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Abstract

All inverse semigroups with idempotents dually well-ordered may be constructed inductively. The
techniques involved are the constructions of ordinal sums, direct limits and Bruck-Reilly extensions.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 10, 03 E 10.

1. Introduction

We use the terminology and the results of Howie [3] and Sierpinski [12]. The
axiom of choice will be assumed throughout.

A study of inverse semigroups with idempotents dually well-ordered can be
motivated by the findings of Feller and Gantos [1]. They may also be studied
within the context of the investigations by Megyesi and Pollak ([5], [6], [7])
concerning principal ideal semigroups. Recall that a principal ideal semigroup is a
semigroup where the left, right and two-sided ideals are all principal, or equiva-
lently, it is a semigroup for which the posets of left, right and two-sided ideals are
dually well-ordered chains. In a [simple] principal ideal semigroup, the set of
regular elements—if non-empty—constitutes a [simple] inverse semigroup with
idempotents dually well-ordered. In fact, a principal ideal semigroup is regular if
and only if it is an inverse semigroup with idempotents dually well-ordered.

Particular structure theorems for inverse semigroups with idempotents dually
well-ordered were given by Hogan [2], Kocin [4], Munn [8], Reilly [11], and
Warne ([13], [14]).
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374 A. Clement and F. Pastijn [2]

2. Main results

Let 8 be any ordinal. An inverse semigroup S will be called a 5-regular
semigroup if the set Es of idempotents of S constitutes a chain whose order type
isEs = 8*.

Recall that an inverse semigroup S is called a fundamental inverse semigroup if
the greatest idempotent-separating congruence on 5 is the identity relation. Let us
consider a fundamental inverse semigroup S whose idempotents form a chain Es.
Then Green's equivalence relation J is the least semilattice congruence on S, and
S is a chain S/j- of its ^classes, which are all simple inverse semigroups. Each
^class is the disjoint union of ^D-classes which all constitute bisimple inverse
semigroups. In general it is not straightforward how to describe 5 as a chain
composition of its ^-classes. There is however an important instance in which
things simplify. Indeed, let us consider the case where the principal ideals of Es

each have a trivial automorphism group. Since S is fundamental, one can embed
S isomorphically into the Munn semigroup TEs (see, for example, Howie [3]). It
follows that S must be combinatorial (= %• trivial), and for any a, b G 5, with
Ja < Jb in S/J, we have ab = ba = a. The situation described here is satisfied
whenever Es is a dually well-ordered chain. We thus have the following.

THEOREM 1. Let 8 = 2 £ < a a £ be an ordinal such that for each £ < a, S( is a
combinatorial simple a^-regular semigroup, with S( (~) Sv = 0 if £ ¥= i\. On S =
U^<aSi define a multiplication by the following. If a G S(, b G Sv, then ab
coincides with the product of a and b already defined in S^if £ = rj, whereas ab = a
if £ > V and ab = b ift\ > £. Then S is a fundamental 8-regular semigroup.

Conversely, every fundamental 8-regular semigroup can be so obtained.

COROLLARY 2. Let 8 = 2 £ < a a{ be an ordinal such that for each £ < a, S£ is a
simple a^-regular semigroup, with S^n Sv— 0 if £¥= ij. For every £ < rj < a, let
(/>£ n be a homomorphism of S^ into the group of units of Sv, such that fy ̂  f = </>£ f

whenever | < TJ < f < a. For each £ < a, let <J>{ £ be the identity transformation on
5|. Let S be the strong chain of the semigroups in the system

(1) (a;{5||£<a};{^1)|^7,<«}).

Then S is a 8-regular semigroup.
Conversely, every 8-regular semigroup can be so obtained.

PROOF. The direct part can be verified without difficulty.
Let us conversely suppose that 5 is a 8-regular semigroup. Since the principal

ideals of Es have trivial automorphism groups, Green's relation % is a congruence
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(3) Inverse semigroups 375

relation on S (see also Theorem 5 in Megyesi and Pollak [5]). Therefore S/% is a
fundamental 8-regular semigroup, and we can apply Theorem 1. The results of
Theorem 1 guarantee that we can write S as a chain a of simple a^-regular
semigroups 5£, £ < a, with 8 = 2 £ < a a$. Further, if £ < TJ, and if 1,, denotes the
identity element of Sv, then the mapping

is a homomorphism of Si into the group of units of 5^. As a result we obtain a
system (1), and one easily shows that S is the sum of this system.

If the semigroup S is obtained in the way described in Corollary 2, then we
shall say that S is the ordinal sum of the system (1).

We exemplify Theorem 1 by describing the Munn semigroup TE of a chain E
whose order type E is the dual 8* of an ordinal 8. One may identify TE with the
inverse semigroup consisting of the isomorphisms among principal filters of 8
(where 8 stands for the well-ordered chain of ordinals that are less than 8). The
latter inverse semigroup will be denoted by Ts. Remark that Ta is the bicyclic
semigroup, whereas Tun (n a positive integer) is Warne's n-dimensional bicyclic
semigroup [13], and Tu« (a any ordinal) is the a-bicyclic semigroup in Hogan [2]
and Megyesi and Pollak [7]. Let £ and TJ be ordinals such that 8 = £ + T = TJ + T
for some ordinal T. Then the principal filter generated by £ is isomorphic to the
principal filter generated by TJ: the two filters are of order type T. We denote by
(*) the unique isomorphism of the principal filter generated by £ onto the
principal filter generated by TJ. Thus,

(3) (£ + *

The inverse of (*) in Ts is ( | ) . Clearly Ts precisely consists of the elements (*)
where S = £ + T = Tj + Tfor some ordinal T, and the multiplication in Ts is given
by

<4) ( ' ) (?) =
where for any ordinals p, a

r i - IP-O Uo<p,
( 5 ) i r " J 10 otherwise

(we use the notation of Megyesi and Pollak [7]).
Recall that for any ordinal 8 there exists a unique decomposition 8 = 8,

+ • • • +8k (k a positive integer), where 8, > • • • > 8k is a finite nonincreasing
sequence of prime ( = indecomposable) ordinals. This decomposition is called the
normal expansion of 8.
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THEOREM 3. Let 8 be an ordinal, and 8 = 8, + • • • +8k its normal expansion.
Then T8 is a k-chain of the bisimple combinatorial 8rregular semigroups 7],
i = 1,. . . ,k. For each i — 1, . . . ,k, 7] is isomorphic to Ts .

PROOF. Let £, TJ be ordinals such that 8 = £ + T = TJ + T. The ordinal r must be
of the form 8,, + • • • +8k for some 1 < /" *£ k. Putting

(6) r, = {(H) |a =
for i = 1,. . . ,k, we obtain a partitioning Ts = U 1 < f s t 7). Let (*), (*'<) e 7j for
some 1 < J; < k. Then

(iKKHK)
in r s . Consequently 7] is contained in a ^D-class. Further, if (*) E 7], (*') G 7},
i <y, then (*Xv) = (*'X*) = (*')• Th u s elements belonging to different compo-
nents in the partitioning U,«.1<Jt 7] cannot be ^-related. We see that f = ^ in Ts,
and that the 7), i = 1,...,fc, constitute the /k ^D-classes of Ts; Ts is a fc-chain of
these ^-classes.

The ^D-classes 7], i = 1,...,k, form bisimple inverse semigroups (see the remark
made before Theorem 1). Ts is combinatorial since well-ordered chains have a
trivial automorphism group. Thus the 7), / = l,...,k are combinatorial as well.
The idempotents of Tt are of the form (|), with £ < 8, if / = 1, or 8, + • • • +8,-_,
< | < 8, + • • • +8,- otherwise. Therefore 7j is a 8,-regular semigroup.

The mapping

is easily seen to be an isomorphism of Tx onto Ts, whereas in the case 1 < / Ok ,

' *'' U) \ u - ( 8 , + • • • + « , - , )

is an isomorphism of 7̂  onto 7^ .

COROLLARY 4. Lef E be a chain such that E* is an ordinal. In the Munn
semigroup TE, \ and % coincide. The number of ^-classes in TE is finite. It is the
number of terms in the normal expansion of E*.

COROLLARY 5 (Hogan [2], Munn [9], White [15]). If S is a simple 8-regular
semigroup, then 8 is a prime ordinal. If E is a chain such that E* = 8 is a prime
ordinal, then TE is a bisimple 8-regular semigroup.
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Theorem 1 and Corollary 2 show that the problem of describing the structure
of [fundamental] inverse semigroups with idempotents dually well-ordered can be
reduced to the case of simple [fundamental] inverse semigroups with idempotents
dually well-ordered. Therefore we shall from now on concentrate on simple
8-regular semigroups. From Corollary 5 we know that 8 must then be a prime
ordinal, that is, 8 = u" for some ordinal a (well-defined by 8). The aim of our
considerations will be to construct simple w"-regular semigroups in terms of
^-regular semigroups, with £ < u". This will enable us to construct inductively all
inverse semigroups with idempotents dually well-ordered.

If T is a 8-regular semigroup and 6 an endomorphism of T into the unit group
of T, then one can consider the Bruck-Reilly extension BR(T, 6) of T determined
by 0. This inverse semigroup BR(T, 6) must be a simple Sw-regular semigroup
(see for example III.2 of Petrich [10]). Thus, any 8-regular semigroup can be
embedded into a simple 8«-regular semigroup. Note that BR{T, 6) is fundamen-
tal if and only if T is fundamental. If this is the case, then 6 is simply the constant
mapping of T onto the identity of T. The following characterizes the inverse
semigroups with idempotents dually well-ordered which are obtained by consider-
ing Bruck-Reilly extensions.

THEOREM 6. Let S be a 8-regular semigroup, with Es= {e^\i<8}, where
ek < en in Es if and only if -q < £. Then S is a Bruck-Reilly extension BR(T, 6) if
and only if the following conditions are satisfied:

(i) 8 = ua+i for some a,
(ii) there exists a a" *£ y < wa+1 such that e0

6Dey and such that the elements
x G 5 for which ey < (xx~x)(x~yx) form a subsemigroup of S.

PROOF. Let S = BR(T, 0) for some inverse semigroup T, and for some ap-
propriate endomorphism 6 of T. From the fact that S is a 8-regular semigroup it
follows that T is an inverse semigroup with idempotents dually well-ordered. In
other words, T is a y-regular semigroup for some ordinal y, where 8 = yu. Let ua

be the first term in the normal expansion of y. Then 8 = wo+1, and so (i) is
satisfied. Let us denote the set of idempotents of T by {/j | f < y), where/j < /T in
ET if and only if T < f. The idempotents of S are then of the form

(7) eyn+s = («,/,,«), neN,£<y,

and one sees that (ii) is satisfied.
Let us conversely suppose that S satisfies (i) and (ii). Let T be the subsemi-

group of S which is given by (ii). Since T is clearly closed with respect to the
taking of inverses, we have that T is an inverse subsemigroup of S. Consequently,
T is a y-regular subsemigroup of S. Let a be an element of S for which aa'1 = e0

and a'la = ey.
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Let x G S, with xx~l = e( and x~'x — er Then

S-Tt, x-

is a representation of 5 which is equivalent to the Munn representation. In
particular, if x G T, then (*) must fix y since T forms a subsemigroup, and since
7^ is combinatorial. In this case we must have (^)(y) = (y)(*) = (y), and conse-
quently

(8) eyx%ey%xey for all x G T.

It follows that

(9) 8:T^Heo, x^axa~x

is an endomorphism of T into its group of units.
For m, n G N, let Sm „ consist of the elements x of 5 for which eym > xx~l >

ev(m+i) a n d eyn ̂  x~xx > e^n+l). Then 5 = Um neNSm „ yields a partitioning of
S. Remark that T = 5 0 0 . The mapping T -> Sm n, x -» a"mxa" is a bijection of r
onto 5m „, and the mapping Sm n -> T, y -> amya~" is its inverse. For this reason

(10) +: S -* B R ( T , 6 ) , a ~ m x a " ^ { m , x , n ) , m , n E N , x E T ,

is a well-defined bijection of S onto BR(T, 6). It is easy to show that \p is in fact
an isomorphism.

THEOREM 7. Let S be a simple ua-regular semigroup, with a a limit ordinal. Then
there exists a well-ordered system

of simple co"«+' -semigroups S£, £ < /?,
(i)/or £ < /?, 5£ = fi/?(T£, 0£) w a Bruck-Reilly extension of a (wa« + S^-regular

1semigroup 7^, w/7/i 6j < wO{+1,
(ii) a = lim£</3(«j + 1),
(iii)/or | < 7] < /?, ̂  n « a monomorphism of S^ into Sv, such that S is the direct

limit of the system (11).
Conversely, if the well-ordered system (11) satisfies the above conditions (i), (ii)

and (iii), then its direct limit is a simple ^-regular semigroup.

PROOF. The proof of the converse part is routine, and is left to the reader. We
now proceed to show the direct part.

Let (ef |f < «"} be the set of idempotents of S, where ef < ev in Es if TJ < f.
Let A be a set of ordinals, where K G A if and only if there exists a w" < y < co"+'
such that eotyey in S. Let /? be the order type of the chain A. We shall denote the
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chain A by A = {a{|£ < (i). We have lim£<^a^ = limj</3(af + 1) = a since S is
simple. Therefore (ii) is satisfied.

For £ < /?, let y£ be an ordinal such that eotf)ey(, and wa« < y$ < wa«+', and let
a£ be an element of 5 such that a(a^ = e0 and a'^a^ = ey . Let 7̂  be the subset
of S consisting of the elements x G S for which eu«e < (xx"')(x"'x), together
with the elements of the maximal subgroups containing the idempotents ef,
f < yt. If 0: S -> T^, x ^ (JJ), with xx"1 = eM and x"'x = e,, in S, stands for the
canonical homomorphism of S into the Munn semigroup Tua, then 7^0 consists of
the elements

) = xO, with xx"1 = e^, x'xx — ev, fi,v<ua(,

and

I). r < v
Obviously 7^0 forms an inverse subsemigroup of the Munn semigroup Tua(.
Further, since T^ = T(66~\ we deduce that T£ forms an inverse subsemigroup of
5. Let S£ be the inverse subsemigroup of S which is generated by a£ and by the
elements of T(. Using Theorem 6, we deduce that Sf is (isomorphic to) a
Bruck-Reilly extension of the y£-regular semigroup 7^, where y£ = wa< + S ,̂ with
8£ < «°«+1. Thus (i) is satisfied, and 5£ is a simple ua(+ '-regular semigroup (since

We consider the system (11), where for | < 17 < /?, ^i1?: S^ -> Sv is just the
inclusion mapping. We must show that S is the direct limit of (11). Therefore, let
x be any element of S. Since S is simple, there exists a y such that e0

6i)ey <
(xx"'Xx"'x). Let us suppose uat <y < «a«+1, with «£ G A. Then x G Ti+l, and
thus also x G 5£ + 1 . We conclude 5 = U£ < / gS4.

THEOREM 8. Let T be a 8-regular semigroup where u" < 8 < co"+1, and /er
5/?(7, 0) fte a Bruck-Reilly extension of T. Let e be an idempotent of BR(T, 0).
Then eBR(T, 0)e is a simple ua+'-regular semigroup.

Conversely, every simple ua+ ^-regular semigroup can be obtained in this way.

PROOF. If S is a simple regular semigroup, and e G Es, then eSe is a simple
regular subsemigroup of S. From this well-known fact follows the direct part of
our theorem.

Let us conversely suppose that S is a simple wa+'-regular semigroup. Let
Es = {e£ I £ < ua+'}, where e( < e^ in Es if rj < £. Let D be the set of ordinals

TJ - f > coa, «" + 1 > i) > S, e^et in S ] ,
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and let 8 be the least ordinal in D. We have 8 = uan + p, with /i < wa. Let f and
t\ be any ordinals, with f < TJ < <o"+1, such that efies in S and TJ — f = uan + ft.
Putting f = u"m + n', with /t' < «", we have TJ = «"(m + n) + /i. Let us in-
vestigate S' = e^Seg.

S' is of course a w"+ '-regular semigroup which is simple. Let T be the subset of
S" which consists of the elements of S for which e^ < xx~l, x'lx < ef. Due to the
minimality of 8 in D, we have either

for some ii = {0,.. . , n — 1}, or

(13) e < xx'l,x'xx < e •

Take any other j G T. Again, either

(14) et,

for somej G {0,.. . , n — 1}, or

O5)
If x and y are elements of 7* such that (12) and (14) or (15) hold, withy > /, then
xy%y, and so xy G T. Similarly, if (14) and (12) or (13) hold, with / >j, then
xy%x, and thus xy G T. Further, if (12) and (14) hold, with / =y, then

: (xy)(xy)'\ (xy)'\xy) < ei+o.{

and again xy G r . Finally, let x, y G T such that both (13) and (15) hold. Let us
suppose that xy £ T, that is,

Anyway, xytjle, or xy£e,,, and xy£j or jcŷ R-x, since Es is a chain. Since both (13)
and (15) hold, we conclude that there exists an idempotent eT G Es, with
ev < eT < ea.(m+n), such that e ^ e , . Let K = v - -q. Then K < w°. If a is any
element of S such that effiate^, then e^+Jk,ei+Katev+K = e,,6DeT, from which
ei+l^er. Yet, T — (f + K) < 8, since w"(m + n) < T < TJ, and this contradicts the
minimality of 8. Hence, also in this case xy G T. We conclude that T is a
subsemigroup of S'. It follows from Theorem 6 that S' is (isomorphic to) a
Bruck-Reilly extension of T.

The identity eQ of 5 is ^-related to an idempotent ex < ef since S is simple. Let
b be any element of S such that Wr1 = e0 and Zr'ft = ex. The mapping

5 -» exSex, x -» b~xxb,

is an isomorphism of S onto exSev Yet ex5ex = exS'ex, where S' is (isomorphic
to) a Bruck-Reilly extension BR(T, 6) of the 8-regular semigroup 7", with wa < 8
< wa+1. From this follows the converse part of our theorem.
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COROLLARY 9 (Koc [4], Munn [8]). An inverse semigroup S is a simple u-regular
semigroup if and only if S is a Bruck-Reilly extension of a finite chain of groups.

Not every simple w"+'-regular semigroup needs to be a Bruck-Reilly extension
of a 6-regular semigroup, with w" < 8 < w"+1. We depict a counterexample in
Figure 1. Indeed, if a is the element of the semigroup depicted in Figure 1 for
which e,9la£eu, then a"a~" = ex, and a'"a" — eun, n £ N, and it follows that
the subsemigroup requirement of Theorem 6(ii) cannot be satisfied. The inverse
semigroup under consideration is a combinatorial simple «2-regular semigroup.
Remark however, that every bisimple wa+'-regular semigroup is a Bruck-Reilly
extension of a «a-regular semigroup which is bisimple.

3. Conclusion

We note that we are now able to construct inductively all inverse semigroups
with idempotents dually well-ordered. The process for doing so is based on
Corollary 2, Theorem 7 and Theorem 8. The techniques involved are the construc-
tions of ordinal sums, direct limits and Bruck-Reilly extensions.

4. The combinatorial case

We conclude with some remarks concerning combinatorial inverse semigroups
with idempotents dually well-ordered.

LEMMA 10. For any prime ordinal up, let n(wp) denote the number of pairwise
non-isomorphic combinatorial simple up-regular semigroups. Then a < ft implies

PROOF. Let S be a combinatorial simple w"-regular semigroup, where a < /?.
We may suppose that 5 is a full inverse subsemigroup of Tu«. The mapping
Tu' -* Tun, (j j)->(*i)isan embedding of Tu« into Tui>. Hence, we may suppose
that S is a subsemigroup of Tun, where S consists of elements (fj), with £, ij < u°.
Let S' be the inverse subsemigroup of Tup generated by the elements of S and by
the elements (°»), where a < v < ft. Clearly S' is a combinatorial simple w^-regu-
lar semigroup.
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eo

1

e1

e 2
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e^+2

eu,+3
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r i r IT

r
'..,2+3

1
^2+4

Figure 1

If 5, and S2 are two non-isomorphic combinatorial simple «"-regular semi-
groups, then S[ and Sj are non-isomorphic combinatorial simple u ̂ -regular
semigroups. In other words, if we start off with a set of «(w°) pairwise non-iso-
morphic combinatorial simple w"-regular semigroups, we obtain a set of pairwise
non-isomorphic combinatorial simple w^-regular semigroups. Thus n(ua) <

For any ordinal a, wa will denote an initial ordinal. In the following we assume
the generalized continuum hypothesis.
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THEOREM 11. Let w^ be a prime ordinal, and let w(w^) denote the number of
pairwise non-isomorphic combinatorial simple u^-regular semigroups. Then

ifu?

PROOF. The result n(u) = Ko follows easily from the results by Kocin [4] and
Munn [8] (see also Petrich [10]). In fact one shows that the number of pairwise
non-isomorphic combinatorial co-semigroups is No. Therefore also, if a < S < to2,
then there are only So pairwise non-isomorphic combinatorial 6-regular semi-
groups. From Theorem 8 one now deduces «(w2) = No.

Every combinatorial w ̂ -regular semigroup can be embedded as a full inverse
subsemigroup in Tun. If ua < u^ < wo+,, then | T^ |= Na, thus also

(16) « ( " " ) < « « + ! if«a <«"<«„+, - .

Let us consider a mapping/: N -» {0,1}. Let us consider the system

(17) ( « ; {S 4 |«<«} ; { * 4 j , | {< i ,<« } )

where
(i) S£ n S^— 0 whenever £ ̂  TJ,
(ii) 5j is a copy of the bicyclic semigroup whenever /(£) = 1, and Si is a chain

of order type w* whenever /(£) = 0,
(iii) <j>iv maps 5£ onto the identity of S^ if ^ < 17 < w,
(iv) <#>£ £ is the identity transformation on S^ for | < u.
The sum of the system (17) is denoted by Sf. If g: N -> (0,1} is any other

mapping, with f¥=g, then 5̂  is not isomorphic to Sg. In other words, we are able
to construct 2K° = 8, pairwise non-isomorphic combinatorial w2-regular semi-
groups. Using the method of constructing Bruck-Reilly extensions, we are able to
construct 8, pairwise non-isomorphic combinatorial simple <o3-regular semi-
groups. Thus, by Lemma 10 «(w^) 3= N, whenever w3 < u& < «,. Using (16), we
have n(o)P) = 8, whenever «3 < up < «,.

Let us now consider an initial ordinal ua (= ww«), a > 1. Let 4̂, [^2] stand for
the set of ordinals £ < wa, which are of the form £ = f + n, with « odd [even],
and where the least primitive remainder of J does not equal 1. Then ua = Ax U A2,
and 4̂, and /42 both constitute well-ordered chains of order type ua. Let / :
Ax -» {0,1} by any mapping, and let Sf be the full inverse subsemigroup of Ta
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which is generated by the elements

for all £ EA2,

, , , for all £ G Ax for which/(£) = 1.
w* /

Then Sf is a combinatorial simple wa-regular semigroup. Further, if g: Ax -» (0,1}
is any other mapping, with g¥= f, then Sf cannot be isomorphic to Sg. Thus we
constructed N a + , pairwise non-isomorphic combinatorial simple wa-regular semi-
groups. Using Lemma 10, we see that for all wo < u& < wa+1, we have n(u&) >
K a + 1 . Yet, by (16) we also have n(u^) < N a + i and thus the equality n(u^) =
S a + 1 prevails.

THEOREM 12. Let S be a combinatorial simple a"-regular semigroup. The greatest
group homomorphic image of S is trivial if and only if a is a limit ordinal. Otherwise
the greatest group homomorphic image of S is the infinite cyclic group.

PROOF. We may assume that S is a full inverse subsemigroup of ru«. Assume
that a is a limit ordinal and let (^) G S. Then | , 17 < cô  < w" for some /? < a. So
(*)O) = OXli) — ("")> a11^ w e s e e ^a t S X S is the least group congruence on
5.

If a is not a limit ordinal, then a = fi + 1 for some /?. On S we may now
introduce a relation p by

(is) U r U
u^n < 7j, TJ' < co (̂« + 1) for some w, n E N.

One may verify that p is a congruence relation, and that S/p is a combinatorial
simple w-regular semigroup. If (jj)p(jj') as in (18), and if & = max(m, «) + 1, then

which implies that (^) and (*',) are related in the least group congruence on S.
Thus, the greatest group homomorphic image of S coincides with the greatest
homomorphic image on S/p, that is, it is the infinite cyclic group.
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