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Abstract

All inverse semigroups with idempotents dually well-ordered may be constructed inductively. The
techniques involved are the constructions of ordinal sums, direct limits and Bruck-Reilly extensions.
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1. Introduction

We use the terminology and the results of Howie [3] and Sierpinski [12]. The
axiom of choice will be assumed throughout.

A study of inverse semigroups with idempotents dually well-ordered can be
motivated by the findings of Feller and Gantos [1]. They may also be studied
within the context of the investigations by Megyesi and Pollak ([5], [6], [7])
concerning principal ideal semigroups. Recall that a principal ideal semigroup is a
semigroup where the left, right and two-sided ideals are all principal, or equiva-
lently, it is a semigroup for which the posets of left, right and two-sided ideals are
dually well-ordered chains. In a [simple] principal ideal semigroup, the set of
regular elements—if non-empty—constitutes a [simple] inverse semigroup with
idempotents dually well-ordered. In fact, a principal ideal semigroup is regular if
and only if it is an inverse semigroup with idempotents dually well-ordered.

Particular structure theorems for inverse semigroups with idempotents dually
well-ordered were given by Hogan [2], Kolin [4], Munn [8], Reilly [11], and
Warne ({13}, [14]).
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2. Main results

Let 8 be any ordinal. An inverse semigroup S will be called a §-regular
semigroup if the set Eg of idempotents of S constitutes a chain whose order type
is Eg = 8*.

Recall that an inverse semigroup S is called a fundamental inverse semigroup if
the greatest idempotent-separating congruence on S is the identity relation. Let us
consider a fundamental inverse semigroup S whose idempotents form a chain Eg.
Then Green’s equivalence relation § is the least semilattice congruence on S, and
S is a chain S/¢ of its $-classes, which are all simple inverse semigroups. Each
4-class is the disjoint union of %-classes which all constitute bisimple inverse
semigroups. In general it is not straightforward how to describe S as a chain
composition of its §-classes. There is however an important instance in which
things simplify. Indeed, let us consider the case where the principal ideals of E
each have a trivial automorphism group. Since S is fundamental, one can embed
S isomorphically into the Munn semigroup T_(see, for example, Howie [3]). It
follows that S must be combinatorial (= 3(-trivial), and for any a, b € S, with
J,<J, in S/4, we have ab = ba = a. The situation described here is satisfied
whenever Eg is a dually well-ordered chain. We thus have the following.

THEOREM 1. Let 8 = Z;_, a, be an ordinal such that for each {¢ <a, S; is a
combinatorial simple agregular semigroup, with S; N S, = @ if {+n. On S =
U, S; define a multiplication by the following. If a € S;, b € S,, then ab
coincides with the product of a and b already defined in S if § = w, whereas ab = a
if¢>mnandab = bifn> & Then S is a fundamental 8-regular semigroup.

Conversely, every fundamental 8-regular semigroup can be so obtained.

COROLLARY 2. Let § = Z_, a; be an ordinal such that for each £ <a, S, is a
simple ag-regular semigroup, with Sy N S, = @ if £ # . For every § <n <a, let
&; , be a homomorphism of S, into the group of units of S,, such that ¢; ¢, = ¢; ;
whenever £ < <{ < a. For each § < a, let ¢ , be the identity transformation on
S¢. Let S be the strong chain of the semigroups in the system

(1) (@ {Sc1E < a); {& 16 <n<a}).

Then S is a 8-regular semigroup.
Conversely, every 8-regular semigroup can be so obtained.

PRroOOEF. The direct part can be verified without difficulty.
Let us conversely suppose that S is a 8-regular semigroup. Since the principal
ideals of Eg have trivial automorphism groups, Green’s relation 3(is a congruence
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relation on S (see also Theorem 5 in Megyesi and Pollak [5]). Therefore S/ is a
fundamental §-regular semigroup, and we can apply Theorem 1. The results of
Theorem 1 guarantee that we can write S as a chain a of simple a,-regular
semigroups S;, £ < a, with § = 3._, a,. Further, if £ <=, and if 1, denotes the
identity element of S, , then the mapping

(2) b Se = Sy, a—al,

is a homomorphism of S into the group of units of S,. As a result we obtain a
system (1), and one easily shows that S is the sum of this system.

If the semigroup S is obtained in the way described in Corollary 2, then we
shall say that S is the ordinal sum of the system (1).

We exemplify Theorem 1 by describing the Munn semigroup T of a chain E
whose order type E is the dual 6* of an ordinal 8. One may identify T, with the
inverse semigroup consisting of the isomorphisms among principal filters of §
(where 8 stands for the well-ordered chain of ordinals that are less than ). The
latter inverse semigroup will be denoted by T;. Remark that T, is the bicyclic
semigroup, whereas 7, . (n a positive integer) is Warne’s n-dimensional bicyclic
semigroup [13], and 7. (« any ordinal) is the a-bicyclic semigroup in Hogan [2]
and Megyesi and Pollak [7]. Let ¢ and 5 be ordinals such that§ = §{+7=n + 7
for some ordinal 7. Then the principal filter generated by £ is isomorphic to the
principal filter generated by 5: the two filters are of order type 7. We denote by
(f,) the unique isomorphism of the principal filter generated by £ onto the
principal filter generated by 7. Thus,

(3) (§+K)(f’):n+x, c<r.

The inverse of (f,) in Ty is (3). Clearly T; precisely consists of the elements (f,)
where § = £ + 1 = 5 + 7 for some ordinal 7, and the multiplication in Tj is given

by

¢ s'): £+[§’—n])
@ (")(n’ (n’+[n—$’]’
where for any ordinals p, o

_1_|p—o ife<p,
() Lo = o] {0 otherwise

{we use the notation of Megyesi and Pollak [7]).

Recall that for any ordinal § there exists a unique decomposition § = §,
+ --- +8, (k a positive integer), where 8, = --- > §, is a finite nonincreasing
sequence of prime (= indecomposable) ordinals. This decomposition is called the
normal expansion of 8.
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THEOREM 3. Let & be an ordinal, and § = 8, + - - - +8, its normal expansion.
Then Ty is a k-chain of the bisimple combinatorial 8 regular semigroups T,
i=1,...,k. Foreach i = 1,...,k, T, is isomorphic to T;..

PROOF. Let £, 9 be ordinals such that 8 = £ + » = 5 + 7. The ordinal » must be
of the form §;, + - - - +8, for some 1 < i < k. Putting

!

(6) T.={(f’)|6=g+6,.+---+8k=1,+8,.+---+8k}

for i = 1,...,k, we obtain a partitioning Ty = U, _,., T;. Let (%), () € T, for

some 1 < i < k. Then
() {a el )2 (5)(3)

in T;. Consequently 7; is contained in a %)-class. Further, if (f,) €T, (f,',) ET,
i <j, then ()(%) = (¥)(%) = (¥). Thus elements belonging to different compo-
nents in the partitioning U, _; ., T; cannot be §-related. We see that ¢ = 9 in T,
and that the T}, i = 1,...,k, constitute the k %-classes of T;; Ty is a k-chain of
these %D-classes.

The D-classes T,, i = 1,...,k, form bisimple inverse semigroups (see the remark
made before Theorem 1). Ty is combinatorial since well-ordered chains have a
trivial automorphism group. Thus the 7}, i = 1,...,k are combinatorial as well.
The idempotents of T; are of the form (§), with £ <8, if i =1,0r8, +--- +8,_,
< §<§, + --- +9, otherwise. Therefore T; is a §-regular semigroup.

The mapping
Y
- T —
-7, (5)-(¢
is easily seen to be an isomorphism of T} onto T , whereas in the case 1 <i <k,

N £ R £—(8,+---+8_))
i T ("I) ("l_(81+"'+8i~1)

is an isomorphism of 7; onto T; .
COROLLARY 4. Let E be a chain such that E* is an ordinal. In the Munn

semigroup Tg, § and D coincide. The number of D-classes in Ty is finite. It is the
number of terms in the normal expansion of E*.

COROLLARY 5 (Hogan [2], Munn [9], White [15]). If S is a simple 8-regular

semigroup, then 8 is a prime ordinal. If E is a chain such that E* = 8 is a prime
ordinal, then Ty is a bisimple 8-regular semigroup.
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Theorem 1 and Corollary 2 show that the problem of describing the structure
of {fundamental] inverse semigroups with idempotents dually well-ordered can be
reduced to the case of simple [fundamental] inverse semigroups with idempotents
dually well-ordered. Therefore we shall from now on concentrate on simple
8-regular semigroups. From Corollary 5 we know that § must then be a prime
ordinal, that is, 8 = w” for some ordinal a (well-defined by §). The aim of our
considerations will be to construct simple w®-regular semigroups in terms of
£-regular semigroups, with £ < w*. This will enable us to construct inductively all
inverse semigroups with idempotents dually well-ordered.

If T is a 8-regular semigroup and # an endomorphism of T into the unit group
of T, then one can consider the Bruck-Reilly extension BR(T, 8) of T determined
by 6. This inverse semigroup BR(T, ) must be a simple dw-regular semigroup
(see for example II1.2 of Petrich [10]). Thus, any §-regular semigroup can be
embedded into a simple §w-regular semigroup. Note that BR(T, #) is fundamen-
tal if and only if T is fundamental. If this is the case, then @ is simply the constant
mapping of T onto the identity of T. The following characterizes the inverse
semigroups with idempotents dually well-ordered which are obtained by consider-
ing Bruck-Reilly extensions.

THEOREM 6. Let S be a &-regular semigroup, with Eg = {e;|§ <&}, where
e, <e,in Eg if and only if n <§&. Then S is a Bruck-Reilly extension BR(T, 9) if
and only if the following conditions are satisfied:

(1) & = w**! for some a,

(ii) there exists a w* <y < w**' such that eOGDeY and such that the elements
x € S for which e, < (xx™')(x"'x) form a subsemigroup of S.

PROOF. Let S = BR(T, 8) for some inverse semigroup 7, and for some ap-
propriate endomorphism 8 of T. From the fact that S is a §-regular semigroup it
follows that T is an inverse semigroup with idempotents dually well-ordered. In
other words, T is a y-regular semigroup for some ordinal y, where § = yw. Let w*
be the first term in the normal expansion of y. Then 8 = w**!, and so (i) is
satisfied. Let us denote the set of idempotents of T by { f;|{ < v}, where f; </, in
Eif and only if r < {. The idempotents of S are then of the form

(7 ey,,ﬂ:(",fg,n), neN,{<vy,

and one sees that (ii) is satisfied.

Let us conversely suppose that S satisfies (1) and (ii). Let T be the subsemi-
group of S which is given by (ii). Since T is clearly closed with respect to the
taking of inverses, we have that T is an inverse subsemigroup of S. Consequently,
T is a y-regular subsemigroup of S. Let a be an element of S for which aa™! = ¢,
anda'a=e,.
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Let x € S, with xx™' = e; and x~'x = e,. Then

S

is a representation of S which is equivalent to the Munn representation. In
particular, if x € T, then (f,) must fix y since T forms a subsemigroup, and since
T, is combinatorial. In this case we must have ( f,)(’y’) = (z)(f,) = (3), and conse-
quently

(8) e, xJe Hxe, forallx €T.
It follows that

9) 6:T-H,, x-axa'

is an endomorphism of T into its group of units.

For m,n € N, let S, , consist of the elements x of S for which e ,, = xx™' >
eyminand e, =x"'x>e .. Then S = U, nenSm.n yi€lds a partitioning of
S. Remark that T = S ,. The mapping T - S, ,, x > a "xa" is a bijection of T

m,n’
onto S, ,, and the mapping S, , —» T, y > a™ya™" is its inverse. For this reason

(10)  ¢:S - BR(T,0), a™xa"—(m,x,n), m,nEN,xeT,

is a well-defined bijection of S onto BR(T, 8). It is easy to show that ¢ is in fact
an isomorphism.

THEOREM 7. Let S be a simple w®-regular semigroup, with « a limit ordinal. Then
there exists a well-ordered system

(11) (B: {S;1€<B); {9s..16 <n<B})

of simple w™™* -semigroups S;, & < B, where

() for £ < B, S; = BR(T, 0;) is a Bruck-Reilly extension of a (w™ + &;)-regular
semigroup Ty, with 8, < w™™',

(i) a = lim;_g(a; + 1),

(iii) for £ < n < B, ¢, is a monomorphism of S into S,, such that S is the direct
limit of the system (11).

Conversely, if the well-ordered system (11) satisfies the above conditions (1), (i)
and (iil), then its direct limit is a simple w*-regular semigroup.

ProOOF. The proof of the converse part is routine, and is left to the reader. We
now proceed to show the direct part.

Let {e.|§ < w"} be the set of idempotents of S, where e, <e, in Eg if 5 <{.
Let A4 be a set of ordinals, where k € A if and only if there exists a w* < y < @**!
such that e;De, in S. Let B be the order type of the chain A. We shall denote the
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chain 4 by A = {a,|¢ < B}. We have lim;_g a; = lim;_g(a; + 1) = a since S is
simple. Therefore (ii) is satisfied.

For £ < B, let y; be an ordinal such that eOGDen, and 0™ <y, < 0", and let
a; be an element of S such that a;a;' = e, and a;'a; = e,.- Let T; be the subset
of S consisting of the elements x € S for which e ., < (xx ')(x"'x), together
with the elements of the maximal subgroups containing the idempotents e,
§<7v.1f6: 85> T x—(¥), withxx™' = ¢, and x"'x = ¢, in S, stands for the
canonical homomorphism of § into the Munn semigroup T, then T;8 consists of
the elements

(,u) = x8, withxx'=¢, x'x=e,, p,v<ao%

no

HI

Obviously 7.0 forms an inverse subsemigroup of the Munn semigroup 7.
Further, since 7; = T,00"', we deduce that T, forms an inverse subsemigroup of
S. Let §; be the inverse subsemigroup of S which is generated by a; and by the
elements of T,. Using Theorem 6, we deduce that S; is (isomorphic to) a
Bruck-Reilly extension of the y,-regular semigroup T, where y; = w™ + §;, with

5 < w™* '; I’I‘hus (i) is satisfied, and S, is a simple w*™" '-regular semigroup (since
ﬂ€ )‘

and

Yew = W
eWe consider the system (11), where for § <9 <p, ¢, ,: S; — S, is just the
inclusion mapping. We must show that S is the direct limit of (11). Therefore, let
x be any element of S. Since S is simple, there exists a y such that e De, <
(xx7")Y(x7'x). Let us suppose w™ <y < w™*!, with a, € 4. Then x € T, |, and
thus also x € S;, ;. We conclude S = U,_;S;.

THEOREM 8. Let T be a 8-regular semigroup where «w* <8 < %!, and let
BR(T, 8) be a Bruck-Reilly extension of T. Let e be an idempotent of BR(T, 9).
Then eBR(T, 6)e is a simple &* " '-regular semigroup.

Conversely, every simple w**'-regular semigroup can be obtained in this way.

Proor. If S is a simple regular semigroup, and e € E, then eSe is a simple
regular subsemigroup of S. From this well-known fact follows the direct part of
our theorem.

Let us conversely suppose that S is a simple »®* -regular semigroup. Let
Eg= {e,|§ <w*"'}, where e; < e, in Eg if 1 < §. Let D be the set of ordinals

D={flt=q-{>w, o >n>{, eDein S},

a+1
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and let 8 be the least ordinal in D. We have § = w”n + u, with p < w® Let { and
7 be any ordinals, with { <7 < &**!, such that e, e, in S and n — { = 0®n + p.
Putting { = w*m + p/, with p’ < 0% we have n = w*(m + n) + p. Let us in-
vestigate S” = e Se;.

S’ is of course a w™*'-regular semigroup which is simple. Let T be the subset of
S’ which consists of the elements of S for which e, < xx~!, x™'x < ¢;. Due to the
minimality of § in D, we have either

(12) erpuri-n < XX x7TIXx <epy
for somei = {0,...,n — 1}, or
(13) e, <xx, x'x < e umin)-
Take any other y € T. Again, either
(14) €rrut(j+D) <y lylys< €rtot)
for somej € {0,...,n — 1}, 0r
(15) e <7y < eys(min
If x and y are elements of T such that (12) and (14) or (15) hold, with j > i, then
xyIy, and so xy € T. Similarly, if (14) and (12) or (13) hold, with i > j, then
xyJx, and thus xy € T. Further, if (12) and (14) hold, with i = j, then
-1 -1
€ty < (xy)(xy) s (x}’) (xy) < €ryon

and again xy € T. Finally, let x, y € T such that both (13) and (15) hold. Let us
suppose that xy & T, that is,

-1 -1

ew"(n+m+1) < ((xy)(xy) )((xy) (xy)) =e, < erp'

Anyway, xy%e, or xyLe,, and xyLy or xy®R x, since Ej is a chain. Since both (13)
and (15) hold, we conclude that there exists an idempotent e, € Eg, with
€, <€, < €aminy Such that ee,. Let k =» — 9. Then k < w® If a is any
element of S such that e,R.ale,, then e, Re; . afe, . = eDe,, from which
er e, Yet, 7 — (§ + k) <8, since w*(m + n) < 7 <7, and this contradicts the
minimality of 8. Hence, also in this case xy € T. We conclude that T is a
subsemigroup of S’. It follows from Theorem 6 that S’ is (isomorphic to) a
Bruck-Reilly extension of 7.

The identity e, of S is ®D-related to an idempotent e, < e, since S is simple. Let
b be any element of S such that bb~! = ¢, and b™'6 = e,. The mapping

S_)exse)‘, X "‘)b_lxb,

is an isomorphism of S onto e, Se,. Yet e, Se, = €,5’¢e,, where S’ is (isomorphic
to) a Bruck-Reilly extension BR(T, 8) of the §-regular semigroup 7, with w* < §
< w**!. From this follows the converse part of our theorem.
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COROLLARY 9 (Ko [4], Munn [8]). An inverse semigroup S is a simple w-regular
semigroup if and only if S is a Bruck-Reilly extension of a finite chain of groups.

Not every simple w®* '-regular semigroup needs to be a Bruck-Reilly extension
of a 8-regular semigroup, with w* < 8 < w**'. We depict a counterexample in
Figure 1. Indeed, if a is the element of the semigroup depicted in Figure 1 for
which e R.afe,, then a"a™" = ¢, and a~"a" = e_,, n € N, and it follows that
the subsemigroup requirement of Theorem 6(ii) cannot be satisfied. The inverse
semigroup under consideration is a combinatorial simple w?-regular semigroup.
Remark however, that every bisimple w**!-regular semigroup is a Bruck-Reilly
extension of a w*-regular semigroup which is bisimple.

3. Conclusion

We note that we are now able to construct inductively all inverse semigroups
with idempotents dually well-ordered. The process for doing so is based on
Corollary 2, Theorem 7 and Theorem 8. The techniques involved are the construc-
tions of ordinal sums, direct limits and Bruck-Reilly extensions.

4. The combinatorial case

We conclude with some remarks concerning combinatorial inverse semigroups
with idempotents dually well-ordered.

LEMMA 10. For any prime ordinal wP, let n(w?) denote the number of pairwise
non-isomorphic combinatorial simple wP-regular semigroups. Then a < B implies
n(w®) < n(wf).

PrOOF. Let S be a combinatorial simple w®-regular semigroup, where a < 8.
We may suppose that S is a full inverse subsemigroup of T, .. The mapping
T, — T, () > (%) is an embedding of T,. into T ,». Hence, we may suppose
that S is a subsemigroup of T, s, where S consists of elements (f,), with £, 7 < 0™
Let S” be the inverse subsemigroup of T,s generated by the elements of S and by
the elements (°,), where a < » < 8. Clearly S’ is a combinatorial simple w”-regu-
lar semigroup.
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If S, and S, are two non-isomorphic combinatorial simple w®*-regular semi-
groups, then S; and S; are non-isomorphic combinatorial simple w”-regular
semigroups. In other words, if we start off with a set of n(w*) pairwise non-iso-
morphic combinatorial simple w*-regular semigroups, we obtain a set of pairwise
non-isomorphic combinatorial simple w”-regular semigroups. Thus n(w®) <
n(w?).

For any ordinal &, , will denote an initial ordinal. In the following we assume
the generalized continuum hypothesis.
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THEOREM 11. Let w? be a prime ordinal, and let n(w?) denote the number of
pairwise non-isomorphic combinatorial simple w?-regular semigroups. Then

n(w) = n(e?) = Ry,
n(ef) =8, f®<owf<o,

n(wf) =N,y ifo,<ef <og,a> 1.

PROOF. The result n(w) = ¥, follows easily from the results by Kotin [4] and
Munn [8] (see also Petrich [10]). In fact one shows that the number of pairwise
non-isomorphic combinatorial w-semigroups is 8. Therefore also, if © < § < w?,
then there are only ¥, pairwise non-isomorphic combinatorial §-regular semi-
groups. From Theorem 8 one now deduces n(w?) = R,

Every combinatorial w”-regular semigroup can be embedded as a full inverse
subsemigroup in 7, 5. If w, < w? < w_,,, then| T, s|= R, thus also

(]6) n(wﬁ)sxa-f—l if""mst<““’m+1"

Let us consider a mapping f: N — {0, 1}. Let us consider the system
(17) (@; {816 < w}; {9416 <1< w})

where

() S; N S, = & whenever § # 1,

(i) §; is a copy of the bicyclic semigroup whenever f(§) = 1, and S; is a chain
of order type w* whenever f(£) = 0,

(iii) ¢, , maps S; onto the identity of S, if { <17 < w,

(iv) ¢; . is the identity transformation on S; for § < w.

The sum of the system (17) is denoted by S,. If g: N - {0,1} is any other
mapping, with f # g, then S, is not isomorphic to S,. In other words, we are able
to construct 280 = 8, pairwise non-isomorphic combinatorial w’-regular semi-
groups. Using the method of constructing Bruck-Reilly extensions, we are able to
construct ¥, pairwise non-isomorphic combinatorial simple «*-regular semi-
groups. Thus, by Lemma 10 n(w?) = N, whenever »* < wf < w,. Using (16), we
have n(wf) = R, whenever «® < wf < w,.

Let us now consider an initial ordinal w, (= @“*), @ = 1. Let 4, [ A4,] stand for
the set of ordinals £ < w,, which are of the form £ = { + n, with n odd [even],
and where the least primitive remainder of { does not equal 1. Then w, = 4, U 4,,
and A4, and A4, both constitute well-ordered chains of order type w,. Let f:
A, - {0,1} by any mapping, and let S, be the full inverse subsemigroup of T,
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which is generated by the elements

9 e

(25), forall £ € A,

(‘i’e), for all £ € 4, for which f(£) = 1.
Then S; is a combinatorial simple w,-regular semigroup. Further, if g: 4, - {0, 1}
is any other mapping, with g # f, then S, cannot be isomorphic to S,. Thus we
constructed N, , pairwise non-isomorphic combinatorial simple w,-regular semi-
groups. Using Lemma 10, we see that for all w, < w? < w,,,, we have n(w?) =
N,.- Yet, by (16) we also have n(wf) <8 _,, and thus the equality n(w?) =
N .+ prevails.

THEOREM 12. Ler S be a combinatorial simple w®-regular semigroup. The greatest
group homomorphic image of S is trivial if and only if a is a limit ordinal. Otherwise
the greatest group homomorphic image of S is the infinite cyclic group.

PrOOF. We may assume that S is a full inverse subsemigroup of T .. Assume
that « is a limit ordinal and let (f,) € S. Then £, 5 < w? < & for some 8 < a. So
(f,)(ﬁ:) = (::)(f,) = (z:), and we see that S X § is the least group congruence on
S.

If « is not a limit ordinal, then « = 8 + 1 for some 8. On S we may now
introduce a relation p by

(18) (f’)p(gi) ifMdOnlyifwﬁm<§,§'<wﬂ(m+ l)and

wPn<n,w <wh(n+1)forsomem,n € N.

One may verify that p is a congruence relation, and that S/p is a combinatorial
simple w-regular semigroup. If ({)o(¥) as in (18), and if k = max(m, n) + 1, then

(wﬁk)(ﬁ)(wﬁk) _ (wﬂk)(g’)(wﬁk)
WPl I\ Pk WPl I\ I\ WPk )’
which implies that () and (%) are related in the least group congruence on S.

Thus, the greatest group homomorphic image of S coincides with the greatest
homomorphic image on S/p, that is, it is the infinite cyclic group.
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