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Abstract

Let A be a semisimple modular annihilator Banach algebra and let LA be the left regular representa-
tion of A. We show how the strong radical of A is related to the strong radical of LA.

1980 Mathematics subject classification (Amer. Math. Soc): 46 H 10, 46 H 15.

1. Introduction

Let A be a semisimple Banach algebra and let B(A) be the Banach algebra of all
bounded linear operators on A. For each a e A, let La be the linear map on A
given by La(x) = ax, x e A. Then the mapping a -» La is a norm-decreasing
algebra isomorphism of A into B(A). Let LA be the closure of {La: a e A} in
B{A). We call LA the fe// angular representation of A. By the strong radical <SA of
4̂ we mean the intersection of all maximal modular ideals of A (if there are no
such ideals we set <SA = A). The strong radical of modular annihilator algebras
was studied by Yood in [11]. Our main concern in this paper is to show how <BA

and <SLA are related for these algebras, and in particular for semisimple right
complemented Banach algebras.
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2. Preliminaries

Let A be a Banach algebra. For any subset S of A, lA(S) and rA(S) will
denote, respectively, the left and right annihilators of S in A, and clA(S) will
denote the closure of 5 in A. The socle of A will be denoted by SA. By an ideal we
will always mean a two-sided ideal unless otherwise specified. We call A modular
annihilator if every maximal modular left (right) ideal of A has a nonzero right
(left) annihilator. A semisimple Banach algebra with dense socle is modular
annihilator [9, Lemma 3.11, page 41]. We call A an annihilator algebra if every
proper closed left (right) ideal of A has a nonzero right (left) annihilator.

All Banach algebras considered in this paper are over the complex field.
A minimal idempotent e in a Banach algebra A is called finite-dimensional if

eA is finite-dimensional. If A is semisimple then this is equivalent to Ae being
finite-dimensional [11, Proposition 2.2, page 82]. An idempotent e in A is called
simple if eAe is a simple algebra and e is called central if ex = xe for all x e A
(see [10, pages 320-322]).

Let A be a semisimple Banach algebra. If M is an ideal of A, then lA(M) =
rA(M) [9, page 37] and we denote the common value by Ma. (We let Maa =
(Ma)a). If SA = (0) then every non-zero left (right) ideal of A contains a minimal
idempotent [9, page 37].

We will also be interested in the right multiplication operators Ra, where, for
each a e A, Ra(x) = xa for all x e A.

Let A be a semisimple Banach algebra. Then LA is semisimple and the
mapping a -» La embeds A as a dense left ideal of LA. (See [7] or [8].) In the rest
of the paper we will identify^ as a dense left ideal of LA. (For a more complete
treatment of LA see [8].)

3. Right complemented Banach algebras

Let A be a Banach algebra and Lr be the set of all closed right ideals in A. We
say that A is right complemented (r.c.) if there exists a mapping p: R -* Rp of Lr

into itself (called a right complementor) having the following properties:

(Cl) RHR>> = (0) (R^Lr);

(C2) R + Rp = A (R^Lr);

(C3) (R')'-R (R^Lr);

(Cr) if Rx c R2 then R$ c Uf (i?1( fl2 e Lr).

If A is a semisimple r.c. Banach algebra then A has dense socle [6, Lemma 5,
page 655] and therefore A is modular annihilator.

https://doi.org/10.1017/S1446788700028901 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028901


[ 3 ] Strong radical and left regular representation 3

In the rest of this section, let A be a semisimple r.c. Banach algebra with a right
complementor p.

LEMMA 3.1. Let I andJ be closed ideals in A such that I n J = (0). Then J c Ip

andlcJP.

PROOF. Since IJ c 7 n j = (0), / c rA(I) and 7 c lA(J). But, by [6, Lemma
1, page 652], I? = rA(I) and J" = /,,(/). Hence / c / ^ a n d / c /*.

Let {7X: X G A) be the family of all distinct minimal closed ideals of A. Since
A is the direct topological sum of the 7X and since for every closed ideal 7 of A,
I e rA(I) = A, it follows from [2, Theorem 3.5, page 232] that {7X: X G A} is an
unconditional decomposition for A. For each a G A and X G A, write a = ax +
bx with ax G 7X and bx G 7<f.

THEOREM 3.2. (1) T-br each a e A, a = Ex ax, where convergence is with respect
to the net of finite partial sums.

(2) There exists a constant K > 0 JMC/I //iaf, if Xx,..., Xn are distinct elements of
A andcXj G JX /Ae«

In particular, for each a & A,

PROOF. (1). Since (7X: X G A} is an unconditional decomposition for A, we
have a = Ex cx, where cx G 7X and convergence is with respect to the net of finite
partial sums. We show that cx = ax for all X G A. Let Xo G A. Then a - cX(j =

cx. By Lemma 3.1, 7X c 7jf for X ¥= Xo and so

d\_ = a - cx _ e Ci

Thus a = cx + dx with cx G 7X and dx G /f. But a = ax + bx with ax e
A o A o A o A o A o A o A o A o A o

IXo and bXo G 7^. Therefore, by the uniqueness of decomposition we must have
C\o =

 a\0 and dXo = bX(j. Hence a = Exax.
(2). This follows from [2, Theorem 3.4, page 231] and (1).

COROLLARY 3.3. Let Px be the projection on A with range Ix and nullspace I£.
Then the family {Px: X G A} is bounded.

Every minimal idempotent of A is also a minimal idempotent of LA. Since
every minimal closed ideal 7 of A is of the form 7 = clA(AeA), where e is a
minimal idempotent in A, it follows that, for each X G A, Jx = clL (7X) is a
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minimal closed ideal of LA. Moreover A = c\A(LxIx) implies that LA =
clL (Lx . / x ) . Thus {Jx: A. e A } is the family of all distinct minimal closed ideals
of LA. LA is an annihilator algebra [8].

THEOREM 3.4. The family {Jx. X e A} is an unconditional decomposition for

PROOF. Let Xlt..., Xn be distinct elements of A and let Tx be any element of
Jx. (/ = 1 , . . . , «). Let a G A. Then

(TK + ••• + T x J ( a ) = T X i ( a K ) + ••• + T K { a x J , 1 < m < n ,

and Tx(ax) e IXj (i = 1 , . . . , n). By Theorem 3.2,

| | ^ X i ( a X i ) 4- ••• + T X m ( a x J \ \ ^ K \ \ T X i ( a X i ) + ••• + T K ( a X i ) \ \ , 1 < m < n .

Hence

I K + ••• + : r x m N ^ l l r x 1
+ ••• + T K I l < m < » .

Therefore, by [2, Theorem 3.4, page 231], [Jx: X e A} is an unconditional
decomposition for L^.

PROPOSITION 3.5. Let B be a semisimple Banach algebra with dense socle. Then
the following statements are equivalent:

(1) The minimal closed ideals of B form an unconditional decomposition for B.
(2) / © lB(I) = Bfor all closed ideals I ofB.

PROOF. Let / be a closed ideal in B, and let e be a minimal idempotent in B.
Then either e e / o i e e lB(I) = rB(I) [10, page 320]. Therefore, if M is a
minimal closed ideal in B then either M c / or M c lB{I). We can apply the
argument in the proof of [2, Theorem 3.5, page 232] to show that the statements
(1) and (2) are equivalent.

COROLLARY 3.6. For every closed ideal I of LA, I © lL/l(I)
 = LA-

PROOF. This follows from Theorem 3.4 and Proposition 3.5.

4. Maximal modular ideals

Throughout this section let A and B be semisimple Banach algebras such that
A is a dense left ideal in B. Then A is an abstract Segal algebra in B [4]. If A is
modular annihilator then so is B. In fact, let J( be a maximal modular left ideal
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in B. By [4, Lemma 1.3, page 298], J( n A is a maximal modular left ideal of A
and, by [4, Lemma 3.7, page 305], J( = c\B(J( n A). Since ^(^T n .4) * (0), it
follows that rB(J()± (0). Thus 5 is a right modular annihilator algebra and
therefore, by [9, Theorem 3.4, page 38], is a modular annihilator algebra. The
converse is also true (see [8]).

NOTATION. We recall that if M(Jf) is an ideal of A (B) then Ma (Jfa) is the
common value lA(M) = rA(M)(lB(J?) = rB(Jf)).

LEMMA 4.1. / / A is modular annihilator, then A and B have the same finite-
dimensional minimal idempotents.

PROOF. Let EA(EB) be the set of all finite-dimensional minimal idempotents in
A(B). If e e EA, then eA = eB so that e e EB. Conversely, suppose e e EB. Let
K = c\B(BeB). Then AT is a finite-dimensional minimal closed ideal of B. Also
K n A ¥= (0), for otherwise KB = (0) which is impossible because B is semisim-
ple. Therefore K C\ A contains a minimal idempotent, say / in A [9, page 37].
Since K is finite-dimensional and c\A(AfA) is dense in K, we obtain K =
c\A(AfA). Hence K c A and e e EA.

THEOREM 4.2. If A is modular annihilator then M -* clB(M) = J(is a one-to-one
correspondence between the maximal modular ideals M of A and the maximal
modular ideals J( of B andM = M C\ A.

PROOF. Let M be a maximal modular ideal of A. Then M" =£ (0) so that
M ffi M" = A. By [3, Theorem 6.4, page 574], A/M is a finite-dimensional
algebra with identity. Therefore M" = uA = Au, for some idempotent u in A.
Since Maa = (1 - M)^ = ,4(1 - u) and M c Maa, by the maximality of M, we
get M = (1 - u)A = ,4(1 - M). Let J? = (1 - u)B = B(l - u). Then ^Tfl = M£
= Bu and M" is dense in Jt". Since Ma is finite-dimensional, J(a = Ma.
Therefore Jta is a simple algebra and the equality M ® J(a = B implies that Jt
is a maximal modular ideal of B. Clearly J( = c\B(M).

Conversely, let Jf be a maximal modular ideal of B. Since B is modular
annihilator, by the argument above, there exists an idempotent v in B such that
M = (1 - u)5 - 5 (1 ~ v) and ^ a = aB = J5u. As ^#a is a finite-dimensional
modular annihilator algebra, J(a is a finite sum of minimal left ideals. Therefore,
by Lemma 4.1, J(a c A and so t e i Let M = (1 - u),4 = ,4(1 - u). Since
Ma = vA = Av is dense in J(Q and ^ " is finite-dimensional, we obtain M" =
J(a. Therefore M" is a simple algebra and the equality M" ® M = A implies that
M is a maximal modular ideal in A. We have M = J( C\ A.
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From the proof of Theorem 4.2 we see that if M is a maximal modular ideal of
A then M = (1 — e)A = A(\ - e), for some central simple idempotent e in A.
Conversely, if e is a central simple idempotent in A, then M = (1 - e)A =
A(l — e) is a maximal modular ideal of A since / = Ae = eA is a simple algebra
and I ® M = A. Hence the following results.

COROLLARY 4.3. If A is modular annihilator, then A and B have the same central
simple idempotents.

NOTATION. Let WlA (3WB) be the set of all maximal modular ideals in A (B).

COROLLARY 4.4. / / A is modular annihilator then the mapping (1 — e)A ->
(1 — e)B, as e runs over the central simple idempotents of A (or equivalently of B),
is a one-to-one map of 181A onto TlB. Moreover, eA = eB and is finite-dimensional
for every central simple idempotent e of A.

From Theorem 4.2 it follows that if A is modular annihilator then <3A = <3B n
A. In the next section we will see that we also have <SB = clB(@^) for certain
modular annihilator Banach algebras A and B.

5. The strong radicals of A and LA

Let A be a semisimple Banach algebra. In this section we will see how the
strong radical <SA of A is related to the strong radical <BL of LA for certain A.

PROPOSITION 5.1. Let A and B be semisimple Banach algebras such that A is a
dense left ideal in B. Assume that A is modular annihilator. If B has the property
that c l s ( / n A) = I for every closed ideal I of B, then <BB = c l ^ ® ^ ) .

PROOF. Let Q = dA(E{Ma: M e mA})and J = c l B ( E ^ a : Jf e WlB}). Then,
by Corollary 4.4, Q" = <SA and £" = <BB; moreover, 2. = c lB(g) so that 2" =
^B(Q) = rB(Q)- Now rB(Q) C\A = rA(Q) and, by the condition in the theorem,
dB(rA(Q)) = rB(Q). Hence

@* = 2° = rB(Q) = clB(rA(Q)) = clB(Q°) = d , ( @ J .

COROLLARY 5.2. Let A be a semisimple right complemented Banach algebra. If
LA has the property that x e c ^ (xLA) for all x e LA, then <SL = clL (@^).
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PROOF. By [1, Lemma 3, page 39], A has the property that x e dA(xA) for all
x e i . Therefore, if LA also has the property then, by [4, Theorem 2.3, page 299],
c\L ( /) H A = I for every closed ideal I of A. The conclusion now follows from
Proposition 5.1, since A is modular annihilator.

PROPOSITION 5.3. Let A be a.semisimple annihilator right complemented Banach
algebra. Then

(i) clL ( / ) n A = /, for every closed right ideal I of A.
(ii) clL (7 n A) = / , for every closed left ideal J of LA.

PROOF, (i) Let I be a closed right ideal of A and let p be the given right
complementer on A. Let {ea: a e £2} be a maximal family of mutually orthogo-
nal minimal ^-projections in /. (We recall that a minimal idempotent e is called a
minimal p-projection if (eA)p = (1 - e)A. See [6, page 654].) We claim that
/ = dA(LaeaA). In fact let J = clA(EaeaA); J c I. If J ± I then JP n / # (0)
and therefore contains a minimal /^-projection e. Since every ea e J and e e 7^,
we have eae = eea = 0 for all a e Q [6, page 654]. As e e /, this shows that { ea:
a e fl } is not a maximal family of mutually orthogonal minimal /^-projections in
/; a contradiction. Therefore / = clA(LaeaA). Let K = C\LA(I). Then # =
^LA(X.aeaA) = dLA(LaeaLA). We have 1 = rA{lA{I)) and tf= rLJJLA{K)) =
rLpLA(I)). Now 1 ^ ( 7 ) ) 3 rLA(lLA(I)) = K so that 7 = ^ (^ (7 ) ) = r L ^ ( 7 ) )
n y4 2 *• n ^ . Since / c K n ^, we get / = A: n y4.

(ii) By [7, Theorem 3.6], A contains a left approximate identity {uy: y e F )
such that {Lu : y e F} is bounded in 1^. Clearly {Lu : y e F} is a bounded left
approximate identity for L,,. Therefore a e cl^(yla) and i e clL (LAb) for all
aGi4 and b e 5. Let J be a closed left ideal of LA and x G / . Since SA is a
dense ideal in LA [8], S,,^ c j n i and x e clB(L/(x) = 01^(54^) c clB(J n ^4).
Hence / c clB( J n yl) and as c l ^ / n yl) c / , we obtain / = c lB( / n /I).

It is easy to see that properties (i) and (ii) above also hold for closed ideals.

COROLLARY 5.4. Let A be a semisimple annihilator right complemented Banach
algebra with a right complementorp. Then, for every closed ideal M of LA,

Ma = cl^([ MC\AY).

PROOF. By Proposition 5.3 (ii), J( = C\LA{M n A) and J(a = C\LA{JC n A).
But Ma n A = lA(Jf). Hence J(a = C\LA(IA{JI)) and SO

By [6, Lemma 1, page 652], lA(J( C\A) = \J(C\ Ay. Therefore

https://doi.org/10.1017/S1446788700028901 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028901


8 B. J. Tomiuk [8]

THEOREM 5.5. Let A be a semisimple annihilator right complemented Banach
algebra. Then @LA = C\LA((3A) and <SA = <SLA n A.

PROOF. This follows at once from Proposition 5.1 and 5.3.

Let A be a semisimple Banach algebra. Let

NL= {x G A: Lx is compact}, NR= {x e A: Rxis compact}.

Let

JfL = { z e LA: Lz is compact}, ^ , = { z e Z,^: /?z is compact}.

Clearly A^ and NR (JVL and ^VR) are closed ideals in A(LA).
Let A be a semisimple right complemented Banach algebra. Since A is modular

annihilator, by [11, Theorem 3.3, page 83], <BA = N[ = JV .̂ By [6, Lemma 1, page
652], A^ = N£ and A^ = Nfi, where /> is the right complementer on A. As

= # £ and (A^)a = (N$)p = NR, we obtain NL = NR = <Ba
A.

THEOREM 5.6. Let A be a semisimple right complemented Banach algebra. Then
(i) @5 = NL = NR.

(n)®iA=jrL = jrR.

If A is also an annihilator algebra, then
(iii) JfL = jrR = C\LA{NL) = C\LA{NR).

(iv) NL = NR = JfL Pi A = J/~R n A.

PROOF, (i) This was proved above.
(ii) Since JfL is a closed ideal of LA, by Corollary 3.6, we have JTL © JTl = LA.

Similarly JT£ ® J/~£a = LA. As JfL c ^T/a, we obtain JfL = ^ o a . Likewise
•^ji =jrRa- N o w> by [11. Theorem 3.3, page 83], <BLA = JV£ = JV£. Hence

©£, = - ^ = ^ -
(iii) Suppose 4̂ is an annihilator algebra. Then, by Proposition 5.3, Theorem 5.5

and (i), we have

Nl = <ALA(NZ) nA = cl^(@ A) C\A = <SLAC\A=jV£nA.

Therefore, in view of Corollary 5.4,

where p is.the right complementer on A. By [6, Lemma 1, page 652], (A^)* =
= NL. Hence JTL = dL (NL). Likewise JfR = clL (NR). By (ii), JTL =

jrR.
(iv) This follows from Proposition 5.3 and (iii).
Theorem 5.6 answers some of the questions in [11] (see [11, page 85]).
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