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On a Property of Real Plane Curves of Even
Degree

Zinovy B. Reichstein

Abstract. F. Cukierman asked whether or not for every smooth real plane curve X c P2 of even
degree d > 2 there exists a real line L c P? such X n L has no real points. We show that the answer
isyesifd =2or4andnoifn > 6.

1 Introduction

F. Cukierman asked whether or not for every smooth real plane curve X c P? there
exists a real line L c P2 such that the intersections X N L has no real points. In other
words, can we see all real points of X in some affine space of the form A2 = P? \ L2

Note that if d is odd, then the answer is no for trivial reasons: X n L is cut out by an
odd degree polynomial on L, and hence, always has a real point. On the other hand,
in the case where d = 2, the answer is readily seen to be yes. Indeed, given a real conic
X in P?, choose a complex point z € X(C) \ X(R) that is not real and let L be the
(real) line passing through z and its complex conjugate z. If X is smooth, then L is not
contained in X. Hence, the intersection (X N L)(C) = {z,z} contains no real points.

The main result of this note, Theorem 1.1, asserts that the answer to Cukierman’s
question is yesifd =2 or4 and noif n > 6.

Theorem 1.1 (i) Suppose d = 2 or 4. Then for every smooth plane curve X c P2 of
degree d defined over the reals, there exists a real line L c P such that (XnL)(R) = @.

(ii) Supposed > 6 is an even integer. Then there exists a smooth plane curve X c P?
of degree d defined over the reals, such that (X n L)(IR) # & for every real line L c P,

The proof of Theorem 1.1 presented in Sections 3 and 4 uses deformation argu-
ments. These arguments, in turn, rely on the preliminary material in Section 2.

2 Continuity of Minimizer and Maximizer Functions

Lemma 2.1 Let V, W, and F be topological manifolds. Assume that F is com-
pact, m: V. — W is an F-fibration, and f:V — R is a continuous function. Then
the minimizer u(w) := min{f(v) | n(v) = w} and the maximizer v(w) :=
max {f(v) | n(v) = w} are continuous functions W — R.
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Proof Since F is compact, f assumes its minimal and maximal values on every fiber
7~} (w). Hence, the functions y and v are well defined. Note also that if we replace
f by —f, we will change y(w) to —v(w). Thus, it suffices to show that y is contin-
uous. Finally, to show that y is continuous at w € W, we can replace W by a small
neighborhood of w and thus assume that V = W x F and m: V' - W is projection to
the first factor. In this special case, the continuity of y is well known; see, e.g., [Wo]
(cf. also [Da]). [ |

Corollary 2.2 Letd > 2 be an even integer, let Pol; be the affine space of homogeneous

polynomials of even degree d in 3 variables, and let P2 be the dual projective plane
parametrizing the lines in P2, Then the functions

my(L) and M,(L):Poly(R) x P*(R) — R
given by m,(L) = min{p(x) | x € L(R)} and M,(L) = max{p(x) | x € L(R)} are
well defined and continuous.
Note that a polynomial p(x, y, z) of even degree d gives rise to a continuous func-
tion P?(R) — R given by
p(x.y,2)

(x2+y2+ z2)dl2’

By a slight abuse of notation, we will continue to denote this function by p.

(2.1) (x:y:2) —

Proof of Corollary 2.2 'We will apply Lemma 2.1 in the following setting. Let

W := Poly xP2 and V:= {(p,L,a)|acL}cPoly xP? x P2,
In other words, V = Pol, x Flag(1,2), where Flag(1, 2) is the flag variety of (1,2)-flags
in a 3-dimensional vector space. Clearly V and W are smooth algebraic varieties
defined over R. Their sets of real points, V(R) and W (R), are topological manifolds
and the projection 7: V(R) — W(R) to the first two components is a topological
fibration with compact fiber F = P!(R).

Applying Lemma 2.1 to the continuous function f:V(R) — R given by
f(p,L,a) := p(a), where p(a) is evaluated as in (2.1), we deduce the continuity
of the real-valued functions m, (L) = u(p,L) and M,(L) = v(p,L) on Polz(R) x
P2(R). ]

Proposition 2.3  Let p € R[x, y,z] be a homogeneous polynomial of even degree and
X c P? be the zero locus of p. Set

m(p) :=maxm,(L) and M(p):=minM,(L),
LelP? LelP?

where L ranges over the real lines in P2

(i) m(p) and M(p) are well defined continuous functions Pol;(R) - R;

Gi) m(p) < M(p);

(iii) (XN L)(R) # @ for every real line L c P? if and only if m(p) < 0 < M(p);

(iv)  p assumes both positive and negative values on each real line L c P* if and only if

m(p) <0< M(p);
(v) Ifm(p)=M(p) =0, then X is not a smooth curve.
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Proof By Corollary 2.2, M,(L) and m,(L) are continuous functions Pol;(R) x
P2(R) - R. Since P?(R) is compact, Lemma 2.1 tells us that the functions m(p)
and M(p):Pol;(R) — R are well defined and continuous. This proves (i).

(iii) and (iv) are immediate consequences of the definition of m(p) and M(p).

To prove (ii) and (v), choose lines Ly, L, ¢ P? such that m, (L) attains its maximal
value m(p) at L = L; and M, (L) attains its minimal value M(p) at L = L,. If L; and
L, intersect at a point a € P?(R), then
(22) m(p) = mp(L1) < p(a) < My(L2) = M(p).

This proves (ii).

In part (v), where we further assume that m(p) = M(p) = 0, the inequalities (2.2)
tell us that p(a) = 0 is the maximal value of p on L; (R) and the minimal value of p on
L,(R). Hence, a lies on X, and both L, and L, are tangent to X at a. We want to show
that X cannot be a smooth curve. Assume the contrary. Then X has a unique tangent
line at a. Thus, L; = L, and 0 = m,(L;) = M,(Lz) = M,(L,). We conclude that p
is identically zero on L1 (R) = L,(R). Consequently, L; = L, c X, contradicting our
assumption that X is a smooth curve. ]

3 Proof of Theorem 1.1(i)
The case where d = 2 was handled in the introduction; we will thus assume that d = 4.

Lemma 3.1 Let p € R[x, y, z] be a homogeneous polynomial of degree 4 cutting out
a smooth quartic curve X in P2, Then either m(p) > 0 or M(p) < 0.

Proof By a theorem of H. G. Zeuthen [Zeu], X has a real bitangent line L ¢ P2.
(For a modern proof of Zeuthen’s theorem, we refer the reader to [Ru, Corollary 4.11];
¢f. also [PSV].) The restriction of p(x, y,z) to L is a real quartic polynomial with
two double roots, i.e., a polynomial of the form +q(s, )%, where s and ¢ are linear
coordinates on L, and q € R[s, t] is a binary form of degree 2. In particular, p does not
change sign on L, i.e,, either (i) p(a) > 0 for every a € L(R) or (ii) p(a) < 0 for every
a € L(R). In case (i), m(p) > m,(L) > 0 and in case (ii), M(p) < M,(L) <O0. [ |

We are now ready to finish the proof of Theorem 1.1(i) for d = 4. The geometric idea
is to move a bitangent line off the quartic curve. To turn this idea into a proof, we argue
by contradiction. Assume the contrary: there exists a smooth real quartic curve X c
P? such that (XnL)(R) # @ for every realline L c P2, Let p € R[x, y,z] be a defining
polynomial for X. By Proposition 2.3(iii), m(p) < 0 < M(p). In view of Lemma 3.1,
after possibly replacing p by —p, we can assume that m(p) = 0. Proposition 2.3(v)
now tells us that m(p) =0 < M(p). Let

pe(x:3,2) = p(x,y,2) = t(x* + y* + 2%)7,
where t is a real parameter, and let X; c P? be the quartic curve cut out by p,. Note
that X, can be singular for only finitely many values of t € R. Thus, we can choose
t € (0, M(p)) so that X, is smooth. Since x* + y* + z* is identically 1 on P*(RR)
(cf. (2.1)), we have

m(pe) =m(p) —t<0<M(p)—t=M(p:).
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This contradicts Lemma 3.1, which asserts that m(p;) > 0 or M(p;) < 0. [ |
4 Proof of Theorem 1.1(ii)

Given an even integer d > 6, set p(x, y,z) = (x® + y> +2°)2(x2 + y? + 22)(476)/2 and

pi(x%3,2) = p(x, y,2) = t(x" + y 4 2%),
where ¢ is a real parameter. In view of Proposition 2.3(iii), it suffices to show that if
t > 0 is sufficiently small, then (i) X, is smooth and (ii) m(p;) < 0 < M(p;).

Since the Fermat curve, x + y? + z¢ = 0, is smooth, X; is singular for only finitely
many values of ¢, and (i) follows.

To prove (ii), note that p is non-negative but is not identically 0 on any real line L c
IP2. Thus, M, (L) > 0 and consequently, M(p) > 0. By Proposition 2.3(i), M(p;) > 0
for small . On the other hand, for every real line L c P2, the cubic polynomial
x* + y* + 2% vanishes at some real point a of L. Hence, for every ¢t > 0, we have
pt(a) <0and thus m,, (L) < 0. We conclude that m(p,) < 0, as desired. [ |
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