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Abstract 

Site-Specific Weed Management (SSWM) provides precise weed control and reduces the 

use of herbicides, which not only reduces the risk of environmental damage but also improves 

agricultural productivity. Accurate and efficient weed detection is the foundation for SSWM. 

However, complex field environments and small-target weeds in fields pose challenges for 

their detection. To address the above limitation, we developed WeedDETR, a real-time 

end-to-end detection model specifically designed to enhance the detection of small-target 

weeds in unmanned aerial vehicle (UAV) imagery. WeedDETR incorporates RepCBNet, a 

backbone network optimized through structural re-parameterization, to improve fine-grained 

feature extraction and accelerate inference. In addition, the designed feature complement 

fusion module (FCFM) was used for multi-scale feature fusion to alleviate the problem of 

small-target weed information being ignored in the deep network. During training, varifocal 

loss was used to focus on high-quality weed samples. We experimented on a new dataset, 

GZWeed, which contains weed imagery captured by an UAV. The experimental results 

demonstrated that WeedDETR achieves 73.9% and 91.8% AP0.5 (average precision at 0.5 

intersection over union threshold) in the weed and Chinese cabbage [Brassica rapa subsp. 

chinensis (L.) Hanelt] categories, respectively, while achieving an inference speed of 76.28 

FPS (frames per second). In comparison to YOLOv5-L, YOLOv6-M, and YOLOv8-L, 

WeedDETR demonstrated superior accuracy and speed, exhibiting 3.5%, 6.3%, and 3.6% 

higher AP0.5 for weed categories, while FPS was 14.9%, 12.9%, and 1.4% higher, respectively. 

The innovative architectural design of WeedDETR significantly enhances the detection 

accuracy of small-target weeds, enables efficient end-to-end weed detection. The proposed 

method establishes a solid technological foundation for UAV-based precision weeding systems 

in field conditions, advancing the development of deep learning-driven intelligent weed 

management. 

Keywords: DETR; real-time detection; site specific weed management; UAVs; weed 

detection  
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1. Introduction 

In agro-ecosystems, weeds are considered a major problem as they compete with crops for 

nutrients, water, and sunlight and also provide a habitat for pests that can cause plant diseases, 

leading to a reduction in crop yield and quality. Site-Specific Weed Management (SSWM) is 

seen as a viable solution to control weeds by precisely limiting weed growth in a specific 

location (Rai et al. 2023). The use of precise weed control methods such as spot spraying of 

herbicides can reduce the quantity of herbicides used in the field and avoid pesticide residues 

(Gerhards et al. 2022). 

Accurate detection of weeds in real time while avoiding crop damage is essential for the 

realization of SSWM. Unmanned aerial vehicles (UAVs) are an ideal platform for weed 

detection because they are able to acquire weed imagery without crop damage, efficiently 

provide information on weed location, and adapt to the spatial and temporal heterogeneity of 

weed distribution (Valente et al. 2022). Crop and weed morphology, which can also be subject 

to substantial variations depending on genetics and the environment, are characteristics that 

pose great challenges for weed detection algorithms (Hu et al. 2023). Moreover, weeds occupy 

small pixels in aerial weed images compared to proximal remote sensing, making their 

detection more difficult. It is therefore essential to develop an accurate real-time weed 

detection model that can capture characteristics of small targets in UAV images. 

Initial weed detection algorithms were based on traditional machine learning techniques, 

which required manual information extraction based on the morphological and textural 

features of weeds, influenced by the prior knowledge of researchers (Reedha et al. 2022). An 

object-based image analysis algorithm enabled a three-class weed density map by processing 

multispectral UAV data from maize (Zea mays L.) fields, effectively quantifying spatial 

distributions of weed coverage (Peña et al. 2013). The random forest (RF) and k-nearest 

neighbors (KNN) algorithms demonstrated effective detection performance when applied to 

calibrated and stitched UAV-derived orthophotos of weed in chili (Capsicum annuum L.) 

fields (Islam et al. 2021). Comparative assessment of four approaches demonstrated the 

automatic object-based classification method achieved optimal performance with 89% 
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accuracy in oat (Avena sativa L.) field weed classification research (Gašparović et al. 2020). 

The above results indicate that weeds can be identified using traditional machine learning 

methods, but their detection models have cumbersome steps, and most of them are based on 

area detection of weed density with low detection accuracy. 

With the development of computer vision, deep learning methods are widely used in 

agriculture (Li et al. 2023; Lin et al. 2023; Miho et al. 2024). In a soybean [Glycine max (L.) 

Merr.] field weed detection task, the object-based Faster R-CNN (regions with convolutional 

neural networks) achieved 65% accuracy, 68% recall, and a 66% F1 score (the harmonic mean 

of precision and recall), all of which outperformed the patch-based CNN (convolutional neural 

networks) model, indicating superior performance (Veeranampalayam Sivakumar et al. 2020). 

A benchmark study of seven YOLO (You Only Look Once) versions for cotton (Gossypium 

hirsutum L.) field weed detection indicated YOLOv4 exhibited optimal detection capabilities 

with the highest mAP0.5 (mean average precision at 0.5 intersection over union threshold), 

whereas the YOLOv3-tiny model had a low detection accuracy (Dang et al. 2023). An 

enhanced YOLOv7 developed for weed detection in chicory (Cichorium intybus L.) fields 

achieved 56.6% mAP0.5, 62.1% recall, and 61.3% precision, showing improvements over 

baseline models (Gallo et al. 2023). The integration of the CBAM (convolutional block 

attention module) mechanism into YOLOv5 improves its capacity to detect weeds on a 

multi-granularity Solanum rostratum field weed dataset (Wang et al. 2022). In rice (Oryza 

sativa L.) paddy weed detection research utilizing mobile platforms, RetinaNet improved 

recognition accuracy by combining SmoothL1 loss and achieved 94.1% mAP0.5 while 

retaining inference speed (Peng et al. 2022). While existing studies demonstrate the superior 

recognition accuracy and complex background robustness of deep learning methods compared 

to conventional machine learning methods, current models inadequately address the challenge 

of detecting small-target weeds in UAV-captured imagery. 

Current deep learning object detection models can be categorized into two-stage detectors 

represented by the R-CNN series (Girshick et al. 2014; He et al. 2017; Ren et al. 2017) and 

one-stage detectors represented by the YOLO series (Bochkovskiy et al. 2020; Jocher 2020; 
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Redmon et al. 2016; Redmon and Farhadi 2018; Ultralytics 2023) and the DETR (detection 

transformer) series (Carion et al. 2020; Zhang et al. 2022; Zhu et al. 2021), depending on 

whether the processing is required to generate region proposals or not. Compared to two-stage 

detectors, one-stage detectors are more computationally efficient, have faster inference, and are 

widely used for real-time detection. Nevertheless, the YOLO series needs to select the 

hyperparameter non-maximum suppression (NMS) based on experience, which has a great 

impact on the accuracy and speed of model detection. DETR employs the Transformer 

(Vaswani et al. 2017) encoder-decoder architecture, which uses bipartite matching to achieve 

the prediction of the target through ensemble-based global loss, avoiding the hand-designed 

steps of NMS and anchor generation. RT-DETR (real-time detection transformer) achieves 

real-time end-to-end detection through model architecture redesign and outperforms the 

YOLO series in terms of accuracy and inference speed on the COCO 2017 dataset (Lv et al. 

2023). 

Currently, the main challenges faced by SSWM are the lack of weed detection datasets 

acquired using UAVs and the insufficient ability of the model to detect small-target weeds 

(Khan et al. 2021). Inspired by this, we developed a weed detection model using DETR with 

end-to-end detection properties for the challenge of a large number of small-target weeds in 

UAV-captured weed imageries. 

2. Materials and Methods 

2.1 Materials 

2.1.1 Data acquisition 

The study site is located in Anlong County (25.04⁰N, 105.25⁰E), Guizhou Province, China, 

as shown in Figure 1. The GZWeed dataset was collected on November 21, 2023, by a DJI 

Phantom 4 RTK (DJI, Shenzhen, China) UAV carrying a DJI FC6310R camera. The shooting 

angle is vertical to the ground. The undulating mountainous terrain caused the altitude above 

ground level (AGL) of the UAV to vary from 2.42 to 3.79 meters, with a mean altitude of 3.09 

meters corresponding to a ground coverage area of 13.92 m². Besides, manual planting 
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irregularities during cultivation resulted in uneven Chinese cabbage [Brassica rapa subsp. 

chinensis (L.) Hanelt] spacing, with average row and plant spacings of 45 cm and 35 cm, 

respectively. We performed quality screening after image acquisition, resulting in 108 images 

of weeds in Chinese cabbage fields. 

2.1.2 Image preprocessing 

The dataset was labelled with Roboflow (Roboflow 2025) to annotate the weed and Chinese 

cabbage locations and to generate the corresponding label files of the images used for training, 

as shown in Figure 2(a). The original images have a raw resolution of 5472 × 3648 pixels. In 

order to avoid the loss of details caused by the compression of the image information on the 

original image during the input of the detection model, the original images were cropped 4 × 4, 

yielding 1728 images, as shown in Figure 2(b). The dataset was divided into a training set 

(1382 images), a validation set (173 images), and a test set (173 images) according to the ratio 

of 8:1:1, and the number of instances is shown in Table 1. Weed species were not distinguished 

due to the small size of the weed target in the image. 

In order to enhance the robustness of the model in the field environment, data augmentation 

methods, including proportional scaling, panning, horizontal mirroring, contrast enhancement, 

saturation enhancement, and brightness adjustment, are used to augment the images online. 

The partially augmented image is shown in Figure 2(c). 

The photographed weeds have variable light intensity and angles. In addition, the complex 

background of large quantities of dry rice straw and wet soil presented a challenge for weed 

detection. It can be seen from Figure 3 that there are a large number of small-target weeds, and 

some of the weeds are obscured by the crops, both of which present challenges for detection. 

2.1.3 Experimental configuration 

The following experiments were performed on the GZWeed dataset. The experimental 

parameters used for model training are shown in Table 2. 

In order to achieve a fair comparison of model performance, all models were trained from 

scratch for 250 epochs with a batch size of 16. The bounding box regression uses the GIoU 
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(Generalized Intersection over Union) loss (Rezatofighi et al. 2019), which is formulated as 

follows: 

 
/ ( )( )

( )

u x xx x
GIoU

x x u
   [1] 

where x represents the ground truth box, x represents the prediction box, and u is the smallest 

bounding box that contains both x and x . 

Considering the GPU memory, the input images were scaled to 640 × 640 during training, 

and each model was tested using the model weights with the highest mAP0.5 on the validation 

set. We train all models using the AdamW optimizer (Loshchilov and Hutter 2019) with a 

0.0001 base learning rate, 0.0001 weight decay, and 2000 warmup epochs. 

2.1.4 Performance Metrics 

To validate the detection performance of the proposed model, mAP0.5 and mAP0.5:0.95 

are used as performance evaluation metrics. Precision is the ratio of the number of positive 

samples detected by the model to the number of correctly detected samples, as shown in the 

formula: 

 
TP FP

Precision
TP


  [2] 

Recall is the ratio of the number of positive samples correctly detected by the model to the 

actual number of positive samples. It is calculated by the following formula: 

TP
Recall =

TP+ FN
 [3] 

The average precision (AP) is equal to the area under the precision-recall curve and is 

calculated as shown: 

1 1

0 0

( ) ( ) ( )AP Precision Recall d Recall p r dr    [4] 

Mean average precision (mAP) is the result obtained by weighted average of the AP values 

for all sample categories with the formula shown below: 

1

1 N

i

i

mAP AP
N 

   [5] 
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Intersection over Union (IoU) denotes the ratio of intersections and connections between 

the prediction box and the ground truth box. The mAP0.5 denotes the mAP when the IoU of the 

detection model is set to 0.5, and mAP0.5:0.95 denotes the mAP when the IoU of the detection 

model is set to range from 0.5 to 0.95 (taking values at intervals of 0.5). AP0.5Cabbage and 

AP0.5Weed represent the AP0.5 for Chinese cabbage and weed categories, respectively. 

The number of model parameters, floating-point operations (FLOPs), and frames per 

second (FPS) are used to compare the computational complexity of the models. Additionally, 

Grad-CAM (Selvaraju et al. 2020) is used to generate model detection heatmaps. 

2.2 Methods 

2.2.1 WeedDETR 

We designed WeedDETR based on RT-DETR with small-target weed as a guide, and the 

structure of the model is shown in Figure 4. WeedDETR contains a fine-grained feature 

extraction backbone (RepCBNet), the FCFM encoder for efficient fusion of multi-level 

features, and a transformer decoder module. Designed based on re-parameterization, 

RepCBNet provides multi-level weed features through multiple branches. FCFM achieves 

intra-scale interaction and cross-scale fusion of features through the complementary feature 

integration (CFI) module. In addition, varifocal loss is used to allow the model to focus on the 

difficult-to-detect small-target weed samples to improve the weed detection performance. 

Responding to the small-target weed problem in terms of feature extraction, feature fusion, and 

loss computation, respectively. The transformer decoder module is from DINO (Zhang et al. 

2022), which introduces a denoising (DN) training method to accelerate the convergence of 

DETR. The WeedDETR achieves efficient real-time end-to-end weed detection through the 

design of a holistic model architecture. Each component is described in detail below. 

2.2.2 RepCBNet 

The structure of RepCBNet is shown in Figure 5(a), and feature downsampling was 

performed by setting the ConvNL and RepCBlock strides to 2 for the last layer. It is generally 

accepted that the deeper the network, the better the feature extraction ability of the image, 

which will lead to better object detection. However, when the depth of the network is too deep, 
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the features of small-target weeds tend to be lost in the deep network. PadConv block adopts a 

two-branch structure; the branches operated by padding can provide diverse features, which 

enriches the information flow of the feature extraction network, the structure is shown in 

Figure 5(c). The RepCBlock structure is shown in Figure 5(d). One branch uses stacked 

PadConv blocks to deepen the network, and the other branch uses only one ConvNL layer for 

better gradient propagation and to avoid weed feature loss. 

Multi-branch structure is structurally stable and easy to train, but inference speed is slow 

and memory consumption is significant. Single-branch structure inference is fast and saves 

memory, but the feature extraction capability is relatively insufficient. By decoupling the 

model structure in training and inference, Ding et al. (2021) obtained both the high 

performance of the multi-branch structure and the speed advantage of the single-branch 

structure. As shown in Figure 6(a), we have re-parameterized the PadConv block according to 

this concept. The formulation of the re-parameterization PadConv block is detailed in the 

supplementary material. Based on this operation, we transform the structure of the PadConv 

block into a succinct single-branch structure during inference, which saves computational 

resources and accelerates inference. 

2.2.3 Feature complement fusion module 

Current mainstream feature fusion structures such as FPN (Lin et al. 2017a), PAN (Liu et al. 

2018), etc. often use the last three scales of features (P3–P5) for fusion. Using only these deep 

features tends to cause shallow features to be lost, which is not conducive to the detection of 

small-target weeds. We proposed the feature complementary fusion module (FCFM), which 

utilizes the transform encoder (TEncoder) module for intra-scale feature interaction and the 

complementary feature integration (CFI) module for cross-scale fusion of features, and its 

structure is shown in Figure 7(a). 

In the FCFM, the Fusion module is used for efficient information fusion, and its structure is 

shown in Figure 7(b). One branch of the Fusion module increases network depth and efficiently 

represents features through three RepCBlocks, while the other branch effectively avoids 
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gradient explosion. Similar to the PadConv block, RepCBlock is re-parameterized to speed up 

inference. 

The TEncoder module is able to implement the self-attention operation by converting inputs 

into sequences, capturing long-range dependency between objects. In order to achieve a 

balance between accuracy and computational effort, only the last layer (P5) containing rich 

semantics is processed. The goal of the self-attention is to capture the interactions between all 

entities by encoding each entity based on global contextual information, which is described in 

the supplementary material. TEncoder enables intra-scale feature interactions to obtain 

connections between targets in the image for subsequent detection of weeds, and its structure is 

shown in Figure 7(c). 

The FPN-like structure lacks full utilization of shallow features and is prone to shallow 

feature loss, thus affecting the detection performance of small-target weeds. To address this 

problem, we propose the CFI module, which takes shallow features carrying positional features, 

neighboring mesoscale features, and transmitted mesoscale features to be fused for cross-scale 

feature interactions, making full use of the rich information of the shallow features. The 

structure of CFI modules is shown in Figure 8(a). 

The number of channels is adjusted to the same number of channels as the transmitted 

mesoscale features by a 1×1 convolution before the shallow features is input. Subsequently, 

shallow features are downsampled using a hybrid structure of maximum pooling and average 

pooling, which helps to retain the high-resolution features and diversity of the weed images. 

Finally, the transmitted mesoscale features are spliced with neighboring mesoscale features 

and downsampled large-scale features in the channel dimension. As shown in Figure 7(a), the 

CFI-A module was used for feature fusion at the T4 and T3 feature layers, respectively, which 

is able to increase the richness of local features and prevent the loss of small target feature 

information. Taking the CFI-A used in the T4 feature layer as an example, as the following 

equation: 

 1 1 1
3'   ( ( ( )3))  ( ( 3))k k k

P Conv MaxPool Conv P AvgPool Conv P   [6] 

   3',  4,  4channelCFI Concat P P T  [7] 
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We have conceived upsampling deep features to mesoscale feature sizes to supplement 

semantic information, as shown in Figure 8(b), but it is less effective compared to CFI-A, 

which is analyzed in detail in the subsequent experimental section. 

2.2.4 Varifocal Loss 

IACS (IoU-Aware Classification Score) loss function varifocal loss (VFL) is used to focus 

the model training on small-target samples (Zhang et al. 2021). Varifocal loss is proposed on 

the basis of research on focal loss (FL) (Lin et al. 2017b). In this dataset, weeds only account 

for a small portion of the whole picture, while most of the area is the background area (negative 

samples). The large number of negative samples will lead to the model training effect 

deterioration. The focal loss balances the proportion of positive and negative samples by giving 

greater weight to the hard-to-detect samples, as shown in the following equation: 

 
(1 ) log( )      if y = 1

( , )
(1 ) log(1 )  otherwise,

p p
FL p y

p p









  
 

  

 [8] 

where y∈ {-1,+1}, y = 1 represents the ground truth class, and p∈ [0,1] denotes the predicted 

probability of the foreground class. The (1 - p)
 γ 

and p
γ
 represent the moderating factors of the 

background and foreground classes, respectively. 

The formula for varifocal loss is shown below: 

 
( log( ) (1 ) log(1 )) q > 0

( , )
            log(1 )            q = 0,

q q p q p
VFL p y

p p

   
 

 
 [9] 

where p is the predicted IACS and q is the target score. For the foreground class, the value of q 

is the IOU of the prediction box and ground truth box, and for the background class, q is zero. 

The varifocal loss scales the loss by the coefficient p
γ
 and will only reduce the loss contribution 

for negative samples (q = 0). Positive samples with a large q value will have a larger loss 

contribution; thus, the model allows focus on high-quality weed samples during loss training, 

improving the detection accuracy of small-target weeds. 

3. Results and discussions 

3.1 Comparison of backbone networks 
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The comparison results of WeedDETR using different backbone networks are shown in 

Table 3. The RepCBNet collaboratively mines weed edges and texture details in images 

through a two-branch structure consisting of a deep feature extraction branch and a shallow 

gradient retention branch. Through this synergistic design, the model comprehensively 

captures spatial and semantic information of small-target weeds, thereby effectively improving 

detection accuracy. The AP0.5weed of the RepCBNet is improved by 1.8%, 1.5%, 3.0%, 3.2%, 

and 5.0% compared to ResNet-34 (He et al. 2016), MobileNetv3-L (Howard et al. 2019), Swin 

Transformer-Tiny (Liu et al. 2021), HGNetv2-L (the backbone of RT-DETR) (Lv et al. 2023) , 

and ConvNeXtV2-Atto (Woo et al. 2023), respectively. 

The PadConv block in RepCBNet extends the context-awareness range through padding 

operations, which enhance the detailed discrimination of weeds while maintaining parameter 

efficiency. The number of parameters of the RepCBNet is 54.7%, 62.1%, and 66.2% of that of 

Swin Transformer-Tiny, HGNetv2-L, and ResNet-34, respectively, achieving the optimal 

detection performance with a lighter architecture. Although MobileNetv3-L and 

ConvNeXtV2-Atto have fewer parameters, their lightweight design sacrifices some feature 

extraction capability, resulting in inadequate ability to detect small-target weeds. The above 

results show that using the RepCBNet as the backbone can effectively extract fine-grained 

information, improve detection accuracy, and achieve a balance between computation and 

accuracy. 

3.2 Effectiveness of the CFI module 

We compared the detection performance of the model when using different types of CFI 

modules, and the results are shown in Table 4. Compared to the model without the CFI module, 

the model increased AP0.5Weed by 1.1% and 2.7% with the CFI-B and the CFI-A, respectively. 

The results indicate that the CFI structure effectively fuses shallow features with richer detail 

information, achieving full integration of shallow and deep features. Compared to the CFI-B, 

the CFI-A is able to detect small-target weeds more accurately while using a similar 

computational effort. This phenomenon may be due to the fact that direct access to the 

underlying information, rather than using deeper information for upsampling, is more 
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conducive to feature complementarity and avoiding feature confusion (Wang et al. 2023). The 

experimental results demonstrate that the CFI-A module mitigates the problem of small-target 

weed information being ignored in the deep network through feature complementary fusion, 

hence its use in composing the FCFM. 

3.3 Comparison of loss functions 

The loss function only affects the computation of losses during model training, as it does 

not increase the parameters and the FLOPs. The experimental results are shown in Table 5, 

where the AP0.5Weed increased by 0.6% and 1.2% after using FL and VFL in training, 

respectively. VFL is more capable of focusing on hard-to-detect weed samples than FL, thus 

effectively improving model detection performance (Du and Jiao 2022; Peng et al. 2022). 

3.4 Ablation experiment 

Three improvements improve the detection performance to varying degrees, as shown by 

the ablation experiment results in Table 6. The RepCBNet reduces the number of parameters 

while acquiring feature representations at a finer granularity. The FCFM module incorporates 

multi-layered low-level features, which effectively improves the accuracy of weed detection, 

resulting in a 2.7% improvement in the AP0.5Weed. By introducing VFL in the loss calculation, 

the loss weights of complex samples are increased, and the weed detection accuracy is 

improved. The FCFM provides rich weed features as discriminative guidance for VFL during 

sample re-weighting, while VFL compels the model to prioritize learning the critical spatial 

features of difficult samples captured by FCFM. Their synergistic interaction achieves a 3.0% 

improvement in AP0.5Weed. The experimental results showed that WeedDETR effectively 

improved the accuracy of small-target weed detection by 2.4% for mAP0.5 and 4.5% for 

AP0.5Weed compared with the RT-DETR. 

Heatmap for WeedDETR and RT-DETR, as shown in Figure 9. The darker red areas in the 

heat maps indicate the areas of the feature maps that the models focus on. RT-DETR has 

insufficient perception of small-target weeds and is prone to miss small-target weeds, while 

WeedDETR is able to focus more comprehensively on small-target weeds and has better weed 

detection performance. 
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3.5 Re-parameterization experiment 

The re-parameterization operation is applied only during inference, merging training stage 

multi-branch structures into a single-branch equivalent to eliminate computational redundancy 

while preserving the original training model architecture (Zhang and Wan 2024). As shown in 

Table 7, the operation reduces 16.9% of the parameters and 16.8% of the FLOPs in the 

inference process, which improves the efficiency while maintaining detection accuracy. The 

efficiency-accuracy decoupling optimization strategy of re-parameterization enhances the 

model's computational efficiency, thereby facilitating its deployment on agricultural edge 

devices with limited memory and computational resources. 

3.6 Comparison of results with other detections 

The performance of WeedDETR was comprehensively compared with state-of-the-art 

detection models, including Faster R-CNN (Ren et al. 2017), SSD (Liu et al. 2016), RetinaNet 

(Lin et al. 2017b), and YOLO series models represented by YOLOv3-SPP (Redmon and 

Farhadi 2018), YOLOv5-L (Jocher 2020), YOLOv6-M (Li et al. 2022), and YOLOv8-L 

(Ultralytics 2023), all of which were trained from scratch, with the results shown in Table 8. 

Faster R-CNN and RetinaNet weed detection performed ineffectively, while the YOLO models 

achieved better detection results. Compared to the YOLOv5-L, the best performer in the 

YOLO series, WeedDETR has a 1.9% improvement in mAP0.5, a 3.5% improvement in 

AP0.5Weed, and a 1.6% improvement in mAP0.5:0.95. The WeedDETR achieves dual 

efficiency in parameters and computational complexity with 19.92 M parameters and 58.20 G 

FLOPs, while attaining the highest real-time detection speed of 76.28 FPS among comparative 

models. 

The precision-recall (PR) curves for the four models with the highest detection accuracy are 

illustrated in Figure 10. The PR curve of WeedDETR comprises a larger closed region 

compared to YOLOv5-L, YOLOv6-M, and YOLOv8-L, which indicates that the proposed 

model exhibits higher detection accuracy. 

3.7 Visualization of prediction results with other mainstream detections 
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A comparison of detection results among the four most accurate models is presented in 

Figure 11 and Figure 12. The detection results of the model under three complex backgrounds 

(shadow occlusion, rice straw occlusion, and water body interference) are presented in Figure 

11. All models accurately detected Chinese cabbages in both shadow-obscured and 

straw-obscured backgrounds. But in the water body interference background, YOLOv5-L and 

YOLOv6-M showed false detection of marginal Chinese cabbage leaves, as shown in Figure 

11 (c). As illustrated in Figure 11 (a) and Figure 11 (b), WeedDETR more accurately captures 

weeds that are shaded or obscured than other models, demonstrating its robustness of detection 

in complex environments. RepCBNet accurately extracts information about the differences 

between weeds and background, allowing WeedDETR to efficiently detect weeds obscured by 

shadows or straw. 

All models accurately detected Chinese cabbage as an obvious target, but for small-target 

weeds, there was partial weed miss-detection in all models except WeedDETR, as shown in 

Figure 12. The limited multi-level utilization of shallow features in YOLO-series models might 

lead to progressive degradation of small-target weed representations during deep network 

propagation, potentially contributing to suboptimal weed detection performance, particularly 

under dense scenarios, as shown in Figure 12 (b) (Zhang 2023, Zhang et al. 2024). To address 

this phenomenon, WeedDETR effectively mitigates the loss of small-target features and 

achieves enhanced weed detection accuracy through the collaboration of shallow feature 

information supplementation and cross-scale global semantic feature fusion. 

Comparative results show that WeedDETR exhibits better performance in accurately 

detecting small-target weeds in complex backgrounds. Based on the conducted analysis, the 

proposed model is able to accurately detect small-target weeds in UAV-captured images, 

effectively mitigating the phenomenon of under-detection of small-target weeds and 

accelerating the inference speed through re-parameterization convolution. Compared with 

other detection models, WeedDETR detects weeds with higher accuracy and faster inference, 

which can meet the field deployment requirements of UAVs for weed detection applications. 

Additionally, we have developed a weed imagery detection system built upon WeedDETR, 
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showcasing its ability to detect weeds in high-resolution drone-captured images, with 

implementation details provided in the supplementary material. 

3.8 Conclusions 

To address the lack of current UAV-based weed detection datasets and the limited 

performance of weed detection models in weed detection, we constructed a high-quality field 

UAV weed detection dataset and proposed the WeedDETR based on the characteristics of 

small-target weeds. The WeedDETR achieved 73.9% and 91.8% AP0.5 in the weed and 

Chinese cabbage categories with 76.28 FPS, outperforming the existing state-of-the-art 

detection models. In addition, the proposed model establishes a highly reliable algorithmic 

foundation for intelligent weeding equipment. The weed density heatmaps generated by the 

model can further guide variable spraying systems to achieve weed-targeted precision spraying, 

thereby reducing herbicide usage (Xu et al. 2025). Furthermore, the model can be extended to 

dynamic monitoring of herbicide-resistant weeds by analyzing spatial dispersion patterns of 

specific weed populations through continuous multi-season data, thereby providing 

data-driven support for optimizing crop rotation systems and herbicide rotation strategies 

(Vasileiou et al. 2024). 

While WeedDETR demonstrated robust performance on the GZWeed dataset, its 

generalizability is limited by the single-crop scenario of the current dataset with unsegmented 

weed classes. Moreover, the PyTorch-based weights of WeedDETR can be further converted 

to lightweight inference frameworks such as TensorFlow Lite and ONNX (Open Neural 

Network Exchange) to enhance computational efficiency in agricultural terminals. In our next 

work, we will construct a multi-crop field weed dataset leveraging UAV platforms and 

systematically evaluate the model’s generalization capability for cross-crop weed detection. 

Besides, we aim to improve the inference efficiency of the model by compressing model 

parameters and computational overhead through knowledge distillation and model pruning, 

thereby advancing the implementation of SSWM. 
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Tables 

Table 1. The number of images of object classes in GZWeed dataset. 

  

Class Object Number 

Total Training Validation Testing 

Chinese cabbage 11014 8749 1173 1092 

Weed 17279 13893 1657 1729 

Total 28293 22642 2830 2821 
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Table 2. Experimental configuration. 

Name
 

Parameter 

Central Processing Unit Intel(R) Xeon (R) W-1390 

Graphics Processing Unit NVIDIA GeForce RTX 3090 

Random Access Memory  64 GB 

Operating system Windows 10 

Programming Language Python 3.7.13 

Deep learning framework Pytorch 1.12.1 

Compute Unified Device Architecture 12.0 
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Table 3. Comparison of WeedDETR with different backbone networks. 

Backbone mAP0.5(AP0.5Cabbage/AP0.5Weed)
 a
 mAP0.5:0.95

 b
 Parameters FLOPs

 c
 FPS

 d
 

HGNetv2-L 0.815(0.917/0.712) 0.538 31.99 million 103.40 gige 64.03 

ResNet-34 0.821(0.916/0.726) 0.541 30.03 million 88.40 gige 69.09 

MobileNetv3-L 0.818(0.907/0.729) 0.531 11.71 million 26.70 gige 81.95 

ConvNeXtV2-Atto 0.789(0.884/0.694) 0.504 17.75 million 45.50 gige 65.47 

Swin Transformer-Tiny 0.807(0.900/0.714) 0.528 36.31 million 97.00 gige 46.67 

RepCBNet 0.827(0.910/0.744) 0.552 19.87 million 56.90 gige 76.58 

a
 mAP0.5, mean average precision at 0.5 intersection over union threshold; AP0.5Cabbage, average 

precision at 0.5 intersection over union threshold for Chinese cabbage categories; AP0.5Weed, average 

precision at 0.5 intersection over union threshold for weed categories. 

b
 mAP0.5:0.95, the mean average precision computed across intersection over union thresholds from 0.5 

to 0.95 with 0.05 intervals. 

c FLOPs, floating-point operations. 

d
 FPS, frames per second  
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Table 4. Comparison of WeedDETR with different CFI modules. 

Type
 a
 mAP0.5(AP0.5Cabbage/AP0.5Weed)

 

b
 

mAP0.5:0.95
 

c
 

Parameters FLOPs
 d
 

Baselin

e 

0.815(0.917/0.712) 0.538 31.9

9 

millio

n 

103.4

0 

gig

e 

CFI-B 0.821(0.920/0.723) 0.541 22.9

4 

millio

n 

70.10 gig

e 

CFI-A 0.829(0.918/0.739) 0.551 22.9

6 

millio

n 

70.50 gig

e 

a 
CFI-A, mode A of the complementary feature integration module; CFI-B, mode B of the 

complementary feature integration module. 

b
 mAP0.5, mean average precision at 0.5 intersection over union threshold; AP0.5Cabbage, 

average precision at 0.5 intersection over union threshold for Chinese cabbage categories; 

AP0.5Weed, average precision at 0.5 intersection over union threshold for weed categories. 

c
 mAP0.5:0.95, the mean average precision computed across intersection over union thresholds 

from 0.5 to 0.95 with 0.05 intervals. 

d
 FLOPs, floating-point operations.  
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Table 5. Comparison of the results between focal loss (FL) and varifocal loss (VFL). 

FL
 

a
 

VFL
 

b
 

mAP0.5(AP0.5Cabbage/AP0.5Weed

)
 c
 

mAP0.5:0.95
 

d
 

Parameters FLOPs
 e
 

  0.815(0.917/0.712) 0.538 31.9

9 

millio

n 

103.

4 

gig

e 

Ö  0.817(0.917/0.718) 0.539  31.9

9 

millio

n 

103.

4 

gig

e 

 Ö 0.822(0.919/0.724) 0.542 31.9

9 

millio

n 

103.

4 

gig

e 

a 
FL, focal loss.

 

b
 VFL, varifocal loss. 

c
 mAP0.5, mean average precision at 0.5 intersection over union threshold; AP0.5Cabbage, 

average precision at 0.5 intersection over union threshold for Chinese cabbage categories; 

AP0.5Weed, average precision at 0.5 intersection over union threshold for weed categories. 

d
 mAP0.5:0.95, the mean average precision computed across intersection over union thresholds 

from 0.5 to 0.95 with 0.05 intervals. 

e
 FLOPs, floating-point operations.  
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Table 6. Results of ablation experiment. 

a 
FCFM, feature complement fusion module.

 

b
 VFL, varifocal loss. 

c
 mAP0.5, mean average precision at 0.5 intersection over union threshold; AP0.5Cabbage, 

average precision at 0.5 intersection over union threshold for Chinese cabbage categories; 

AP0.5Weed, average precision at 0.5 intersection over union threshold for weed categories. 

d
 mAP0.5:0.95, the mean average precision computed across intersection over union thresholds 

from 0.5 to 0.95 with 0.05 intervals. 

e
 FLOPs, floating-point operations.  

RepCBNet FCFM
 a
 VFL

 b
 mAP0.5(AP0.5Cabbage/AP0.5Weed)

 c
 mAP0.5:0.95

 d
 Parameters FLOPs

 e
 

   0.815(0.917/0.712) 0.538 31.98 million 103.40 gige 

Ö   0.827(0.910/0.744) 0.552 19.87 million 56.90 gige 

 Ö  0.829(0.918/0.739) 0.551 22.96 million 70.50 gige 

  Ö 0.822(0.919/0.724) 0.542 31.99 million 103.40 gige 

Ö Ö  0.830(0.916/0.743) 0.553 19.92 million 58.20 gige 

Ö  Ö 0.833(0.916/0.749) 0.560 19.87 million 56.90 gige 

 Ö Ö 0.831(0.919/0.742) 0.548 22.96 million 70.50 gige 

Ö Ö Ö 0.839(0.920/0.757) 0.558 19.92 million 58.20 gige 

https://doi.org/10.1017/wsc.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10035


 

Table 7. Parameters and FLOPs change during training and inference. 

State mAP0.5(AP0.5Cabbage/AP0.5Weed)
 

a
 

mAP0.5:0.95
 

b
 

Parameters FLOPs
 c
 

training 0.839(0.920/0.757) 0.558 23.99 million 70 gige 

inference 0.839(0.920/0.757) 0.558 19.92 million 58.2 gige 

a
 mAP0.5, mean average precision at 0.5 intersection over union threshold; AP0.5Cabbage, 

average precision at 0.5 intersection over union threshold for Chinese cabbage categories; 

AP0.5Weed, average precision at 0.5 intersection over union threshold for weed categories. 

b
 mAP0.5:0.95, the mean average precision computed across intersection over union thresholds 

from 0.5 to 0.95 with 0.05 intervals. 

c
 FLOPs, floating-point operations.  
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Table 8. Comparison of detection results of different detection models. 

a 
YOLO, You Only Look Once; Faster R-CNN, faster regions with convolutional neural 

networks; SSD, single-shot detector.
 

b
 mAP0.5, mean average precision at 0.5 intersection over union threshold; AP0.5Cabbage, 

average precision at 0.5 intersection over union threshold for Chinese cabbage categories; 

AP0.5Weed, average precision at 0.5 intersection over union threshold for weed categories. 

c
 mAP0.5:0.95, the mean average precision computed across intersection over union thresholds 

from 0.5 to 0.95 with 0.05 intervals. 

d
 FLOPs, floating-point operations. 

e
 FPS, frames per second  

Models
 a
 mAP0.5(AP0.5Cabbage/AP0.5Weed)

 

b
 

mAP0.5:0.95
 c
 Parameters FLOPs

 d
 FPS

 e
 

YOLOv3-SPP 0.801(0.911/0.690) 0.524 104.71 million 283.10 gige 55.56 

YOLOv5-L 0.820(0.917/0.722) 0.542 53.13 million 134.70 gige 66.38 

YOLOv6-M 0.805(0.916/0.694) 0.526 51.98 million 161.10 gige 67.52 

YOLOv8-L 0.818(0.916/0.721) 0.547 43.61 million 164.80 gige 75.24 

Faster R-CNN 0.484(0.846/0.123) 0.317 136.71 million 401.71 gige 34.88 

SSD 0.619(0.811/0.493) 0.349 23.75 million 273.61 gige 64.53 

RetinaNet 0.497(0.784/0.209) 0.372 36.35 million 163.85 gige 44.51 

WeedDETR 0.839(0.920/0.757) 0.558 19.92 million 58.20 gige 76.28 
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Figures 

 

Figure 1. Location of the study site.  
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Figure 2. Flowchart of dataset preprocessing. (a) Dataset label with roboflow. (b) Image crop. 

(c) Augmented image.  
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Figure 3. Representative samples from the weed dataset.  
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Figure 4. The structure of WeedDETR. P1- P5 represent different levels of feature maps.  

https://doi.org/10.1017/wsc.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10035


 

 

Figure 5. The structure of RepCBNet. (a) The structure of RepCBNet. P1–P5 represent 

different levels of feature maps. (b) The structure of ConvNL. k = 1/3 represents the size of 

the convolution kernel. (c) The structure of PadConv. (d) The structure of RepCBlock.  
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Figure 6. Re-parameterization of the PadConv block. (a) Perspective of structure. (b) 

Perspective of parameter.   

https://doi.org/10.1017/wsc.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10035


 

 

Figure 7. The structure of FCFM and its components. (a) The structure of FCFM, with P1–P5 

representing different levels of features. (b) The structure of Fusion module. (c) The structure 

of TEncoder module.  
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Figure 8. The structure of two types of CFI modules. (a) The structure of CFI-A. (b) The 

structure of CFI-B.  
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Figure 9. Heatmap comparison of RT-DETR and WeedDETR. The darker red areas in the 

heat maps indicate the areas of the feature maps that the models focus on.  
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Figure 10. Comparison of PR (Precision-Recall) curves.  
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Figure 11. Comparison of detection results by different models in complex background. The 

subscripts (a), (b) and (c) represent the three scenarios of shadow occlusion, rice straw 

occlusion and water body interference, respectively. Red boxes represent detected Chinese 

cabbage, brown boxes represent detected weeds, and yellow boxes represent missed weeds. 
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Figure 12. Comparison of detection results by different models. Red boxes represent detected 

Chinese cabbage, brown boxes represent detected weeds, and yellow boxes represent missed 

weeds. 
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