ON STRICT MONOTONICITY OF CONTINUOUS SOLUTIONS OF CERTAIN TYPES OF FUNCTIONAL EQUATIONS

J. Aczel
(received October 27, 1965)

1. It is a commonplace that F is continuous on the cartesian square of the range of f if f is continuous and satisfies

$$
\begin{equation*}
f(x+y)=F(f(x), f(y)) \tag{1}
\end{equation*}
$$

say, for all real x, y (cf. e.g. [2]). A.D. Wallace has kindly called my attention to the fact, that this is trivial only if f is (constant or) strictly monotonic and asked for a simple proof of the strict monotonicity of f. The following could serve as such: if on an interval f is continuous, nonconstant and satisfies (1), then f is strictly monotonic there. In fact, if f were not strictly monotonic, then there would exist two values s_{1} and s_{2} such that $f\left(s_{1}\right)=f\left(s_{2}\right)$, but then (see figure) there exist also two t_{1}, t_{2} arbitrarily near to each other (i.e., $\left|t_{2}-t_{1}\right| \underline{\text { arbitrarily small }}$) so that $f\left(t_{1}\right)=f\left(t_{2}\right)$. But then, from (1) with $x=t-t_{1}, y=t_{2}$ resp. $x=t-t_{1}, y=t_{1}$

$$
\begin{aligned}
& f\left(t+\left(t_{2}-t_{1}\right)\right)=f\left(\left(t-t_{1}\right)+t_{2}\right)=F\left(f\left(t-t_{1}\right), f\left(t_{2}\right)\right)= \\
& F\left(f\left(t-t_{1}\right), f\left(t_{1}\right)\right)=f\left(\left(t-t_{1}\right)+t_{1}\right)=f(t)
\end{aligned}
$$

i.e., f is periodic with the period $t_{2}-t_{1}$. But then f, being a continuous function with arbitrarily small periods, is constant, against the supposition, and this proves our assertion.

A similar argument was used in [3] (cf. [2], [6], [4]) to

Canad. Math. Bull. vol. 9, no. 2, 1966
prove that all continuous nonconstant solutions of

$$
\begin{equation*}
f(x+y)=F(x, f(y)) \tag{2}
\end{equation*}
$$

are strictly monotonic, and also the equation

$$
\begin{equation*}
f(y+z f(y))=f(y) f(z) \tag{3}
\end{equation*}
$$

was partly handled in [5] (cf. [2 $\left.2_{2}\right]$) with the aid of this argument but only for $f(t) \neq 0$. This restriction becomes natural if, in order to get the form of (3) more similar to that of (1) or (2) we write in (3) $x=z f(y), z=x / f(y)$ and get (cf.[1])

$$
\begin{equation*}
f(x+y)=f(x / f(y)) f(y) . \tag{4}
\end{equation*}
$$

The restriction of non-nullity can be removed altogether if we denote $f *(t)=1 / f(t)$ in (4) and get

$$
\begin{equation*}
f *(x+y)=f *(x f *(y)) f *(y) \tag{5}
\end{equation*}
$$

for which again an argument similar to that applied to (1) can be used in order to get the result that all solutions of (5) nonconstant and continuous on an interval are strictly monotonic.
2. Now, "an idea applied once is a trick, an idea applied twice is a method" ([7]), and here we see an idea applied (at least) three times, so there might be a point in stating it as a method or giving a broad class of functional equations for which it can be applied.

This we do by proving the following
THEOREM. If on an interval f is continuous and satisfies a functional equation of the form

$$
\begin{align*}
& f(x+y)=F(x, f(x), f(y), f(G(x, f(x), f(y))), f(H(x, f(x), f(y))), \ldots, \\
& f(I(x, f(x), f(y), f(K(x, f(x), f(y))), f(L(x, f(x), f(y))), \ldots)), \ldots) \tag{6}
\end{align*}
$$

(F, G, H, \ldots defined on this interval for their first and on the range of f for their remaining variables) then f is either constant or strictly monotonic there. (The form (6) indicates that, on the right hand side, any combination of $x, f(x), f(y)$ can be put again into f and so on, only y does not figure outside of $f(y)$.)
$s_{1}, s_{2} \frac{\text { Proof. If } f}{\text { sothat } f\left(s_{1}\right)}=\overline{f\left(s_{2}\right.}$) and then (see figure) also t_{1}, t_{2}
with arbitrarily small $\left|t_{2}-t_{1}\right|$ such that $f\left(t_{1}\right)=f\left(t_{2}\right)$ and so
from (6) with $x=t-t_{1}, y=t_{2}$ and $x=t-t_{1}, y=t_{1}$ respectively

$$
\begin{aligned}
& f\left(t+\left(t_{2}-t_{1}\right)\right)=f\left(\left(t-t_{1}\right)+t_{2}\right)=F\left(t-t_{1}, f\left(t-t_{1}\right) f\left(t_{2}\right),\right. \\
& f\left(G\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{2}\right)\right)\right), f\left(H\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{2}\right)\right)\right), \ldots, \\
& f\left(I \left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{2}\right), f\left(K\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{2}\right)\right)\right),\right.\right. \\
& \left.\left.\left.f\left(L\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{2}\right)\right)\right), \ldots\right)\right), \ldots\right)=F\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{1}\right),\right. \\
& f\left(G\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{1}\right)\right)\right), f\left(H\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{1}\right)\right)\right), \ldots, \\
& f\left(I \left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{1}\right), f\left(K\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{1}\right)\right)\right),\right.\right. \\
& \left.\left.\left.f\left(L\left(t-t_{1}, f\left(t-t_{1}\right), f\left(t_{1}\right)\right)\right), \ldots\right)\right), \ldots\right)=f\left(\left(t-t_{1}\right)+t_{1}\right)=f(t),
\end{aligned}
$$

so that f is periodic with arbitrarily small periods and continuous, and therefore constant, q.e.d.

Equations (1), (2), (4), (5) are evidently of the form (6).
The same proof shows, that f is either constant or strictly monotonic on an interval if it is continuous there and satisfies an equation of the form

$$
\begin{aligned}
& f(x+y)=F(x, g(x), f(y), h(G(x, i(x), f(y))), j(H(x, k(x), f(y))), \ldots, \\
& m(I(x, n(x), f(y), p(J(x, q(x), f(y))), r(K(x, s(x), f(y))), \ldots)), \ldots) .
\end{aligned}
$$

Observe, that no regularity suppositions were made for g, h, i, j, k, m, n, p, q, r, s and for $F, G, H, I, J, K, L, \ldots$ (in either of the theorems).

REFERENCES

1. J. Aczél, Beiträge zur Theorie der geometrischen Objekte. III-IV. Acta Math. Acad. Sci. Hung. 8, (1957) 19-52; esp. pp. 45-47.
2. J. Aczél, Vorlesungen über Funktionalgleichungen and ihre Anwendungen, Birkhäuser-Verlag, Basel-Stuttgart 1961. 2nd, English edition: Lectures on Functional Equations and their Applications, Academic Press, New York - London, 1966; esp. Sects. 1.1.3, 2.2.2, 2.5.1.
3. J. Aczél, L. Kalmár and J. Mikusinski, Sur l'équation de translation, Studia Math. 12 (1951), 112-116.
4. R. Coifman, p-groupes de transformations contractantes et iteration continue des fonctions réelles. Thèse, Genève, 1965.
5. S. Goząb and A. Schinzel, Sur l'équation fonctionnelle $f(x+y f(x))=f(x) f(y)$. Publ. Math. Debrecen 6 (1959), 113-125.
6. H. Michel, Über Monotonisierbarkeit von Iterations gruppen reeller Funktionen. Publ. Math. Debrecen 9, (1962), 298-306.
7. G. Pólya and G. Szegö, Aufgaben and Lehrsätze aus der Analysis. I. Springer-Verlag, Berlin, 1925. 2nd edition: Berlin-Gottingen-Heidelberg 1954, esp. p.VI.

University of Waterloo

