Re = 2130, Pr = 0.02 (red, near the hot wall at z = 1/2) and
for Re = 951, Pr = 4.38 (orange near the midplane). A plausible reason for these minor
deviations is the absence of higher-order corrections in Ca of the interface shapes provided
by Kuhlmann & Nienhiiser (2002).

C.2. Comparison with Montanero et al. (2008)

To validate the dynamic deformations obtained by MaranStable for larger dynamic surface
deformations we also compare with the experimental results obtained by Montanero et al.
(2008). While the experimental data are obtained in the presence of the gas phase, it is
neglected in our calculations. The reason is Montanero et al. (2008) did not provide any
information about the ambient gas and the complimentary numerical computations by
Carri6n et al. (2020) were made for a single-fluid model. Following Carrién et al. (2020)
we assume the thermal boundary condition can be modelled by Newton’s law of cooling

n-Vﬁ:-Bi(ﬁ+%), 1)
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Figure 31. (a) Static surface shape A  of a tall liquid bridge made from 5-cSt silicone oil under normal gravity
with length d = 3.691 mm, aspect ratio I" = 1.23 and volume V = 0.82. (b) Dynamic surface deformation
Ahy for the same liquid bridge for AT = 11.05 K (Re = 113.9, blue) and AT = 21.76 K (Re = 224.4, red).
Lines show results of MaranStable, while squares represent experimental data of Montanero ez al. (2008). The
experimental error bars (£1 pwm) were estimated by Montanero et al. (2008).

with a Biot number Bi = hyd/A = 0.15, where h is the heat-transfer coefficient between
the liquid and the gas.

We consider a liquid bridge of length d = 3.69 mm made from 5-cSt silicone oil
(Pr=067) for I' = 1.23 and V = 0.82 (underfilling) under normal gravity and heated
from above. Figure 31(a) shows the static surface shape computed using MaranStable. The
horizontal axes show both the dimensional (hp ¢ — r;) and the non-dimensional deviation
(ho,s — 1/I") of the static surface shape from cylindrical. The (additional) flow-induced
dynamic deformation Ahy = ho 4 — ho s is shown in figure 31(b). The results obtained
with MaranStable are in a reasonable agreement with the experimental data.

Deviations between our numerical results (lines) and the experimental data (solid
squares) are expected. Notwithstanding the measurement error, the heat flux through the
interface is not correctly described by (C1) when using a constant Biot number (Romano
& Kuhlmann 2019).

C.3. Comparison with Matsunaga et al. (2012)

Dynamic surface deformations arise not only due to a temperature gradient along the
interface, but also due to viscous shear stresses from the gas phase. To test the dynamic
surface deformation caused solely by an axial gas flow, we also compare with the
experimental results of Matsunaga et al. (2012). Again, we consider a liquid bridge of 5-cSt
silicone oil, but with nitrogen as the ambient gas. Moreover, the geometry of the set-up was
adapted to that of Matsunaga et al. (2012) by selecting I' =1, I, =2/3 and n = 5/3.
The liquid bridge of length d = 3 mm and relative volume V' = 0.8 is isothermal, and the
gas enters the shield tube from below (Reg; > 0).

Figure 32(a) shows the deviation g ¢ — 1/1" of the static shape from cylindrical. The
flow-induced dynamic part of the deformation Ahy = ho 4 — ho s is shown in figure 32(b)
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Figure 32. (a) Deviation ho s — 1/1I" of the static interface shape from cylindrical for a liquid bridge of length
d = 3 mm made from 5-cSt silicone oil in nitrogen. The essential non-dimensional parameters are: I" =1,
V = 0.8, Bo =4.075 (ground condition) and Re = 0 (see the text for the remaining geometry parameters).
(b) Dynamic part of the interfacial deformation Ay computed using MaranStable (lines) in comparison with
the measurements of Matsunaga et al. (2012) (squares) for different through flows: wg ;; = 1 m g1 (Reg = 600,
blue), wgin = 1.5m s~! (Reg =900, red) and wg ;s =2 m s7! (Reg = 1200, orange). Error bars show an
uncertainty of £0.6 pm.

for Re = 0. Shown are profiles computed by MaranStable for Re; = 600 (blue line), 900
(red line) and 1200 (orange line). For Reg, = 600 and 900 an excellent agreement is found
with the corresponding experimental results (symbols).

Even though Matsunaga et al. (2012) estimated the measurement error of hp 4 as
40.1 pwm, we show error bars for 0.6 wm. The reason is Matsunaga et al. (2012) found
that the deviation between their measured static interfacial shape h s for Re, = 0 and their
numerical solution of the Young—Laplace equation (our solution is shown in figure 32a)
was +0.6 pm on average, with a maximum deviation of 1.5 pm. Since only the total
dynamic shape hg 4 is observed experimentally, the dynamic part of the deformation A#hg
is also affected by the error in the static shape g . This may explain the large deviation
between our result and the measured data of Matsunaga er al. (2012) for Re, = 1200
(orange in figure 32b).

C.4. Code validation regarding the critical Reynolds number with and without dynamic
surface deformation of the basic flow

Finally, we validate MaranStable in terms of the critical onset of three-dimensional flow
by comparison with the measurements of Yano et al. (2016) for a liquid bridge of 2-cSt
silicone oil in air with length r; =d =2.5mm and Pr =28, Bd =041, ' =1, I, =
4.8 and n = 5. Figure 33 shows the neutral and critical Marangoni numbers as functions
of the volume ratio V for a mean gas inlet velocity of wg ;, = —20 mm s~! corresponding
to a gas flow Reynolds number of Re, = —25 (cold counter-flow, heating from above, 1g).
The numerical neutral curves obtained for a static (hg g, dashed lines) and for a dynamic
surface shape (hg 4, full lines) do not deviate much from each other, indicating the weak
influence of the dynamic deformability on the critical Marangoni number for such a weak
gas flow.
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Figure 33. Neutral Marangoni numbers Ma, (lines) as functions of the volume ratio V for a liquid bridge of

2-cStsilicone oil in air with length d = 2.5 mm and Pr = 28, I' = 1, Bd = 0.41 and = 5. Dashed lines show

the static surface shape hyg s; full lines show the dynamic surface shape g 4. A comparison is made with the

experimental data of Yano et al. (2016) (their figure 6a) for a gas inlet velocity of —20 mm g1 (Reg = —25).
Colour indicates the neutral wavenumber: m = 1 (blue) and m = 2 (red).
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Figure 34. Volumetric flow rate density (left, blue) and mass flow rate density (right, red) at the inlet (full
lines) and at the outlet (dashed lines) of the gas tube for Re = 400 and a hot downward flow (Re, = —200).
The horizontal lines represent averaged values over the cross-section.

Both numerical results are in good agreement with the experimental data for all volume
ratios V' sampled. The only exception is the volume V = 1.05 for which the critical
wavenumbers deviate qualitatively. Given the experimental error bar, a possible reason
could be the large slope of the neutral curve for m = 1 with respect to V, such that small
deviations of V cause a large change of the critical Marangoni number. In addition, a
subcritical instability at V = 1.05 cannot currently be ruled out.
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Appendix D. Verification of the density variation

Different from the Oberbeck—Boussinesq approximation, our code takes into account
a linear variation of the density with temperature in all terms. To verify the correct
implementation we consider the present standard configuration with Pr = 28. The liquid
bridge is heated from above with Re = 400 and exposed to a hot downward flow with
Reg = 200. In figure 34 we show the volume flow density wg (left axis, blue) and the mass
flow density pgw, (right axis, red) as functions of r at the in- and outlet. The incoming

hot air slows down from an averaged value of w, = —0.242 m s~! (full horizontal blue

line) to we = —0.233 m s~! (dashed horizontal blue line). As expected, the volume flux
cannot be constant and independent of z, since the gas must have cooled down at the
outlet. The total mass flux m = f 4 Pgwg dA, however, must be independent of z. The almost
invisible discrepancies between the mass flow densities at the inlet (full red curve) and the
outlet (dashed red curve) arise, because the gas leaves the tube with a velocity profile
which is slightly perturbed due to the thermocapillary flow along the liquid—gas interface.
However, the total mass balance long the tube is satisfied up to machine precision: the

average mass flow densities pgw, = —0.281 [kg m~2 s~!] (red horizontal line) deviate by
less than 1012 % from each other.
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