ON A THEOREM OF A. A. GOL'DBERG

P. C. FENTON
Department of Mathematics, Otago University, PO Box 56, Dunedin, New Zealand (pfenton@maths.otago.ac.nz)

(Received 16 October 2002)

Abstract It is shown that a condition on the order of a meromorphic function in a result of A. A. Gol'dberg cannot be relaxed.

Keywords: meromorphic function; minimum modulus; maximum modulus
2000 Mathematics subject classification: Primary 30D35

1. Introduction

Suppose that f is a meromorphic function in the plane and that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{N(r, 0)+N(r, \infty)}{(\log r)^{2}} \leqslant \sigma \tag{1.1}
\end{equation*}
$$

for some positive number σ, where

$$
N(r, a)=\int_{0}^{\infty} \frac{n(t, a)}{t} \mathrm{~d} t
$$

$n(t, a)$ being the number of a-points of f in $\{z:|z| \leqslant t\}$. (We assume that f has neither a zero nor a pole at the origin, which ensures the existence of $N(r, 0)$ and $N(r, \infty)$; as will be apparent, no loss of generality is entailed in doing so.) In response to a conjecture of Barry [1, p. 485], Gol'dberg [2] showed that if in addition f has order 0 , then

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{m(r)}{M(r)} \geqslant C(\sigma) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
C(\sigma)=\left(\prod_{j=1}^{\infty} \frac{1-\mathrm{e}^{-(2 k-1) /(4 \sigma)}}{1+\mathrm{e}^{-(2 k-1) /(4 \sigma)}}\right)^{2} \tag{1.3}
\end{equation*}
$$

and

$$
m(r)=\min _{|z|=r}|f(z)|, \quad M(r)=\max _{|z|=r}|f(z)|
$$

the minimum and maximum moduli of f. The constant $C(\sigma)$ is best possible, as Barry showed [1, p. 484]. Gol'dberg commented [2, p. 434]:

It is likely that [in this theorem] it is possible to replace the requirement that f has order 0 by the weaker restriction that f be a function of genus 0 . However, we have not been able to prove this.

The intention here is to show that order 0 cannot be replaced by genus 0 in the hypotheses of the theorem.

2. An example

Given a number ρ, with $0<\rho<1$, and a positive number σ, we will construct an entire function $f(z)$ of order ρ for which

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{N(r)}{(\log r)^{2}} \leqslant \sigma \tag{2.1}
\end{equation*}
$$

(for brevity $N(r)$ is used here and in what follows instead of $N(r, 0)$), while

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{m(r)}{M(r)}<C(\sigma) \tag{2.2}
\end{equation*}
$$

Let $m_{j}, j=1,2, \ldots$, be an increasing sequence of positive integers which is sparse in the sense that

$$
\begin{equation*}
\sum_{l=1}^{j} \mathrm{e}^{\rho m_{l} /\left(2 \sigma^{\prime}\right)}=o\left(m_{j+1}\right) \quad(j \rightarrow \infty) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma^{\prime}=\sigma /\left(1-\rho^{2}\right) \tag{2.4}
\end{equation*}
$$

and let $R_{j}=\mathrm{e}^{m_{j} /\left(2 \sigma^{\prime}\right)}$. Let K_{j} be the largest positive integer such that $R_{j} \mathrm{e}^{K_{j} /\left(2 \sigma^{\prime}\right)} \leqslant$ $R_{j+1}^{1-\rho}$. In view of (2.3) and the definition of R_{j},

$$
\begin{equation*}
\sum_{l=1}^{j} R_{l}^{\rho}=o\left(\log R_{j+1}\right) \tag{2.5}
\end{equation*}
$$

also,

$$
\begin{align*}
K_{j} & =\left[(1-\rho) m_{j+1}-m_{j}\right]=(1-\rho+o(1)) m_{j+1} \\
& =2 \sigma^{\prime}(1-\rho+o(1)) \log R_{j+1} \tag{2.6}
\end{align*}
$$

where [.] denotes the integral part. Finally, given a positive integer p, set

$$
\begin{equation*}
\alpha=\mathrm{e}^{p /(2 \sigma)} \tag{2.7}
\end{equation*}
$$

and define $f(z)$ to be the entire function formed from its zeros using the simplest Weierstrassian factors, with the zeros specified as follows: for each positive integer $j,\left[\alpha R_{j}^{\rho}\right]$
zeros are placed at $-R_{j}$, and, again for each j, simple zeros are placed at $-R_{j} \mathrm{e}^{k /\left(2 \sigma^{\prime}\right)}$, $k=1,2, \ldots, K_{j}$. The zeros of f thus occur in blocks corresponding to the intervals $\left(-R_{j+1},-R_{j}\right]$, with a concentration of zeros at $-R_{j}$, a regular distribution of simple zeros from $-R_{j}$ to about $-R_{j+1}^{1-\rho}$, and the remaining part of the interval free of zeros.

The counting function, $n(r)$, of the zeros of f satisfies, for each j,

$$
\begin{align*}
n(r) & =n\left(R_{j}\right)+\left[2 \sigma^{\prime} \log \left(r / R_{j}\right)\right], & & R_{j} \leqslant r \leqslant R_{j} \mathrm{e}^{K_{j} /\left(2 \sigma^{\prime}\right)} \tag{2.8}\\
n(r) & =n\left(R_{j}\right)+K_{j}, & & R_{j} \mathrm{e}^{K_{j} /\left(2 \sigma^{\prime}\right)} \leqslant r<R_{j+1}, \tag{2.9}\\
n\left(R_{j+1}\right) & =n\left(R_{j}\right)+K_{j}+\alpha R_{j+1}^{\rho} . & & \tag{2.10}
\end{align*}
$$

Let us first check that f has order ρ. From (2.10), $n\left(R_{j+1}\right) \geqslant \alpha R_{j+1}^{\rho}$, so, from Jensen's Theorem, f has order at least ρ. On the other hand, from (2.8) and (2.9), for $R_{j} \leqslant r<$ R_{j+1},

$$
\begin{align*}
n(r) & =\sum_{l=1}^{j} \alpha R_{j}^{\rho}+O(\log r) \\
& =\alpha R_{j}^{\rho}+\sum_{l=1}^{j-1} \alpha R_{j}^{\rho}+O(\log r) \\
& =\alpha R_{j}^{\rho}+O(\log r) \tag{2.11}
\end{align*}
$$

in view of (2.5), and so f has order at most ρ. Also, from (2.11) and (2.5), $n\left(R_{j}\right)=$ $o\left(\log R_{j+1}\right)$, and therefore, using (2.8), (2.9) and (2.6),

$$
\begin{align*}
N\left(R_{j+1}\right) & =\left\{\int_{0}^{R_{j}}+\int_{R_{j}}^{R_{j+1}^{1-\rho}}+\int_{R_{j+1}^{1-\rho}}^{R_{j+1}}\right\} \frac{n(t)}{t} \mathrm{~d} t \\
& \leqslant n\left(R_{j}\right) \log R_{j}+\int_{R_{j}}^{R_{j+1}^{1-\rho}}\left(n\left(R_{j}\right)+2 \sigma^{\prime} \log \left(t / R_{j}\right)\right) \frac{\mathrm{d} t}{t}+\rho\left(n\left(R_{j}\right)+K_{j}\right) \log R_{j+1} \\
& =(1-\rho) n\left(R_{j}\right) \log R_{j+1}+\sigma^{\prime}\left(\log \left(R_{j+1}^{1-\rho} / R_{j}\right)\right)^{2}+\rho\left(n\left(R_{j}\right)+K_{j}\right) \log R_{j+1} \\
& =\sigma^{\prime}(1-\rho)^{2}\left(\log R_{j+1}\right)^{2}+2 \sigma^{\prime} \rho(1-\rho+o(1))\left(\log R_{j+1}\right)^{2}+o\left(\log R_{j+1}\right)^{2} \\
& =\sigma^{\prime}\left(1-\rho^{2}+o(1)\right)\left(\log R_{j+1}\right)^{2}=(\sigma+o(1))\left(\log R_{j+1}\right)^{2} \tag{2.12}
\end{align*}
$$

from (2.4), so that (2.1) is satisfied.
It remains to verify (2.2), and to do so we consider three subcases for r in any of the intervals $\left[R_{j}, R_{j+1}\right)$:
(i) $R_{j} \leqslant r \leqslant \beta R_{j}$;
(ii) $\beta^{-1} R_{j+1}^{1-\rho} \leqslant r<R_{j+1}$;
(iii) $\beta R_{j} \leqslant r \leqslant \beta^{-1} R_{j+1}^{1-\rho}$.

Here

$$
\begin{equation*}
\beta=\mathrm{e}^{p /\left(2 \sigma^{\prime}\right)} \tag{2.13}
\end{equation*}
$$

p being the positive integer introduced earlier (cf. (2.7)).
(i) $R_{j} \leqslant r \leqslant \beta R_{j}$:

$$
\begin{align*}
\frac{m(r)}{M(r)} & \leqslant\left|\frac{1-r / R_{j}}{1+r / R_{j}}\right|^{\alpha R_{j}^{p}} \\
& \leqslant\left(\frac{\beta-1}{\beta+1}\right)^{\alpha R_{j}^{\rho}}=o(1) \tag{2.14}
\end{align*}
$$

as $j \rightarrow \infty$.
(ii) $\beta^{-1} R_{j+1}^{1-\rho} \leqslant r<R_{j+1}$:

$$
\begin{align*}
\frac{m(r)}{M(r)} & \leqslant\left(1-\frac{r}{R_{j+1}}\right)^{\alpha R_{j+1}^{\rho}} \\
& \leqslant\left(1-\frac{\beta^{-1}}{R_{j+1}^{\rho}}\right)^{\alpha R_{j+1}^{\rho}} \\
& =(1+o(1)) \mathrm{e}^{-\alpha \beta^{-1}} \\
& =(1+o(1)) \mathrm{e}^{-\mathrm{e}^{p\left(\sigma^{\prime}-\sigma\right) /\left(2 \sigma \sigma^{\prime}\right)}} \tag{2.15}
\end{align*}
$$

from (2.7) and (2.13).
(iii) $\beta R_{j} \leqslant r \leqslant \beta^{-1} R_{j+1}^{1-\rho}\left(\right.$ i.e. $\left.\mathrm{e}^{\left(m_{j}+p\right) /\left(2 \sigma^{\prime}\right)} \leqslant r \leqslant \mathrm{e}^{\left((1-\rho) m_{j+1}-p\right) /\left(2 \sigma^{\prime}\right)}\right)$:

$$
\begin{align*}
\frac{m(r)}{M(r)} & \leqslant \prod_{k=1}^{K_{j}}\left|\frac{1-\left(r / R_{j}\right) \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+\left(r / R_{j}\right) \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right| \\
& =\prod_{k=1}^{K_{j}}\left|\frac{1-r \mathrm{e}^{-\left(k+m_{j}\right) /\left(2 \sigma^{\prime}\right)}}{1+r \mathrm{e}^{-\left(k+m_{j}\right) /\left(2 \sigma^{\prime}\right)}}\right| \\
& =\Pi_{1}^{-1} \Pi_{2}^{-1} \prod_{k=1}^{\infty}\left|\frac{1-r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right|, \tag{2.16}
\end{align*}
$$

where

$$
\Pi_{1}=\prod_{k=m_{j}+K_{j}+1}^{\infty}\left|\frac{1-r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right|, \quad \Pi_{2}=\prod_{k=1}^{m_{j}}\left|\frac{1-r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right|
$$

Since $r \leqslant \mathrm{e}^{\left((1-\rho) m_{j+1}-p\right) /\left(2 \sigma^{\prime}\right)}$ and, from $(2.6), m_{j}+K_{j}+1 \geqslant(1-\rho) m_{j+1}$,

$$
\Pi_{1} \geqslant \prod_{k=p}^{\infty}\left(\frac{1-\mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+\mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right)=\pi(p)
$$

say, where $\pi(p) \rightarrow 1$ as $p \rightarrow \infty$. Similarly, but using $r \geqslant \mathrm{e}^{\left(m_{j}+p\right) /\left(2 \sigma^{\prime}\right)}$,

$$
\Pi_{2} \geqslant \pi(p)
$$

and we conclude that

$$
\frac{m(r)}{M(r)} \leqslant \pi(p)^{-2} \prod_{k=1}^{\infty}\left|\frac{1-r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right|
$$

Barry [1, p. 484] has shown that

$$
\limsup _{r \rightarrow \infty} \prod_{k=1}^{\infty}\left|\frac{1-r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}{1+r \mathrm{e}^{-k /\left(2 \sigma^{\prime}\right)}}\right|=C\left(\sigma^{\prime}\right)
$$

and therefore, for all large j, for $\beta R_{j} \leqslant r \leqslant \beta^{-1} R_{j+1}^{1-\rho}$,

$$
\frac{m(r)}{M(r)} \leqslant(1+o(1)) \pi(p)^{-2} C\left(\sigma^{\prime}\right)
$$

Combining the results from (i), (ii) and (iii), we obtain

$$
\limsup _{r \rightarrow \infty} \frac{m(r)}{M(r)} \leqslant \max \left\{\mathrm{e}^{-\mathrm{e}^{p\left(\sigma^{\prime}-\sigma\right) /\left(2 \sigma \sigma^{\prime}\right)}}, \pi(p)^{-2} C\left(\sigma^{\prime}\right)\right\}
$$

Since p may be arbitrarily large,

$$
\limsup _{r \rightarrow \infty} \frac{m(r)}{M(r)} \leqslant C\left(\sigma^{\prime}\right)
$$

which establishes $(2.2), C\left(\sigma^{\prime}\right)$ being less than $C(\sigma)$ since $\sigma^{\prime}>\sigma$.

References

1. P. D. Barry, The minimum modulus of small integral and subharmonic functions, Proc. Lond. Math. Soc. 12 (1962), 445-495.
2. A. A. Gol'dberg, Minimum modulus of a meromorphic function of slow growth, Math. Notes 25 (1979), 432-437 (English translation of Mat. Zametki 25 (1979), 835-844).
