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On a Property of Real Plane Curves of Even
Degree

Zinovy B. Reichstein

Abstract. F. Cukierman asked whether or not for every smooth real plane curve X ⊂ P2 of even
degree d ⩾ 2 there exists a real line L ⊂ P2 such X ∩ L has no real points. We show that the answer
is yes if d = 2 or 4 and no if n ⩾ 6.

1 Introduction

F. Cukierman asked whether or not for every smooth real plane curve X ⊂ P2 there
exists a real line L ⊂ P2 such that the intersections X ∩ L has no real points. In other
words, can we see all real points of X in some aõne space of the form A2 = P2 ∖ L?

Note that if d is odd, then the answer is no for trivial reasons: X∩L is cut out by an
odd degree polynomial on L, and hence, always has a real point. On the other hand,
in the casewhere d = 2, the answer is readily seen to be yes. Indeed, given a real conic
X in P2, choose a complex point z ∈ X(C) ∖ X(R) that is not real and let L be the
(real) line passing through z and its complex conjugate z. If X is smooth, then L is not
contained in X. Hence, the intersection (X ∩ L)(C) = {z, z} contains no real points.

_e main result of this note, _eorem 1.1, asserts that the answer to Cukierman’s
question is yes if d = 2 or 4 and no if n ⩾ 6.

_eorem 1.1 (i) Suppose d = 2 or 4. _en for every smooth plane curve X ⊂ P2 of
degree d deûned over the reals, there exists a real line L ⊂ P2 such that (X∩L)(R) = ∅.

(ii) Suppose d ⩾ 6 is an even integer. _en there exists a smooth plane curve X ⊂ P2

of degree d deûned over the reals, such that (X ∩ L)(R) /= ∅ for every real line L ⊂ P2.

_e proof of _eorem 1.1 presented in Sections 3 and 4 uses deformation argu-
ments. _ese arguments, in turn, rely on the preliminary material in Section 2.

2 Continuity of Minimizer and Maximizer Functions

Lemma 2.1 Let V , W , and F be topological manifolds. Assume that F is com-
pact, π∶V → W is an F-ûbration, and f ∶V → R is a continuous function. _en
the minimizer µ(w) ∶= min{ f (v) ∣ π(v) = w} and the maximizer ν(w) ∶=

max { f (v) ∣ π(v) = w} are continuous functions W → R.
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Proof Since F is compact, f assumes its minimal andmaximal values on every ûber
π−1(w). Hence, the functions µ and ν are well deûned. Note also that if we replace
f by − f , we will change µ(w) to −ν(w). _us, it suõces to show that µ is contin-
uous. Finally, to show that µ is continuous at w ∈ W , we can replace W by a small
neighborhood of w and thus assume that V = W × F and π∶V →W is projection to
the ûrst factor. In this special case, the continuity of µ is well known; see, e.g., [Wo]
(cf. also [Da]).

Corollary 2.2 Let d ⩾ 2 be an even integer, letPold be the aõne space of homogeneous
polynomials of even degree d in 3 variables, and let P̌2 be the dual projective plane
parametrizing the lines in P2. _en the functions

mp(L) and Mp(L)∶Pold(R) × P̌2
(R)Ð→ R

given by mp(L) = min{p(x) ∣ x ∈ L(R)} and Mp(L) = max{p(x) ∣ x ∈ L(R)} are
well deûned and continuous.

Note that a polynomial p(x , y, z) of even degree d gives rise to a continuous func-
tion P2(R)→ R given by

(2.1) (x ∶ y ∶ z)Ð→ p(x , y, z)
(x2 + y2 + z2)d/2

.

By a slight abuse of notation, we will continue to denote this function by p.

Proof of Corollary 2.2 We will apply Lemma 2.1 in the following setting. Let

W ∶= Pold ×P̌2 and V ∶= {(p, L, a) ∣ a ∈ L} ⊂ Pold ×P̌2 × P2 .
In otherwords,V = Pold ×Flag(1, 2),where Flag(1, 2) is the �ag variety of (1, 2)-�ags
in a 3-dimensional vector space. Clearly V and W are smooth algebraic varieties
deûned overR. _eir sets of real points, V(R) andW(R), are topological manifolds
and the projection π∶V(R) → W(R) to the ûrst two components is a topological
ûbration with compact ûber F = P1(R).
Applying Lemma 2.1 to the continuous function f ∶V(R) → R given by

f (p, L, a) ∶= p(a), where p(a) is evaluated as in (2.1), we deduce the continuity
of the real-valued functions mp(L) = µ(p, L) and Mp(L) = ν(p, L) on Pold(R) ×

P̌2(R).

Proposition 2.3 Let p ∈ R[x , y, z] be a homogeneous polynomial of even degree and
X ⊂ P2 be the zero locus of p. Set

m(p) ∶= max
L∈P̌2

mp(L) and M(p) ∶= min
L∈P̌2

Mp(L),

where L ranges over the real lines in P2.
(i) m(p) andM(p) are well deûned continuous functions Pold(R)→ R;
(ii) m(p) ⩽ M(p);
(iii) (X ∩ L)(R) /= ∅ for every real line L ⊂ P2 if and only if m(p) ⩽ 0 ⩽ M(p);
(iv) p assumes both positive and negative values on each real line L ⊂ P2 if and only if

m(p) < 0 < M(p);
(v) If m(p) = M(p) = 0, then X is not a smooth curve.
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Proof By Corollary 2.2, Mp(L) and mp(L) are continuous functions Pold(R) ×

P̌2(R) → R. Since P̌2(R) is compact, Lemma 2.1 tells us that the functions m(p)
and M(p)∶Pold(R)→ R are well deûned and continuous. _is proves (i).

(iii) and (iv) are immediate consequences of the deûnition of m(p) and M(p).
To prove (ii) and (v), choose lines L1 , L2 ⊂ P2 such that mp(L) attains its maximal

value m(p) at L = L1 and Mp(L) attains its minimal value M(p) at L = L2. If L1 and
L2 intersect at a point a ∈ P2(R), then
(2.2) m(p) = mp(L1) ⩽ p(a) ⩽ Mp(L2) = M(p).
_is proves (ii).

In part (v), where we further assume that m(p) = M(p) = 0, the inequalities (2.2)
tell us that p(a) = 0 is themaximal value of p on L1(R) and theminimal value of p on
L2(R). Hence, a lies on X, and both L1 and L2 are tangent to X at a. Wewant to show
that X cannot be a smooth curve. Assume the contrary. _en X has a unique tangent
line at a. _us, L1 = L2, and 0 = mp(L1) = Mp(L2) = Mp(L1). We conclude that p
is identically zero on L1(R) = L2(R). Consequently, L1 = L2 ⊂ X, contradicting our
assumption that X is a smooth curve.

3 Proof of Theorem 1.1(i)

_e casewhere d = 2was handled in the introduction;wewill thus assume that d = 4.

Lemma 3.1 Let p ∈ R[x , y, z] be a homogeneous polynomial of degree 4 cutting out
a smooth quartic curve X in P2. _en either m(p) ⩾ 0 or M(p) ⩽ 0.

Proof By a theorem of H. G. Zeuthen [Zeu], X has a real bitangent line L ⊂ P2.
(For amodern proof of Zeuthen’s theorem,we refer the reader to [Ru, Corollary 4.11];
cf. also [PSV].) _e restriction of p(x , y, z) to L is a real quartic polynomial with
two double roots, i.e., a polynomial of the form ±q(s, t)2, where s and t are linear
coordinates on L, and q ∈ R[s, t] is a binary formof degree 2. In particular, p does not
change sign on L, i.e., either (i) p(a) ⩾ 0 for every a ∈ L(R) or (ii) p(a) ⩽ 0 for every
a ∈ L(R). In case (i), m(p) ⩾ mp(L) ⩾ 0 and in case (ii), M(p) ⩽ Mp(L) ⩽ 0.

We arenow ready to ûnish the proof of_eorem1.1(i) for d = 4. _e geometric idea
is tomove a bitangent line oò the quartic curve. To turn this idea into a proof,we argue
by contradiction. Assume the contrary: there exists a smooth real quartic curve X ⊂

P2 such that (X∩L)(R) /= ∅ for every real line L ⊂ P2. Let p ∈ R[x , y, z] be a deûning
polynomial for X. By Proposition 2.3(iii), m(p) ⩽ 0 ⩽ M(p). In view of Lemma 3.1,
a�er possibly replacing p by −p, we can assume that m(p) = 0. Proposition 2.3(v)
now tells us that m(p) = 0 < M(p). Let

pt(x , y, z) = p(x , y, z) − t(x2
+ y2

+ z2
)
2 ,

where t is a real parameter, and let Xt ⊂ P2 be the quartic curve cut out by pt . Note
that Xt can be singular for only ûnitely many values of t ∈ R. _us, we can choose
t ∈ (0,M(p)) so that Xt is smooth. Since x2 + y2 + z2 is identically 1 on P2(R)

(cf. (2.1)), we have
m(pt) = m(p) − t < 0 < M(p) − t = M(pt).
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_is contradicts Lemma 3.1, which asserts that m(pt) ⩾ 0 or M(pt) ⩽ 0.

4 Proof of Theorem 1.1(ii)

Given an even integer d ⩾ 6, set p(x , y, z) ∶= (x3 + y3 + z3)2(x2 + y2 + z2)(d−6)/2 and

pt(x , y, z) = p(x , y, z) − t(xd + yd + zd),
where t is a real parameter. In view of Proposition 2.3(iii), it suõces to show that if
t > 0 is suõciently small, then (i) Xt is smooth and (ii) m(pt) < 0 < M(pt).

Since the Fermat curve, xd + yd + zd = 0, is smooth, Xt is singular for only ûnitely
many values of t, and (i) follows.

To prove (ii), note that p is non-negative but is not identically 0 on any real line L ⊂

P2. _us, Mp(L) > 0 and consequently, M(p) > 0. By Proposition 2.3(i), M(pt) > 0
for small t. On the other hand, for every real line L ⊂ P2, the cubic polynomial
x3 + y3 + z3 vanishes at some real point a of L. Hence, for every t > 0, we have
pt(a) < 0 and thus mp t(L) < 0. We conclude that m(pt) < 0, as desired.
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