J. Austral. Math. Soc. (Series A) 43 (1987), 1-9

THE STRONG RADICAL AND THE LEFT REGULAR REPRESENTATION

B. J. TOMIUK

(Received 27 July 1985)

Communicated by J. F. Price

Abstract

Let A be a semisimple modular annihilator Banach algebra and let L_A be the left regular representation of A. We show how the strong radical of A is related to the strong radical of L_A .

1980 Mathematics subject classification (Amer. Math. Soc.): 46 H 10, 46 H 15.

1. Introduction

Let A be a semisimple Banach algebra and let B(A) be the Banach algebra of all bounded linear operators on A. For each $a \in A$, let L_a be the linear map on A given by $L_a(x) = ax$, $x \in A$. Then the mapping $a \to L_a$ is a norm-decreasing algebra isomorphism of A into B(A). Let L_A be the closure of $\{L_a: a \in A\}$ in B(A). We call L_A the *left angular representation of* A. By the strong radical \mathfrak{S}_A of A we mean the intersection of all maximal modular ideals of A (if there are no such ideals we set $\mathfrak{S}_A = A$). The strong radical of modular annihilator algebras was studied by Yood in [11]. Our main concern in this paper is to show how \mathfrak{S}_A and \mathfrak{S}_{L_A} are related for these algebras, and in particular for semisimple right complemented Banach algebras.

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

B. J. Tomiuk

2. Preliminaries

Let A be a Banach algebra. For any subset S of A, $l_A(S)$ and $r_A(S)$ will denote, respectively, the left and right annihilators of S in A, and $cl_A(S)$ will denote the closure of S in A. The socle of A will be denoted by S_A . By an ideal we will always mean a two-sided ideal unless otherwise specified. We call A modular annihilator if every maximal modular left (right) ideal of A has a nonzero right (left) annihilator. A semisimple Banach algebra with dense socle is modular annihilator [9, Lemma 3.11, page 41]. We call A an annihilator algebra if every proper closed left (right) ideal of A has a nonzero right (left) annihilator.

All Banach algebras considered in this paper are over the complex field.

A minimal idempotent e in a Banach algebra A is called *finite-dimensional* if eA is finite-dimensional. If A is semisimple then this is equivalent to Ae being finite-dimensional [11, Proposition 2.2, page 82]. An idempotent e in A is called *simple* if eAe is a simple algebra and e is called *central* if ex = xe for all $x \in A$ (see [10, pages 320-322]).

Let A be a semisimple Banach algebra. If M is an ideal of A, then $l_A(M) = r_A(M)$ [9, page 37] and we denote the common value by M^a . (We let $M^{aa} = (M^a)^a$). If $S_A^a = (0)$ then every non-zero left (right) ideal of A contains a minimal idempotent [9, page 37].

We will also be interested in the right multiplication operators R_a , where, for each $a \in A$, $R_a(x) = xa$ for all $x \in A$.

Let A be a semisimple Banach algebra. Then L_A is semisimple and the mapping $a \to L_a$ embeds A as a dense left ideal of L_A . (See [7] or [8].) In the rest of the paper we will identify A as a dense left ideal of L_A . (For a more complete treatment of L_A see [8].)

3. Right complemented Banach algebras

Let A be a Banach algebra and L_r be the set of all closed right ideals in A. We say that A is *right complemented* (r.c.) if there exists a mapping $p: R \to R^p$ of L_r into itself (called a right complementor) having the following properties:

(C1)
$$R \cap R^p = (0) \quad (R \in L_r);$$

(C2)
$$R + R^p = A \qquad (R \in L_r);$$

(C3) $(R^p)^p = R \qquad (R \in L_r);$

(Cr) if
$$R_1 \subseteq R_2$$
 then $R_2^p \subseteq R_1^p$ $(R_1, R_2 \in L_r)$.

If A is a semisimple r.c. Banach algebra then A has dense socle [6, Lemma 5, page 655] and therefore A is modular annihilator.

In the rest of this section, let A be a semisimple r.c. Banach algebra with a right complementor p.

LEMMA 3.1. Let I and J be closed ideals in A such that $I \cap J = (0)$. Then $J \subset I^p$ and $I \subset J^p$.

PROOF. Since $IJ \subset I \cap J = (0)$, $J \subset r_A(I)$ and $I \subset l_A(J)$. But, by [6, Lemma 1, page 652], $I^p = r_A(I)$ and $J^p = l_A(J)$. Hence $J \subset I^p$ and $I \subset J^p$.

Let $\{I_{\lambda}: \lambda \in \Lambda\}$ be the family of all distinct minimal closed ideals of A. Since A is the direct topological sum of the I_{λ} and since for every closed ideal I of A, $I \oplus r_A(I) = A$, it follows from [2, Theorem 3.5, page 232] that $\{I_{\lambda}: \lambda \in \Lambda\}$ is an unconditional decomposition for A. For each $a \in A$ and $\lambda \in \Lambda$, write $a = a_{\lambda} + b_{\lambda}$ with $a_{\lambda} \in I_{\lambda}$ and $b_{\lambda} \in I_{\lambda}^{A}$.

THEOREM 3.2. (1) For each $a \in A$, $a = \sum_{\lambda} a_{\lambda}$, where convergence is with respect to the net of finite partial sums.

(2) There exists a constant K > 0 such that, if $\lambda_1, \ldots, \lambda_n$ are distinct elements of Λ and $c_{\lambda_i} \in I_{\lambda_i}$, then

$$\|c_{\lambda_1} + \cdots + c_{\lambda_m}\| \leq K \|c_{\lambda_1} + \cdots + c_{\lambda_n}\|, \qquad 1 \leq m \leq n.$$

In particular, for each $a \in A$,

$$||a_{\lambda_1} + \cdots + a_{\lambda_m}|| \leq K ||a_{\lambda_1} + \cdots + a_{\lambda_n}||, \qquad 1 \leq m \leq n.$$

PROOF. (1). Since $\{I_{\lambda}: \lambda \in \Lambda\}$ is an unconditional decomposition for A, we have $a = \sum_{\lambda} c_{\lambda}$, where $c_{\lambda} \in I_{\lambda}$ and convergence is with respect to the net of finite partial sums. We show that $c_{\lambda} = a_{\lambda}$ for all $\lambda \in \Lambda$. Let $\lambda_0 \in \Lambda$. Then $a - c_{\lambda_0} = \sum_{\lambda \neq \lambda_0} c_{\lambda}$. By Lemma 3.1, $I_{\lambda} \subset I_{\lambda_0}^p$ for $\lambda \neq \lambda_0$ and so

$$d_{\lambda_0} = a - c_{\lambda_0} \in cI_{\mathcal{A}}\left(\sum_{\lambda \neq \lambda_0} I_{\lambda}\right) \subset I_{\lambda_0}^p.$$

Thus $a = c_{\lambda_0} + d_{\lambda_0}$ with $c_{\lambda_0} \in I_{\lambda_0}$ and $d_{\lambda_0} \in I_{\lambda_0}^p$. But $a = a_{\lambda_0} + b_{\lambda_0}$ with $a_{\lambda_0} \in I_{\lambda_0}$ and $b_{\lambda_0} \in I_{\lambda_0}^p$. Therefore, by the uniqueness of decomposition we must have $c_{\lambda_0} = a_{\lambda_0}$ and $d_{\lambda_0} = b_{\lambda_0}$. Hence $a = \sum_{\lambda} a_{\lambda}$.

(2). This follows from [2, Theorem 3.4, page 231] and (1).

COROLLARY 3.3. Let P_{λ} be the projection on A with range I_{λ} and nullspace I_{λ}^{p} . Then the family $\{P_{\lambda}: \lambda \in \Lambda\}$ is bounded.

Every minimal idempotent of A is also a minimal idempotent of L_A . Since every minimal closed ideal I of A is of the form $I = cl_A(AeA)$, where e is a minimal idempotent in A, it follows that, for each $\lambda \in \Lambda$, $\mathscr{I}_{\lambda} = cl_{L_A}(I_{\lambda})$ is a minimal closed ideal of L_A . Moreover $A = cl_A(\Sigma_{\lambda}I_{\lambda})$ implies that $L_A = cl_A(\Sigma_{\lambda}\mathscr{I}_{\lambda})$. Thus $\{\mathscr{I}_{\lambda}: \lambda \in \Lambda\}$ is the family of all distinct minimal closed ideals of L_A . L_A is an annihilator algebra [8].

THEOREM 3.4. The family $\{\mathscr{I}_{\lambda}: \lambda \in \Lambda\}$ is an unconditional decomposition for L_{A} .

PROOF. Let $\lambda_1, \ldots, \lambda_n$ be distinct elements of Λ and let T_{λ_i} be any element of \mathscr{I}_{λ_i} $(i = 1, \ldots, n)$. Let $a \in A$. Then

$$(T_{\lambda_1} + \cdots + T_{\lambda_m})(a) = T_{\lambda_1}(a_{\lambda_1}) + \cdots + T_{\lambda_m}(a_{\lambda_m}), \quad 1 \leq m \leq n,$$

and $T_{\lambda_i}(a_{\lambda_i}) \in I_{\lambda_i}$ (i = 1, ..., n). By Theorem 3.2,

 $\left\|T_{\lambda_1}(a_{\lambda_1})+\cdots+T_{\lambda_m}(a_{\lambda_m})\right\| \leq K \left\|T_{\lambda_1}(a_{\lambda_1})+\cdots+T_{\lambda_n}(a_{\lambda_n})\right\|, \qquad 1 \leq m \leq n.$

Hence

$$||T_{\lambda_1} + \cdots + T_{\lambda_m}|| \leq K ||T_{\lambda_1} + \cdots + T_{\lambda_n}||, \qquad 1 \leq m \leq n.$$

Therefore, by [2, Theorem 3.4, page 231], $\{\mathscr{I}_{\lambda}: \lambda \in \Lambda\}$ is an unconditional decomposition for L_{A} .

PROPOSITION 3.5. Let B be a semisimple Banach algebra with dense socle. Then the following statements are equivalent:

- (1) The minimal closed ideals of B form an unconditional decomposition for B.
- (2) $I \oplus l_B(I) = B$ for all closed ideals I of B.

PROOF. Let I be a closed ideal in B, and let e be a minimal idempotent in B. Then either $e \in I$ or $e \in l_B(I) = r_B(I)$ [10, page 320]. Therefore, if M is a minimal closed ideal in B then either $M \subset I$ or $M \subset l_B(I)$. We can apply the argument in the proof of [2, Theorem 3.5, page 232] to show that the statements (1) and (2) are equivalent.

COROLLARY 3.6. For every closed ideal I of L_A , $I \oplus l_{L_A}(I) = L_A$.

PROOF. This follows from Theorem 3.4 and Proposition 3.5.

4. Maximal modular ideals

Throughout this section let A and B be semisimple Banach algebras such that A is a dense left ideal in B. Then A is an abstract Segal algebra in B [4]. If A is modular annihilator then so is B. In fact, let \mathcal{M} be a maximal modular left ideal

[5]

in B. By [4, Lemma 1.3, page 298], $\mathcal{M} \cap A$ is a maximal modular left ideal of A and, by [4, Lemma 3.7, page 305], $\mathcal{M} = \operatorname{cl}_B(\mathcal{M} \cap A)$. Since $r_A(\mathcal{M} \cap A) \neq (0)$, it follows that $r_B(\mathcal{M}) \neq (0)$. Thus B is a right modular annihilator algebra and therefore, by [9, Theorem 3.4, page 38], is a modular annihilator algebra. The converse is also true (see [8]).

NOTATION. We recall that if $M(\mathcal{M})$ is an ideal of A(B) then $M^{a}(\mathcal{M}^{a})$ is the common value $l_{A}(M) = r_{A}(M)(l_{B}(\mathcal{M}) = r_{B}(\mathcal{M}))$.

LEMMA 4.1. If A is modular annihilator, then A and B have the same finitedimensional minimal idempotents.

PROOF. Let $E_A(E_B)$ be the set of all finite-dimensional minimal idempotents in A(B). If $e \in E_A$, then eA = eB so that $e \in E_B$. Conversely, suppose $e \in E_B$. Let $K = cl_B(BeB)$. Then K is a finite-dimensional minimal closed ideal of B. Also $K \cap A \neq (0)$, for otherwise KB = (0) which is impossible because B is semisimple. Therefore $K \cap A$ contains a minimal idempotent, say f in A [9, page 37]. Since K is finite-dimensional and $cl_A(AfA)$ is dense in K, we obtain $K = cl_A(AfA)$. Hence $K \subset A$ and $e \in E_A$.

THEOREM 4.2. If A is modular annihilator then $M \to \operatorname{cl}_B(M) = \mathcal{M}$ is a one-to-one correspondence between the maximal modular ideals M of A and the maximal modular ideals \mathcal{M} of B and $M = \mathcal{M} \cap A$.

PROOF. Let M be a maximal modular ideal of A. Then $M^a \neq (0)$ so that $M \oplus M^a = A$. By [3, Theorem 6.4, page 574], A/M is a finite-dimensional algebra with identity. Therefore $M^a = uA = Au$, for some idempotent u in A. Since $M^{aa} = (1 - u)A = A(1 - u)$ and $M \subset M^{aa}$, by the maximality of M, we get M = (1 - u)A = A(1 - u). Let $\mathcal{M} = (1 - u)B = B(1 - u)$. Then $\mathcal{M}^a = uB = Bu$ and M^a is dense in \mathcal{M}^a . Since M^a is finite-dimensional, $\mathcal{M}^a = M^a$. Therefore \mathcal{M}^a is a simple algebra and the equality $\mathcal{M} \oplus \mathcal{M}^a = B$ implies that \mathcal{M} is a maximal modular ideal of B. Clearly $\mathcal{M} = cl_B(M)$.

Conversely, let \mathcal{M} be a maximal modular ideal of B. Since B is modular annihilator, by the argument above, there exists an idempotent v in B such that $\mathcal{M} = (1 - v)B = B(1 - v)$ and $\mathcal{M}^a = vB = Bv$. As \mathcal{M}^a is a finite-dimensional modular annihilator algebra, \mathcal{M}^a is a finite sum of minimal left ideals. Therefore, by Lemma 4.1, $\mathcal{M}^a \subset A$ and so $v \in A$. Let M = (1 - v)A = A(1 - v). Since $M^a = vA = Av$ is dense in \mathcal{M}^a and \mathcal{M}^a is finite-dimensional, we obtain $M^a = \mathcal{M}^a$. Therefore M^a is a simple algebra and the equality $M^a \oplus M = A$ implies that M is a maximal modular ideal in A. We have $M = \mathcal{M} \cap A$.

From the proof of Theorem 4.2 we see that if M is a maximal modular ideal of A then M = (1 - e)A = A(1 - e), for some central simple idempotent e in A. Conversely, if e is a central simple idempotent in A, then M = (1 - e)A = A(1 - e) is a maximal modular ideal of A since I = Ae = eA is a simple algebra and $I \oplus M = A$. Hence the following results.

COROLLARY 4.3. If A is modular annihilator, then A and B have the same central simple idempotents.

NOTATION. Let $\mathfrak{M}_{A}(\mathfrak{M}_{B})$ be the set of all maximal modular ideals in A(B).

COROLLARY 4.4. If A is modular annihilator then the mapping $(1 - e)A \rightarrow (1 - e)B$, as e runs over the central simple idempotents of A (or equivalently of B), is a one-to-one map of \mathfrak{M}_A onto \mathfrak{M}_B . Moreover, eA = eB and is finite-dimensional for every central simple idempotent e of A.

From Theorem 4.2 it follows that if A is modular annihilator then $\mathfrak{S}_A = \mathfrak{S}_B \cap A$. In the next section we will see that we also have $\mathfrak{S}_B = \operatorname{cl}_B(\mathfrak{S}_A)$ for certain modular annihilator Banach algebras A and B.

5. The strong radicals of A and L_A

Let A be a semisimple Banach algebra. In this section we will see how the strong radical \mathfrak{S}_A of A is related to the strong radical \mathfrak{S}_{L_A} of L_A for certain A.

PROPOSITION 5.1. Let A and B be semisimple Banach algebras such that A is a dense left ideal in B. Assume that A is modular annihilator. If B has the property that $\operatorname{cl}_B(I \cap A) = I$ for every closed ideal I of B, then $\mathfrak{S}_B = \operatorname{cl}_B(\mathfrak{S}_A)$.

PROOF. Let $Q = cl_A(\Sigma \{ M^a : M \in \mathfrak{M}_A \})$ and $\mathscr{Q} = cl_B(\Sigma M^a : M \in \mathfrak{M}_B \})$. Then, by Corollary 4.4, $Q^a = \mathfrak{S}_A$ and $\mathscr{Q}^a = \mathfrak{S}_B$; moreover, $\mathscr{Q} = cl_B(Q)$ so that $\mathscr{Q}^a = l_B(Q) = r_B(Q)$. Now $r_B(Q) \cap A = r_A(Q)$ and, by the condition in the theorem, $cl_B(r_A(Q)) = r_B(Q)$. Hence

$$\mathfrak{S}_{B} = \mathscr{Q}^{a} = r_{B}(Q) = \operatorname{cl}_{B}(r_{A}(Q)) = \operatorname{cl}_{B}(Q^{a}) = \operatorname{cl}_{B}(\mathfrak{S}_{A}).$$

COROLLARY 5.2. Let A be a semisimple right complemented Banach algebra. If L_A has the property that $x \in cl_{L_A}(xL_A)$ for all $x \in L_A$, then $\mathfrak{S}_{L_A} = cl_{L_A}(\mathfrak{S}_A)$.

PROOF. By [1, Lemma 3, page 39], A has the property that $x \in cl_A(xA)$ for all $x \in A$. Therefore, if L_A also has the property then, by [4, Theorem 2.3, page 299], $cl_{L_A}(I) \cap A = I$ for every closed ideal I of A. The conclusion now follows from Proposition 5.1, since A is modular annihilator.

PROPOSITION 5.3. Let A be a semisimple annihilator right complemented Banach algebra. Then

(i) $\operatorname{cl}_{L_4}(I) \cap A = I$, for every closed right ideal I of A.

(ii) $\operatorname{cl}_{L_A}(J \cap A) = J$, for every closed left ideal J of L_A .

PROOF. (i) Let I be a closed right ideal of A and let p be the given right complementor on A. Let $\{e_{\alpha}: \alpha \in \Omega\}$ be a maximal family of mutually orthogonal minimal p-projections in I. (We recall that a minimal idempotent e is called a minimal p-projection if $(eA)^{p} = (1 - e)A$. See [6, page 654].) We claim that $I = cl_{A}(\sum_{\alpha} e_{\alpha}A)$. In fact let $J = cl_{A}(\sum_{\alpha} e_{\alpha}A)$; $J \subset I$. If $J \neq I$ then $J^{p} \cap I \neq (0)$ and therefore contains a minimal p-projection e. Since every $e_{\alpha} \in J$ and $e \in J^{p}$, we have $e_{\alpha}e = ee_{\alpha} = 0$ for all $\alpha \in \Omega$ [6, page 654]. As $e \in I$, this shows that $\{e_{\alpha}: \alpha \in \Omega\}$ is not a maximal family of mutually orthogonal minimal p-projections in I; a contradiction. Therefore $I = cl_{A}(\sum_{\alpha} e_{\alpha}A)$. Let $K = cl_{L_{A}}(I)$. Then $K = cl_{L_{A}}(\sum_{\alpha} e_{\alpha}A) = cl_{L_{A}}(\sum_{\alpha} e_{\alpha}L_{A})$. We have $I = r_{A}(l_{A}(I))$ and $K = r_{L_{A}}(l_{L_{A}}(K)) = r_{L_{A}}(l_{L_{A}}(I))$. Now $r_{L_{A}}(l_{A}(I)) \supseteq r_{L_{A}}(l_{L_{A}}(I)) = K$ so that $I = r_{A}(l_{A}(I)) = r_{L_{A}}(l_{A}(I))$ $\cap A \supseteq K \cap A$. Since $I \subset K \cap A$, we get $I = K \cap A$.

(ii) By [7, Theorem 3.6], A contains a left approximate identity $\{u_{\gamma}: \gamma \in \Gamma\}$ such that $\{L_{u_{\gamma}}: \gamma \in \Gamma\}$ is bounded in L_A . Clearly $\{L_{u_{\gamma}}: \gamma \in \Gamma\}$ is a bounded left approximate identity for L_A . Therefore $a \in cl_A(Aa)$ and $b \in cl_{L_A}(L_A b)$ for all $a \in A$ and $b \in B$. Let J be a closed left ideal of L_A and $x \in J$. Since S_A is a dense ideal in L_A [8], $S_A x \subset J \cap A$ and $x \in cl_B(L_A x) = cl_B(S_A x) \subseteq cl_B(J \cap A)$. Hence $J \subseteq cl_B(J \cap A)$ and as $cl_B(J \cap A) \subseteq J$, we obtain $J = cl_B(J \cap A)$.

It is easy to see that properties (i) and (ii) above also hold for closed ideals.

COROLLARY 5.4. Let A be a semisimple annihilator right complemented Banach algebra with a right complementor p. Then, for every closed ideal \mathcal{M} of L_A ,

$$\mathscr{M}^{a} = \operatorname{cl}_{L_{A}}([\mathscr{M} \cap A]^{p}).$$

PROOF. By Proposition 5.3 (ii), $\mathcal{M} = \operatorname{cl}_{L_A}(\mathcal{M} \cap A)$ and $\mathcal{M}^a = \operatorname{cl}_{L_A}(\mathcal{M}^a \cap A)$. But $\mathcal{M}^a \cap A = l_A(\mathcal{M})$. Hence $\mathcal{M}^a = \operatorname{cl}_{L_A}(l_A(\mathcal{M}))$ and so

$$\operatorname{cl}_{L_{\mathcal{A}}}(l_{\mathcal{A}}(\mathcal{M})) = \operatorname{cl}_{L_{\mathcal{A}}}(l_{\mathcal{A}}(\mathcal{M} \cap A)).$$

By [6, Lemma 1, page 652], $l_A(\mathcal{M} \cap A) = [\mathcal{M} \cap A]^p$. Therefore $\mathcal{M}^a = \operatorname{cl}_{L_i}(\mathcal{M}^a \cap A) = \operatorname{cl}_{L_i}([\mathcal{M} \cap A]^p).$

[7]

THEOREM 5.5. Let A be a semisimple annihilator right complemented Banach algebra. Then $\mathfrak{S}_{L_4} = \operatorname{cl}_{L_4}(\mathfrak{S}_A)$ and $\mathfrak{S}_A = \mathfrak{S}_{L_4} \cap A$.

PROOF. This follows at once from Proposition 5.1 and 5.3.

Let A be a semisimple Banach algebra. Let

 $N_L = \{ x \in A : L_x \text{ is compact} \}, \qquad N_R = \{ x \in A : R_x \text{ is compact} \}.$

Let

$$\mathcal{N}_L = \{ z \in L_A : L_z \text{ is compact} \}, \qquad \mathcal{N}_R = \{ z \in L_A : R_z \text{ is compact} \}.$$

Clearly N_L and N_R (\mathcal{N}_L and \mathcal{N}_R) are closed ideals in $A(L_A)$.

Let A be a semisimple right complemented Banach algebra. Since A is modular annihilator, by [11, Theorem 3.3, page 83], $\mathfrak{S}_A = N_L^a = N_R^a$. By [6, Lemma 1, page 652], $N_L^a = N_L^p$ and $N_R^a = N_R^p$, where p is the right complementor on A. As $(N_L^a)^a = (N_L^p)^p = N_L$ and $(N_R^a)^a = (N_R^p)^p = N_R$, we obtain $N_L = N_R = \mathfrak{S}_A^a$.

THEOREM 5.6. Let A be a semisimple right complemented Banach algebra. Then

(i) $\mathfrak{S}_{A}^{a} = N_{L} = N_{R}$. (ii) $\mathfrak{S}_{L_{A}}^{a} = \mathcal{N}_{L} = \mathcal{N}_{R}$. If A is also an annihilator algebra, then (iii) $\mathcal{N}_{L} = \mathcal{N}_{R} = \operatorname{cl}_{L_{A}}(N_{L}) = \operatorname{cl}_{L_{A}}(N_{R})$. (iv) $N_{L} = N_{R} = \mathcal{N}_{L} \cap A = \mathcal{N}_{R} \cap A$.

PROOF. (i) This was proved above.

(ii) Since \mathcal{N}_L is a closed ideal of L_A , by Corollary 3.6, we have $\mathcal{N}_L \oplus \mathcal{N}_L^a = L_A$. Similarly $\mathcal{N}_L^a \oplus \mathcal{N}_L^{aa} = L_A$. As $\mathcal{N}_L \subset \mathcal{N}_L^{aa}$, we obtain $\mathcal{N}_L = \mathcal{N}_L^{aa}$. Likewise $\mathcal{N}_R = \mathcal{N}_R^{aa}$. Now, by [11, Theorem 3.3, page 83], $\mathfrak{S}_{L_A} = \mathcal{N}_L^a = \mathcal{N}_R^a$. Hence $\mathfrak{S}_{L_A}^a = \mathcal{N}_L = \mathcal{N}_R$.

(iii) Suppose A is an annihilator algebra. Then, by Proposition 5.3, Theorem 5.5 and (i), we have

$$N_L^a = \operatorname{cl}_{L_A}(N_L^a) \cap A = \operatorname{cl}_{L_A}(\mathfrak{S}_A) \cap A = \mathfrak{S}_{L_A} \cap A = \mathcal{N}_L^a \cap A.$$

Therefore, in view of Corollary 5.4,

$$\mathcal{N}_{L} = \mathcal{N}_{L}^{aa} = \operatorname{cl}_{L_{A}}(\left[\mathcal{N}_{L}^{a} \cap A\right]^{p}) = \operatorname{cl}_{L_{A}}(\left(N_{L}^{a}\right)^{p}),$$

where p is the right complementor on A. By [6, Lemma 1, page 652], $(N_L^a)^p = (N_L^p)^p = N_L$. Hence $\mathcal{N}_L = \operatorname{cl}_{L_A}(N_L)$. Likewise $\mathcal{N}_R = \operatorname{cl}_{L_A}(N_R)$. By (ii), $\mathcal{N}_L = \mathcal{N}_R$.

(iv) This follows from Proposition 5.3 and (iii).

Theorem 5.6 answers some of the questions in [11] (see [11, page 85]).

References

- F. E. Alexander, 'On complemented and annihilator algebras', Proc. Glascow Math. Assoc. 19 (1969), 38-45.
- [2] G. F. Bachelis, 'Homomorphisms of annihilator Banach algebras', Pacific J. Math. 25 (1968), 229-247.
- [3] B. A. Barnes, 'Modular annihilator algebras', Canad. J. Math. 18 (1966), 566-578.
- [4] M. Leinert, 'A contribution to Segal algebras', Manuscripta Math. 10 (1975), 297-306.
- [5] C. E. Rickart, Banach algebras (Van Nostrand, 1960).
- [6] B. J. Tomiuk, 'Structure theory of complemented Banach algebras', Canad. J. Math. 14 (1962), 651-659.
- [7] B. J. Tomiuk, 'Isomorphisms of multiplier algebras', Glascow Math. J., to appear.
- [8] B. J. Tomiuk and B. Yood, 'Incomplete normed algebra norms on Banach algebras', submitted.
- [9] B. Yood, 'Ideals in topological rings', Canad. J. Math. 16 (1964), 28-45.
- [10] B. Yood, 'Closed prime ideals in topological rings', Proc. London Math. Soc. (3) 24 (1972), 307-323.
- [11] B. Yood, 'On the strong radical of certain Banach algebras', Proc. Edinburgh Math. Soc. 21 (1978), 81-85.

Department of Mathematics University of Ottawa Ottawa, Ontario K1N 9B4 Canada