NUTRITION RESEARCH REVIEWS

Volume: 27

Number: 1

June 2014

Available online at www.journals.cambridge.org

Nutrition Research Reviews

Volume 27, 2014 ISSN: 0954-4224

Aims and Scope

Nutrition Research Reviews publishes comprehensive and challenging review articles on selected key topics in nutritional science. Authors are encouraged to take a critical approach in appraising the literature while also aiming to advance new concepts and hypotheses. The journal publishes both solicited and unsolicited articles.

Nutrition Research Reviews is published twice a year by Cambridge University Press on behalf of The Nutrition Society.

The contents page of this journal is available on the Internet before publication at www.cambridge.org/nrr

Editor-in-Chief

J V Woodside, Belfast, UK

Deputy Editor

Jos Houdijk, Scottish Agricultural College, UK

Editorial Board

M Ashwell, Baldock, UK D A Bender, London, UK N Binns, Drogheda, Ireland J L Black, Warrimoo, Australia D Dardevet, Theix, France C Edwards, Glasgow, UK J M Hibbert, Atlanta, GA, USA T Hill, Newcastle-upon-Tyne, UK J K Lodge, Newcastle-upon-Tyne, UK H C Lukaski, Grand Forks, ND, USA S McCann, Buffalo, NY, USA M Pufulete, Bristol, UK P Rogers, Bristol, UK N W Solomons, Guatemala City, Guatemala M Verstegen, Wageningen, Netherlands C M Weaver, West Lafayette, IN, USA KM Younger, Dublin, Ireland

The Nutrition Society has as its objective the advancement of the scientific study of nutrition and its applications to the maintenance of human and animal health.

Application of membership is invited from anyone whose work has contributed to the scientific knowledge of nutrition, whether such work has been in the laboratory, the field or the clinic, and whether experimental, clinical, agricultural or statistical in nature. There is also a student membership scheme with reduced subscriptions.

Particulars of The Nutrition Society and application forms for membership are available from The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK.

Tel: +44 (0)20 7602 0228, Fax: +44 (0)20 7602 1756, Email: office@nutsoc.org.uk

The Nutrition Society Home Page is at http://www.nutritionsociety.org

NUTRITION RESEARCH REVIEWS 2014

Volume 27 No. 1 June 2014

Editor-in-Chief

J V Woodside Belfast, UK

Nutrition Research Reviews Volume 27, 2014 ISSN: 0954-4224

Publishing, Production, Marketing, and Subscription Sales Office:

Cambridge University Press The Edinburgh Building Shaftesbury Road Cambridge CB2 8RU, UK

For Customers in North America:

Cambridge University Press Journals Fulfillment Department 100 Brook Hill Drive West Nyack New York 10994–2133 USA

Publisher: Katy Christomanou

Nutrition Research Reviews is an international journal published biannually (June and December) by Cambridge University Press on behalf of the Nutrition Society.

Subscription information:

Volume 27 2014 (2 issues)

Internet/print package: £260/\$508 American only/€404 EU only Internet only: £169/\$313 Americas only/€253 EU only

Back volumes are available. Please contact Cambridge University Press for further information.

Claims for non-receipt of journal issues will be considered on their merit and only if the claim is received within six months of publication. Replacement copies supplied after this date will be chargeable.

US POSTMASTERS: please send address corrections to *Nutrition Research Reviews*, Cambridge University Press, 100 Brook Hill Drive, West Nyack, New York 10994–2133.

Information for Authors: The journal publishes both solicited and unsolicited review articles. For unsolicited material, authors are asked to submit a summary of the article to the Editor-in-chief in the first instance:

Professor Jayne Woodside Centre for Public Health Queen's University Belfast Institute of Clinical Science B Grosvenor Road Belfast, BT12 6BJ UK

Tel: 44(0)2890632585 Fax: 44(0)2890235900 Email: j.woodside@qub.ac.uk

Directions to Contributors: are available from the Editor-in-chief.

Offprints: The author (or main author) of an accepted paper will receive a free PDF of their paper and a voucher copy of the issue in which their paper has been published. Additional offprints are available for a fee and should be ordered at proof stage. **No page charges are levied by this journal.**

Copyright: As of July 2000 the copyright of all articles submitted to *Nutrition Research Reviews* are retained by the authors or their institutions. For articles prior to this date permission for reproduction of any part of the journal (text, figures, tables or other matter) in any form (on paper, microfiche or electronically) should be sought directly from the Society, at: The Publications Office, The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK.

Disclaimer: The information contained herein, including any expression of opinion and any projection or forecast, has been obtained from or is based upon sources believed by us to be reliable, but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. Neither the Society nor Cambridge University Press accepts responsibility for any trade advertisement included in this publication.

This journal is printed on acid-free paper from renewable sources. Printed in the UK by Bell & Bain Ltd., Glasgow.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

Subscribers may register for free access to the electronic version of $Nutrition\ Research\ Reviews$. For more information visit the website at: journals.cambridge.org

Nutrition Research Rewiews is covered by the Science Citation Index®, Current Contents® / Agriculture, Biology & Environmental Sciences, SciSearch®, Research Alert®, Index to Scientific Reviews®, EMBASE/Excerpta Medica, Chemical Abstracts Services, CINAHL® Database, CAB ABSTRACTS®, Global Health, BIOSIS® Database, SIIC Databases

Contents *Vol. 27 No. 1 June 2014*

Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences Hao Zhang, Dandan Yu, Jing Sun, Xianting Liu, Lu Jiang, Huiyuan Guo & Fazheng Ren			
Introduction	1		
Nature, intake and health benefits of polyphenols	2 2		
Nature of dietary phenols			
Content of polyphenols in food and their absorption after intake	2		
Health benefits of polyphenols			
Antioxidant activity	3		
Anticarcinogenic activity Other bioactivities	3		
Interaction of plant phenols with food macronutrients: <i>in vitro</i> evidence	4		
Interaction of plant phenois with root macronutrients. <i>in our o</i> evidence	4		
Interaction of plant phenois with carbohydrates	5		
Interaction of plant phenols with fats	5		
Interaction of plant phenols with food macronutrients: in vivo results	5		
Interaction of plant phenols with proteins	5		
Interaction of plant phenols with carbohydrates	6		
Interaction of plant phenols with fats	7		
Conclusions and future directions	9		
Acknowledgements	9		
References	10		
Food-derived bioactive peptides – a new paradigm			
Paul J. Moughan, Shane M. Rutherfurd, Carlos A. Montoya & Lakshmi A. Dave			
Introduction	16		
Physiological significance of the food-derived bioactive peptides	17		
A quandary A new paradigm	17 18		
Evidence for bioactive peptides derived from gut endogenous proteins	18		
Conclusions	19		
Acknowledgements	19		
References	19		
Nutritional regulation of glucokinase: a cross-species story			
Stéphane Panserat, Nicole Rideau & Sergio Polakof Introduction	21		
Glucokinase in mammals	21 22		
Glucokinase in mammals Glucokinase function and regulation in mammals	22		
Nutritional regulation of glucokinase in mammals	23		
Carbohydrate-dependent mammalian species	25		
Glucokinase regulation by nutritional status: focus on fed-fasted-refeeding cycles and postprandial	25		
changes – liver Glucokinase regulation by nutritional status: focus on fed-fasted-refeeding cycles and	23		
postprandial changes – pancreas	26		
Regulation of glucokinase by dietary carbohydrates: liver	27		
Regulation of glucokinase by dietary carbohydrates: pancreas	28		
Regulation of glucokinase by dietary proteins: liver	28		
Regulation of glucokinase by dietary proteins: pancreas	28		
Regulation of glucokinase by dietary fat: liver	28		
Regulation of glucokinase by dietary fat: pancreas	29		
Regulation of glucokinase by feeding-related hormones. Glucokinase in the diabetic state and other			
metabolic-related disorders: liver	29		

Regulation of glucokinase by feeding-related hormones. Glucokinase in the diabetic state and	
other metabolic-related disorders: pancreas	29
Carbohydrate-independent mammalian species	30
Glucokinase in carnivorous species: the example of the cat	30
Glucokinase in carnivorous species: the example of the dog	31
Glucokinase in ruminants	31
Glucokinase in birds	32
Peculiarities of glucose metabolism in avian species	32
Characterisation of glucokinase at the biochemical and molecular level in avian species	32
Liver glucokinase activity	32
Comparison of glucokinase-like activity levels	33
Chicken-duck comparison	33
Chicken–owl comparison	33
Pancreas glucokinase	33
Liver and pancreatic glucokinase messenger RNA and protein	33
Nutritional regulation of avian hepatic glucokinase: glucokinase regulation in chickens	34
Nutritional regulation of avian hepatic glucokinase: glucokinase regulation in ducks	34
Glucokinase-regulatory protein in chickens	34
What is the relationship between hepatic glucokinase, plasma glucose and insulin levels in birds?	35
Glucokinase in fish	36
No existence of glucokinase in fish: a (false) hypothesis to explain poor dietary carbohydrate	
use in carnivorous fish	36
Characterisation of hepatic glucokinase at biochemical and molecular levels	36
Nutritional regulation of hepatic glucokinase	37
Regulation of hepatic glucokinase by dietary carbohydrates	37
Regulation of hepatic glucokinase expression by dietary proteins and lipids	37
Nutritional regulation of hepatic glucokinase expression in fish larvae	37
Particular case of glucokinase regulation by alternative diets recently developed for aquaculture	37
Mechanisms of nutritional regulation of hepatic glucokinase in fish: insulin, glucose and amino acids	38
Nutritional regulation of extra-hepatic glucokinase (intestine, pancreas and hypothalamus) in fish	38
Expression of glucokinase in β -pancreas of fish and its regulation by feeding	38
Expression of glucokinase in brain (hypothalamus) and intestine and its regulation by feeding	38
Conclusions and perspectives	39
Acknowledgements	40
References	40
Nutrient regulation of glucagon secretion: involvement in metabolism and diabetes Laura Marroquí, Paloma Alonso-Magdalena, Beatriz Merino, Esther Fuentes, Angel Nadal & Ivan Quesada	
Introduction	48
Nutrient regulation of pancreatic α -cells	49
Glucose	49
Amino acids	50
Fatty acids	50
Other nutrients	51
Other levels of regulation	51
Actions of glucagon on nutrient metabolism	52
Glucagon synthesis	52
Glucagon receptor and intracellular signalling	52
Effects of glucagon on hepatic nutrient metabolism	52
Effects of glucagon on food intake, body weight and body energy	54
Other effects of glucagon	54
Involvement of glucagon in diabetes pathophysiology	55
Role of glucagon in the control of glycaemia during diabetes mellitus	55
Therapeutic potential of modulating glucagon secretion and action in diabetes	56
Conclusions and future directions	57
Acknowledgements	57
References	57

Regulation of adipocyte lipolysis	
Gema Frühbeck, Leire Méndez-Giménez, José-Antonio Fernández-Formoso, Secundino Fernández &	
Amaia Rodríguez	66
Introduction	63
Control of lipolysis	64 65
Classic factors	65
Catecholamine-induced regulation Hormone-mediated control	65
Hormone-mediated control: insulin	65
Hormone-mediated control: growth hormone	65
Hormone-mediated control: other hormones	66
Cytokines and other 'newcomers'	67
Cytokine regulation of lipolysis	67
Cytokine regulation of lipolysis: TNF- α	67
Cytokine regulation of lipolysis: IL-6 and IL-15	68
Cytokine regulation of lipolysis: leptin	68
Cytokine regulation of lipolysis: adiponectin	68
Other elements involved in lipolysis	69
Other elements involved in lipolysis: nitric oxide	69
Other elements involved in lipolysis: natriuretic peptides	69
Other elements involved in lipolysis: endocannabinoid system	69
Other elements involved in lipolysis: ghrelin	70
Other elements involved in lipolysis: other miscellaneous agents	70
Influence of subcellular compartmentalisation of lipases	71
TAG hydrolysis	71
Diacylglycerol hydrolysis	72
Monoacylglycerol hydrolysis	74
Other lipases	74
Lipid droplet proteins	74
Lipid droplet proteins: perilipin	74
Lipid droplet proteins: coactivator comparative gene identification-58 (CGI-58) or α/β-hydrolase	7/
domain-containing protein 5 (ABHD5)	75
Lipid droplet proteins: Cide domain-containing proteins	75
Lipid droplet proteins: other proteins (GPIHBP1 and Rab)	75
Integral membrane proteins and transporters Integral membrane proteins and transporters: aquaporin-7	76 76
Integral membrane proteins and transporters: aquaporm-7 Integral membrane proteins and transporters: caveolin-1	76
Integral membrane proteins and transporters: caveomi-1 Integral membrane proteins and transporters: fatty acid translocase (CD36)	76
Integral membrane proteins and transporters: adipose fatty acid binding protein	76
Integral membrane proteins and transporters: fatty acid transport protein 1	77
Integral membrane proteins and transporters: fatty acid transport protein 4	77
Integral membrane proteins and transporters: acyl-CoA synthetase long-chain 1	77
Depot-specific differences	78
Lipophagy: role of autophagy in lipid metabolism	79
Lipolysis in human obesity	80
Concluding remarks and future perspectives	82
Acknowledgements	82
References	82
The role of vitamins and minerals in modulating the expression of microRNA	
Emma L. Beckett, Zoe Yates, Martin Veysey, Konsta Duesing & Mark Lucock	
Introduction	94
MicroRNA	94
MicroRNA in epigenetics	95
Nutritional modulation of epigenetic traits	97
Modulation of microRNA expression by micronutrients	97
Vitamin D	97
Folate and related vitamins involved in methyl group metabolism	98
Retinoic acid	100
Vitamin C	100

Vitamin E Selenium	100 101
Zinc	101
Iron, magnesium and aluminium	101
Direct uptake of microRNA from foods	101
Conclusion	102
Supplementary material	102
Acknowledgements	102
References	102
Physiological responses to food intake throughout the day	
Jonathan D. Johnston	
Introduction	107
The mammalian circadian timing system	107
Metabolic functions of circadian timing and specific roles of peripheral clocks	108
Timed feeding as a synchroniser of peripheral clocks	108
The food-entrainable oscillator	108
Regulation of rhythms in peripheral tissues Human metabolic physiology and postprandial responses vary across the day	109 110
Diurnal changes	110
Identification of endogenous circadian rhythms	110
Effects of body weight on circadian rhythms	111
Relevance to human lifestyle	112
Dietary regulation of body weight	112
Shift work and jet-lag	113
Conclusion	113
Acknowledgements	114
References	114
Misconceptions about fructose-containing sugars and their role in the obesity epidemic	
Vincent J. van Buul, Luc Tappy & Fred J. P. H. Brouns	
Introduction	119
Metabolic effects of fructose	121
Effects of excessive doses of fructose	121
Disputable interpretations	122
Alternative and balancing views	123
If it is not fructose, is it just added sugars in a solution?	123
Fructose and obesity	124
Fructose, uric acid and insulin resistance Final considerations	125 125
Conclusion	126
Acknowledgements	126
References	127
Nut consumption for vascular health and cognitive function	
Jayne A. Barbour, Peter R. C. Howe, Jonathan D. Buckley, Janet Bryan & Alison M. Coates	
Introduction	131
Methods	133
Selection of studies	133
Results	134
Effects of nuts on glucoregulation	135
Effects of nut consumption on blood pressure	143
Effects of nut consumption on inflammatory markers	150
Effects of nut consumption on endothelial vasodilator function	152
Effects of nut consumption on arterial compliance	153
Effects of nut consumption on cognitive performance	153
Proposed mechanisms Conclusions	153
Acknowledgements	154 154
References	154
	151

Understanding heterogeneity among elderly consumers: an evaluation of segmentation approaches

in the functional food market Lotte D. T. van der Zanden, Ellen van Kleef, René A. de Wijk & Hans C. M. van Trijp 159 Introduction Segmentation bases 160 Evaluation criteria 161 Person-level bases 161 Cognitive age 161 Life course 162 Time perspective 163 Demographics 163 Summary 164 Food-level bases 164 General food beliefs 164 Food choice motives 165 Summary 165 Product-level bases 165 Product attributes and benefits sought 166 Past purchase 166 Summary 167 Discussion 167 Guidelines and conclusion 167 Limitations and future research 168 Acknowledgements 168 References 168 The endocannabinoid system and appetite: relevance for food reward Gerry Jager & Renger F. Witkamp Introduction 172 The endocannabinoid system: a versatile and evolutionary well-conserved signalling system 173 Endocannabinoids and phytocannabinoids 173 The endocannabinoid system as part of an extensive lipid-based signalling network 173 Dietary modulation of endocannabinoid ligands and receptors 174 Dietary compounds with cannabinoid activity 175 Food reward: key concepts and neurophysiology 176 Endocannabinoids, appetite control and palatability 177 Food reward and palatability 177 Animal studies on the role of (endo)cannabinoids in appetite control and palatability 177 Studies in human subjects: marijuana 'munchies' v. controlled laboratory studies 178 Endocannabinoid dysregulation and food intake 179 Eating disorders and obesity 179 Therapeutic modulation of the endocannabinoid system in disease-related anorexia and involuntary 179 weight loss Translational issues and future prospects 180 Translational issues 180 Future prospects 180 Conclusions 181 Acknowledgements 181 References 181 Factors affecting circulating levels of peptide YY in humans: a comprehensive review Jamie A. Cooper Introduction 186 Discussion 187 Structure of peptide YY 187 Functions of peptide YY 187 Mechanism of action for peptide YY 187 Exogenous administration of peptide YY 188 Role of peptide YY in appetite control 188

Peptide YY levels in non-obese v. obese	189
Peptide YY as a therapeutic target for obesity	190
Effects of exercise on peptide YY	190
Effects of ethnicity, sex and age on peptide YY levels	190
Impact of macronutrients on peptide YY	191
Dietary fatty acids and peptide YY	192
Mechanisms behind the role of fatty acid composition on peptide YY levels	193
Future direction	193
Conclusion	193
Acknowledgements	194
References	194