ON THE GROUP OF AUTOMORPHISMS OF AN ANALYTIC GROUP

W.H. PREVITS AND T.S. WU

Let G be an analytic group and let Aut G denote the group of all topological group automorphisms of G. We investigate when Aut G is almost algebraic. We provide various conditions, some of which are known, under which Aut G is almost algebraic. We also provide examples showing that there does not seem to be a clear and concise way to characterise G so that Aut G is almost algebraic in terms of the maximal central torus in G.

1. INTRODUCTION

Let G be an analytic group, $\mathcal{L}(G)$ be the Lie algebra of G, and Aut G be the group of all topological group automorphisms of G. This paper will investigate when Aut G is an almost algebraic subgroup of $GL(\mathcal{L}(G))$, (that is, when Aut G is a subgroup of finite index in an algebraic subgroup of $GL(\mathcal{L}(G))$).

In [2], Dani reproved a result of Wigner [4, 5]. The connected component of the identity in Aut G is an almost algebraic subgroup. Here we give another proof of this result (Theorem 2.2) based upon Dani's proof. Dani also showed that if G has no compact central subgroup of positive dimension, then Aut G is an almost algebraic subgroup ([2]). We include a proof of this fact (Theorem 2.6 (i)).

We also provide various necessary and sufficient conditions for Aut G to be an almost algebraic subgroup. Specifically, if T is a maximal torus in G or if T is a maximal torus in the radical of G, then Aut G is almost algebraic if and only if Aut_T G is almost algebraic, where Aut_T G consists of all automorphisms τ such that $\tau(T) = T$ (Proposition 2.3 and Proposition 2.10). Another such condition is the following: Aut G is almost algebraic if and only if the restriction map $\tau \to \tau|_{T_1}$ of Aut_T $G \to$ Aut T_1 has finite image, where T is a maximal torus of G and $T_1 = T \cap R$, R being the radical of G (Theorem 2.6 (ii)). In particular, if R has a maximal torus of dimension at most 1 or if Aut R is almost algebraic, then Aut G is almost algebraic (Corollary 2.7 and Corollary 2.8).

As mentioned above, Dani proved that if G has no compact central subgroup of positive dimension, then Aut G is almost algebraic. Is there a clear and concise way

Received 19th March, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

to characterise G in terms of the maximal central torus in G so that Aut G is almost algebraic? Chen and Wu [1] gave such a characterization for faithfully representable analytic groups. We shall provide examples showing that for analytic groups that are not faithfully representable, there does not seem to be a clear and concise way to characterise G in terms of the maximal central torus in G so that Aut G is almost algebraic.

NOTATION. Let G be a locally compact group. We denote the connected component of G that contains the identity element by G° . Aut G denotes the group of all topological group automorphisms of G. If $x \in G$, we denote the inner automorphism of G that is determined by x by I_x . If H is a subgroup of G, we denote the subgroup $\{I_x : x \in H\}$ of Aut G by Int H. Aut_H G denotes the subgroup of Aut G which consists of all automorphisms τ such that $\tau(H) = H$. If $\tau \in \text{Aut } G$, we denote the restriction of τ to H by $\tau|_H$. If G is also an analytic group, we denote the Lie algebra of G by $\mathcal{L}(G)$.

Let \mathbf{Z} and \mathbf{R} denote the sets of integers and real numbers, respectively.

Let V be a vector space over **R**. If F is a subgroup of GL(V), then we denote the smallest algebraic subgroup of GL(V) that contains F by $F^{\#}$.

2. MAIN RESULTS

We begin our paper by correcting Dani's proof of the following lemma [2]. Recall that Aut G can be viewed as a subgroup of $GL(\mathcal{L}(G))$ by associating each automorphism τ of G with its differential on $\mathcal{L}(G)$.

LEMMA 2.1. Let G be an analytic group, $\mathcal{L}(G)$ be the Lie algebra of G, and $Ad: G \to GL(\mathcal{L}(G))$ be the adjoint representation of G. Then there exists a closed connected normal (characteristic) subgroup H of G such that the following conditions hold for the subgroup Int H of Aut G:

- (i) Int H is an almost algebraic subgroup of $GL(\mathcal{L}(G))$.
- (ii) If T is a maximal torus of G, then $\operatorname{Aut} G = (\operatorname{Int} H)(\operatorname{Aut}_T G)$.

The argument Dani gave in showing that H is closed is incorrect. The fallacy lies in assuming that the semisimple Levi factor is closed. This is true for complex Lie groups, but false for real Lie groups. However, H indeed is closed. This follows by a result of Goto [3, Proposition 14]: H is an analytic subgroup of G which contains a maximal compact subgroup of G.

The following theorem is due to Wigner [4, 5]. The proof we give is based upon Dani's proof of the theorem [2]. We have simplified Dani's proof and clarified some of the details.

THEOREM 2.2. Let G be an analytic group and let $\mathcal{L}(G)$ denote the Lie algebra of G. Then the connected component of the identity in Aut G is an almost algebraic

subgroup of $GL(\mathcal{L}(G))$.

PROOF: Let $\eta : \tilde{G} \to G$ be a group covering with \tilde{G} simply connected. Let $K = \ker \eta$. Then K is a discrete normal, hence central, subgroup of \tilde{G} . Let H be a closed connected normal subgroup of G as in Lemma 2.1. Let T be a maximal torus of G. Then Aut $G = (\operatorname{Int} H)(\operatorname{Aut}_T G)$ and $\operatorname{Int} H$ is almost algebraic.

CLAIM. To show that $(\operatorname{Aut} G)^{\circ}$ is almost algebraic, it suffices to show that $(\operatorname{Aut}_T G)^{\circ}$ is almost algebraic. If $(\operatorname{Aut}_T G)^{\circ}$ is almost algebraic, then $(\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$ is almost algebraic, and therefore $(\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$ is closed in the Euclidean topology. Also, $(\operatorname{Aut}_T G)/(\operatorname{Aut}_T G)^{\circ}$ is countable since $(\operatorname{Aut}_T G)$ is a Lie group. Thus, $\operatorname{Aut} G = (\operatorname{Int} H)(\operatorname{Aut}_T G) \supseteq (\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$ and $(\operatorname{Aut} G)/(\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$ is countable, so $(\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$ is open. Therefore, $(\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$ is an open and closed subgroup which implies that $(\operatorname{Aut} G)^{\circ} = (\operatorname{Int} H)(\operatorname{Aut}_T G)^{\circ}$. Thus, $(\operatorname{Aut} G)^{\circ}$ is almost algebraic.

Let $S = \eta^{-1}(T)$. We claim S is a closed connected Abelian subgroup of \tilde{G} . G/Tis simply connected and the induced map $\tilde{G}/\eta^{-1}(T) \to G/T$ is a homeomorphism, so $\tilde{G}/\eta^{-1}(T)$ is simply connected. Also, the induced map $\tilde{G}/\eta^{-1}(T)^{\circ} \to \tilde{G}/\eta^{-1}(T)$ is a covering of the simply connected space $\tilde{G}/\eta^{-1}(T)$, so $\tilde{G}/\eta^{-1}(T)^{\circ}$ is homeomorphic with $\tilde{G}/\eta^{-1}(T)$. Thus $\eta^{-1}(T)^{\circ} = \eta^{-1}(T)$, so S is connected. S is Abelian because $\mathcal{L}(S) \cong \mathcal{L}(T)$, and $\mathcal{L}(T)$ is Abelian.

If we view $\operatorname{Aut}_T G$ as a subgroup of $\operatorname{Aut} \widetilde{G}$, then $\operatorname{Aut}_T G$ consists of all automorphisms $\tau \in \operatorname{Aut} \widetilde{G}$ such that $\tau(K) = K$ and $\tau(S) = S$. Since \widetilde{G} is simply connected, $\operatorname{Aut} \widetilde{G} \cong \operatorname{Aut} \mathcal{L}(G)$, and therefore $\operatorname{Aut} \widetilde{G}$ is an algebraic subgroup. Let $\Phi = \{\tau \in \operatorname{Aut} \widetilde{G} : \tau(S) = S\}$. Since S is connected, Φ is an algebraic subgroup.

Since S is an Abelian analytic group, it has a unique maximal torus, say F. Since $K \subseteq S$, we can consider the group S/FK. Since S/FK is an Abelian analytic group, it has a unique maximal torus, say L'. Let $\pi : S \to S/FK$ be the canonical map and let $L = \pi^{-1}(L')$. Then L is a closed connected subgroup of S containing FK such that $L/FK \cong L'$ is a torus.

If an automorphism $\tau \in \Phi$ has the property that $\tau|_{FK}$ is the identity on FK, then $\tau|_L$ is the identity on L. Let $\Psi = \{\tau \in \Phi : \tau(x) = x \text{ for all } x \in FK\} = \{\tau \in \Phi : \tau(x) = x \text{ for all } x \in L\}$. Since L is connected, Ψ is an algebraic subgroup.

For any $\tau \in \operatorname{Aut}_T G$, we have $\tau(S) = S$ and $\tau(K) = K$. Thus $\tau(F) = F$. Since F is torus, Aut F is discrete. Since K is a discrete Abelian group, Aut K is also discrete. Thus the restriction maps $\tau \to \tau|_F$ and $\tau \to \tau|_K$ of $\operatorname{Aut}_T G$ into $\operatorname{Aut} F$ and Aut K, respectively, are trivial on $(\operatorname{Aut}_T G)^\circ$. Thus, we have $(\operatorname{Aut}_T G)^\circ \subseteq \Psi \subseteq \operatorname{Aut}_T G$. Therefore, $\Psi^\circ \subseteq (\operatorname{Aut}_T G)^\circ \subseteq \Psi$, and since Ψ is algebraic, $(\operatorname{Aut}_T G)^\circ$ is almost algebraic.

Propositions 2.3 and 2.4 will be used in proving Theorem 2.6. With the following

propositions, we keep the same notation as in Theorem 2.2.

PROPOSITION 2.3. Let G be an analytic group, and let T be a maximal torus of G. Then Aut G is an almost algebraic subgroup if and only if $Aut_T G$ is an almost algebraic subgroup.

PROOF: Suppose $\operatorname{Aut}_T G$ is almost algebraic. Let H be a closed connected normal subgroup of G as in Lemma 2.1. Then $\operatorname{Int} H$ is almost algebraic and thus $\operatorname{Aut} G = (\operatorname{Int} H)(\operatorname{Aut}_T G)$ is almost algebraic.

Conversely, suppose Aut G is almost algebraic. Since $\operatorname{Aut}_T G \subseteq \operatorname{Aut} G$, we have $(\operatorname{Aut}_T G)^{\#} \subseteq \operatorname{Aut} G$. Also, viewing Aut G as a subgroup of $\operatorname{Aut} \widetilde{G}$, we have $\operatorname{Aut}_T G \subseteq \Phi$ and hence $(\operatorname{Aut}_T G)^{\#} \subseteq \Phi$. Thus, if $\tau \in (\operatorname{Aut}_T G)^{\#}$, then $\tau(K) = K$ and $\tau(S) = S$, so $\tau \in \operatorname{Aut}_T G$. Thus, $(\operatorname{Aut}_T G)^{\#} = \operatorname{Aut}_T G$, so $\operatorname{Aut}_T G$ is almost algebraic.

PROPOSITION 2.4. Let G be an analytic group, and let T be a maximal torus of G. If β : Aut_TG \rightarrow Aut T is the restriction map, then Aut_TG is an almost algebraic subgroup if and only if $\beta(\operatorname{Aut}_TG)$ is finite.

PROOF: Suppose $\operatorname{Aut}_T G$ is almost algebraic. Then $\operatorname{Aut}_T G$ has finitely many connected components. Since $\operatorname{Aut} T$ is discrete, $\beta(\operatorname{Aut}_T G)$ is finite.

Conversely, suppose that $\beta(\operatorname{Aut}_T G)$ is finite. Then the ker $\beta = \{\tau \in \operatorname{Aut}_T G : \tau(t) = t \text{ for all } t \in T\}$. Viewing Aut_T G as a subgroup of Aut \widetilde{G} , ker $\beta = \Delta = \{\tau \in \operatorname{Aut} \widetilde{G} : \tau(s) = s \text{ for all } s \in S\}$. Then Δ is an algebraic subgroup since S is connected. Since Aut_T G/Δ is finite, Aut_T G is almost algebraic.

COROLLARY 2.5. If an analytic group G has a maximal torus of dimension at most 1, then $\operatorname{Aut} G$ is an almost algebraic subgroup.

In [2], Dani proved that if an analytic group G has no compact central subgroup of positive dimension, then Aut G is an almost algebraic subgroup. For completeness, we include a proof of this fact in the following theorem.

THEOREM 2.6. Let G be an analytic group, and let $\mathcal{L}(G)$ denote the Lie algebra of G.

- (i) (Dani) If G does not have any compact central subgroups of positive dimension, then Aut G is an almost algebraic subgroup of $GL(\mathcal{L}(G))$.
- (ii) Aut G is an almost algebraic subgroup if and only if the restriction map τ → τ|_{T1} of Aut_T G → Aut T₁ has finite image, where T is a maximal torus of G, and T₁ = T ∩ R, R being the radical of G.

PROOF: Let G be an analytic group and let $\eta: \tilde{G} \to G$ be a group covering with \tilde{G} simply connected. Let $K = \ker \eta$. Then K is a discrete normal, hence central, subgroup of \tilde{G} . Let \tilde{Z} denote the centre of \tilde{G} . Let T be a maximal torus of G. Let $T_1 = T \cap R$, where R is the radical of G. Then T_1 is a maximal torus of R. Let

 $A = \eta^{-1}(T)$. Then A is a closed connected Abelian subgroup of \tilde{G} . Since \tilde{G} is simply connected, $\tilde{G} = \tilde{R} \cdot \tilde{S}$, where \tilde{R} is the radical of \tilde{G} and \tilde{S} is a semisimple Levi factor of \tilde{G} . Note that \tilde{R} and \tilde{S} are both simply connected, and \tilde{S} is closed. Let $B = \eta^{-1}(T_1)^\circ$. Then $BK = \eta^{-1}(T_1)$, and $B/B \cap K \cong BK/K \cong T_1$. Also B is a simply connected Abelian group (that is, vector group), and $K \cap \tilde{R} = K \cap B$ is a uniform subgroup of B.

(i) Let $\Phi = \{\tau \in \operatorname{Aut} \widetilde{G} : \tau(A) = A\}$. Then Φ is an algebraic subgroup. Since \widetilde{G} has no compact central subgroup of positive dimension, $\widetilde{Z} \cap A$ is a discrete subgroup. Given any $\tau \in \Phi$, $\tau(\widetilde{Z} \cap A) = \widetilde{Z} \cap A$. In particular, for $\tau \in \Phi^{\circ}$, we have $\tau(z) = z$ for all $z \in \widetilde{Z} \cap A$. This follows by considering the restriction map $\tau \to \tau|_{\widetilde{Z} \cap A}$ of Φ into $\operatorname{Aut}(\widetilde{Z} \cap A)$, since $\operatorname{Aut}(\widetilde{Z} \cap A)$ is discrete. Since $K \subseteq \widetilde{Z} \cap A$, we have $\tau(k) = k$ for all $k \in K$ and $\tau \in \Phi^{\circ}$. Thus $\Phi^{\circ} \subseteq \operatorname{Aut}_T G \subseteq \Phi$. Since Φ is an algebraic subgroup, $\operatorname{Aut}_T G$ is almost algebraic. Thus, $\operatorname{Aut} G$ is almost algebraic by Proposition 2.3.

(ii) Let $\Delta = \{\tau \in \operatorname{Aut} \widetilde{G} : \tau(b) = b \text{ for all } b \in B\}$. Then Δ is an algebraic subgroup, and thus $\Delta \cap \Phi$ is an algebraic subgroup. For each $\tau \in \Delta \cap \Phi$, $\tau(b) = b$ for all $b \in B$. Let $z \in A \cap \widetilde{Z}$. Then z = bs, where $b \in B$ and $s \in \widetilde{S}$. Note that s is central in \widetilde{S} , though it may not be central in \widetilde{G} . We want to show that for all $\tau \in (\Delta \cap \Phi)^{\circ}$, $\tau(z) = z$ for all $z \in A \cap \widetilde{Z}$. First, for $\tau \in (\Delta \cap \Phi)^{\circ}$, $\tau(b) = b$ for all $b \in B$. Also, $B(A \cap \widetilde{Z})/B$ is discrete. If we consider the induced map $\delta : \Delta \cap \Phi \to \operatorname{Aut} \left(B(A \cap \widetilde{Z})/B \right)$ then δ is trivial on $(\Delta \cap \Phi)^{\circ}$. Thus $\delta(\tau)$ fixes each coset of $B(A \cap \widetilde{Z})/B$. This implies that $\tau(z) = \tau(bs) = b'bs$ for some $b' \in B$.

We consider two cases.

CASE 1. Assume s is torsion. Then $s^m = 1$ for some $m \in \mathbb{Z}$. Then $\tau((bs)^m) = \tau(b^m s^m) = \tau(b^m) = b^m$, and $(\tau(bs))^m = b'^m b^m s^m = b'^m b^m$. Hence $b'^m = 1$. But B is torsion free, so b' = 1.

CASE 2. Suppose s is not torsion. Then s^m is central in \tilde{G} for some integer m. To see this, view \tilde{S} as a group of automorphisms acting on \tilde{R} by conjugation; then it has finite centre. Since z = bs, we have $b^{-1}z = s$, and thus $s^m \in A \cap \tilde{Z}$. Now $\tau(s^m) \in \tau(\tilde{S})$, and since $\tau(\tilde{S})$ is a semisimple Levi factor, there is $x \in \tilde{G}$ such that $x\tau(s^m)x^{-1} \in \tilde{S}$. Since s^m is central, so is $\tau(s^m)$. Therefore $x\tau(s^m)x^{-1} = \tau(s^m) \in \tilde{S}$. This implies that $\tau(s^m) = s^m$. Since $\tau(bs) = b'bs$, we have $(\tau(bs))^m = b'^m b^m s^m$ and $\tau((bs)^m) = \tau(b^m s^m) = \tau(b^m)\tau(s^m) = b^m s^m$. Hence $b'^m = 1$. But B is torsion free, so b' = 1.

Thus we can conclude that $\tau(z) = z$ for all $z \in A \cap \widetilde{Z}$. Therefore $\tau(K) = K$. Now we have $(\Delta \cap \Phi)^{\circ} \subseteq (\operatorname{Aut}_{T} G) \cap (\Delta \cap \Phi) \subseteq (\Delta \cap \Phi)$. Hence, $(\operatorname{Aut}_{T} G) \cap (\Delta \cap \Phi)$ is almost algebraic. By the hypothesis, we have $\operatorname{Aut}_{T} G/((\operatorname{Aut}_{T} G) \cap (\Delta \cap \Phi))$ is finite, so $\operatorname{Aut}_{T} G$ is almost algebraic. By Proposition 2.3, we have that $\operatorname{Aut} G$ is almost 428

algebraic.

The converse follows from Propositions 2.3 and 2.4.

COROLLARY 2.7. Let G be an analytic group and suppose that the radical R of G has a maximal torus of dimension at most 1. Then the AutG is an almost algebraic subgroup.

COROLLARY 2.8. Let G be an analytic group and let R denote the radical of G. If Aut R is an almost algebraic subgroup, then Aut G is an almost algebraic subgroup.

We conclude this section by proving an analogous result to Proposition 2.3. Here we are considering a maximal torus in the radical of G, rather than a maximal torus of G.

LEMMA 2.9. Let G be an analytic group. Let N be the nilradical of G. Let T be a maximal torus in the radical of G. Then $\operatorname{Aut} G = (\operatorname{Int} N)(\operatorname{Aut}_T G)$.

PROOF: Let $\tau \in \operatorname{Aut}_T G$. Then $\tau(T) = nTn^{-1}$ for some $n \in N$. Then $I_n^{-1} \circ \tau(T) = T$, so $I_n^{-1} \circ \tau \in \operatorname{Aut}_T G$ and $\tau = I_n \circ I_n^{-1} \circ \tau$. Thus $\operatorname{Aut} G = (\operatorname{Int} N)(\operatorname{Aut}_T G)$.

PROPOSITION 2.10. Let G be an analytic group and let T be a maximal torus in the radical of G. Then $\operatorname{Aut} G$ is an almost algebraic subgroup if and only if $\operatorname{Aut}_T G$ is an almost algebraic subgroup.

PROOF: Suppose $\operatorname{Aut}_T G$ is almost algebraic. Let N be the nilradical of G. Then $\operatorname{Aut} G = (\operatorname{Int} N)(\operatorname{Aut}_T G)$. Since N is the nilradical, $\operatorname{Int} N$ is almost algebraic, and therefore $\operatorname{Aut} G = (\operatorname{Int} N)(\operatorname{Aut}_T G)$ is almost algebraic.

Conversely, suppose that Aut G is almost algebraic. Let $\eta : \tilde{G} \to G$ be a group covering with \tilde{G} simply connected. Let $S = \eta^{-1}(T)$ and $S^{\circ} = \eta^{-1}(T)^{\circ}$. Let $\Phi_1 = \{\tau \in$ Aut $\tilde{G} : \tau(S^{\circ}) = S^{\circ}\}$. Since S° is connected, Φ_1 is an algebraic subgroup. Since Aut G is almost algebraic, $(\operatorname{Aut}_T G)^{\#} \subseteq \operatorname{Aut} G$. Also, viewing Aut G as a subgroup of Aut \tilde{G} , we have $(\operatorname{Aut}_T G) \subseteq \Phi_1$, and hence $(\operatorname{Aut}_T G)^{\#} \subseteq \Phi_1$. Thus, $(\operatorname{Aut}_T G)^{\#} = \operatorname{Aut}_T G$, so Aut_T G is almost algebraic.

3. Examples

Let G be an analytic group. Is there a clear and concise way of characterising G in terms of the maximal central torus in G so that AutG is almost algebraic? Chen and Wu gave such a characterisation for faithfully representable analytic groups. Specifically, suppose G has a faithful representation and let T be the maximal central torus in G. Then AutG is almost algebraic if and only if T is trivial, or the dimension of T is 1 and T is exactly the maximal torus in the radical of G([1]). Here we provide examples showing that for analytic groups that are not faithfully representable, there

Π

does not seem to be a clear and concise way to characterise G in terms of the maximal central torus in G so that Aut G is almost algebraic.

The following example, due to Dani [2], is of an analytic group whose maximal central torus is of dimension n and whose automorphism group is almost algebraic. Dani omitted the proof for $n \ge 2$. Here we sketch a proof of the case n = 2. The general case follows in a similar manner.

EXAMPLE. Let H be the three-dimensional Heisenberg group and let D be a uniform subgroup contained in the centre of H. Let S be a subgroup of Aut (H/D) isomorphic to $SL(2, \mathbf{R})$. Let G be the semidirect product of S and H/D. Then the centre of G^n is an n-dimensional torus and Aut G^n is an almost algebraic subgroup.

Let

[7]

$$\widetilde{G} = (H_1 \cdot SL(2, \mathbf{R})) \times (H_2 \cdot SL(2, \mathbf{R})) = (H_1 \times H_2) \cdot (SL(2, \mathbf{R}) \times SL(2, \mathbf{R}))$$

Let θ be an automorphism of \tilde{G} . By composing with a suitable inner automorphism, we can assume that

$$heta(SL(2,\mathbf{R}) imes SL(2,\mathbf{R}))=SL(2,\mathbf{R}) imes SL(2,\mathbf{R}).$$

Let $B = SL(2, \mathbb{R})$. Then $\theta(B_1 \times B_2) = B_1 \times B_2$. Hence $\theta(B_1) = B_1$ and $\theta(B_2) = B_2$, or $\theta(B_1) = B_2$ and $\theta(B_2) = B_1$. We consider the case where $\theta(B_1) = B_2$ and $\theta(B_2) = B_1$. Also we have $\theta(H_1 \times H_2) = H_1 \times H_2$.

Each element $h \in H$, where

$$H = \left\{ egin{pmatrix} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{pmatrix} : x, y, \, z \in \mathbf{R}
ight\}$$

will be denoted by h = (x, y, z). Consider $(h, 1) \in H_1 \times H_2$; thus $(h, 1) = h_1 = ((x, y, z), (0, 0, 0))$. Then $\theta(h_1) = ((x', y', z'), (x'', y'', z'')) = (h'_1, h''_1)$. If $(x, y) \neq (0, 0)$, we claim that x' = 0 and y' = 0. To see this, let $b_2 \in B_2$. Then $\theta(b_2h_1) = \theta(b_2)h'_1h''_1 = \theta(b_2)h'_1\theta(b_2)^{-1}h''_1\theta(b_2)$ and $\theta(h_1b_2) = \theta(h_1)\theta(b_2) = h'_1h''_1\theta(b_2)$. Thus $h'_1 = \theta(b_2)h'_1\theta(b_2)^{-1}$ for all $b_2 \in B_2$. When $(x', y') \neq (0, 0)$, there exists $\tilde{b}_1 \in B_1 = SL(2, \mathbf{R})$, hence $\tilde{b}_2 \in B_2$ with $\theta(\tilde{b}_2) = \tilde{b}_1$, such that (x', y') is not fixed under the action of $\tilde{b}_1 = \theta(\tilde{b}_2) \in SL(2, \mathbf{R})$. Hence (x', y') = (0, 0). Similarly, if we consider $(1, h) = h_2 = ((0, 0, 0), (x, y, z))$, then $\theta(h_2) = ((x', y', z'), (x'', y'', z''))$ where (x'', y'') = (0, 0).

By composing θ with an automorphism ϕ , $\phi \circ \theta$ will map $H_1 \times B_1$ into $H_2 \times B_2$ and $H_2 \times B_2$ into $H_1 \times B_1$. After considering the case where $\theta(B_1) = B_1$ and $\theta(B_2) = B_2$, it follows that

$$\operatorname{Aut} \widetilde{G} \cong \left(\operatorname{Aut} \left(H_1 \cdot SL(2, \mathbf{R})\right) \times \operatorname{Aut} \left(H_2 \cdot SL(2, \mathbf{R})\right)\right) \cdot \{\phi\} \cdot \Psi$$

where Ψ is the group generated by the automorphism ψ , where $\psi(g_1, g_2) = (g_2, g_1)$, with $g_1 \in H_1 \cdot SL(2, \mathbf{R})$ and $g_2 \in H_2 \cdot SL(2, \mathbf{R})$. From this, it follows that $\operatorname{Aut} G^2$ is almost algebraic.

EXAMPLE. Let H be the three-dimensional Heisenberg group and let D be a uniform subgroup contained in the centre of H. Then the centre of $(H/D)^n$ is an *n*-dimensional torus and $\operatorname{Aut}((H/D)^n)$ is almost algebraic. Here we provide a proof of the case where n = 2. The general case follows in a similar manner.

Let $\mathcal{L}(H)$ be the Lie algebra of H. Then $\mathcal{L}(H)$ is generated by e, f, and g with [e, f] = g, [e, g] = 0, and [f, g] = 0. Consider $H_1 \times H_2$. Then $\mathcal{L}(H_1 \times H_2) = \mathcal{L}(H_1) \times \mathcal{L}(H_2)$. Here the basis for $\mathcal{L}(H_i)$ is $e_i, f_i, g_i, i = 1, 2$. Let \mathcal{D} denote the Lie algebra of all derivations of $\mathcal{L}(H_1 \times H_2)$. Also, let \mathcal{F}_i denote the Lie algebra of all derivative to the basis $e_1, f_1, g_1, e_2, f_2, g_2$ is

Consider the derivation $D_{(\alpha,\beta,\gamma,\delta)}$ of $\mathcal{L}(H_1 \times H_2)$ given by

$$\begin{split} D_{(\alpha,\beta,\gamma,\delta)}(e_1) &= \alpha g_2, \quad D_{(\alpha,\beta,\gamma,\delta)}(e_2) = \gamma g_1 \\ D_{(\alpha,\beta,\gamma,\delta)}(f_1) &= \beta g_2, \quad D_{(\alpha,\beta,\gamma,\delta)}(f_2) = \delta g_1 \\ D_{(\alpha,\beta,\gamma,\delta)}(g_1) &= 0, \qquad D_{(\alpha,\beta,\gamma,\delta)}(g_2) = 0, \end{split}$$

where $\alpha, \beta, \gamma, \delta$ are real numbers.

Let $\mathcal{E} = \{D_{(\alpha,\beta,\gamma,\delta)} : \alpha, \beta, \gamma, \delta \text{ are real numbers}\}$. Then \mathcal{E} is an ideal of \mathcal{D} and $\mathcal{D} = \mathcal{F}_1 \times \mathcal{F}_2 + \mathcal{E}$. To show that \mathcal{E} is an ideal, let $D_1 \in \mathcal{D}$ and let $D_{(\alpha,\beta,\gamma,\delta)} \in \mathcal{E}$. Show that $[D_1, D_{(\alpha,\beta,\gamma,\delta)}] = D_1 D_{(\alpha,\beta,\gamma,\delta)} - D_{(\alpha,\beta,\gamma,\delta)} D_1 \in \mathcal{E}$. Then $D_1 D_{(\alpha,\beta,\gamma,\delta)}(e_1) = D_1(\alpha g_2) = \alpha(a_{44} + a_{55})g_2$, while $D_{(\alpha,\beta,\gamma,\delta)} D_1(e_1) = D_{(\alpha,\beta,\gamma,\delta)}(a_{11}e_1 + a_{12}f_1 + a_{13}g_1 + a_{16}g_2) = (\alpha a_{11} + \beta a_{12})g_2$. Thus $[D_1, D_{(\alpha,\beta,\gamma,\delta)}](e_1)$ is a scalar multiple of g_2 . Similar computations hold for f_1, e_2 , and f_2 .

Thus,

$$\operatorname{Aut}(\mathcal{L}(H_1 \times H_2))^{\circ} = \operatorname{Aut}(\mathcal{L}(H_1))^{\circ} \times \operatorname{Aut}(\mathcal{L}(H_2))^{\circ} \cdot \exp(\mathcal{E}),$$

where exp : $\mathcal{D} \to \operatorname{Aut}(\mathcal{L}(H_1 \times H_2))^{\circ}$ is the exponential map. Since H is simply connected, we have $\operatorname{Aut}(H) \cong \operatorname{Aut}(\mathcal{L}(H))$. Thus

$$\operatorname{Aut}(H_1 \times H_2)^{\circ} = \operatorname{Aut}(H_1)^{\circ} \times \operatorname{Aut}(H_2)^{\circ} \cdot E,$$

where E is a normal subgroup of Aut $(H_1 \times H_2)^{\circ}$ consisting of all automorphisms θ of the form

$$hetaig((x_1,y_1,z_1),\ (x_2,y_2,z_2)ig)=ig((x_1,y_1,z_1+\gamma x_2+\delta y_2),\ (x_2,y_2,z_2+lpha x_1+eta y_1)ig)$$

where $\alpha, \beta, \gamma, \delta$ are real numbers.

Since Aut $(H \times H)$ has finitely many connected components, it follows that Aut $(H/D \times H/D)$ is almost algebraic. Similarly, Aut $((H/D)^n)$ is almost algebraic.

REMARK. Using Corollary 2.8, this example shows that $\operatorname{Aut}((H/D \cdot SL(2, \mathbf{R}))^n)$ is almost algebraic.

The following example is of a nilpotent group which, if we factor out a uniform subgroup of the centre, we obtain a group whose maximal central torus is of positive dimension and whose automorphism group is not almost algebraic.

EXAMPLE. Consider $\mathbf{R} \times V \times W$, where V and W are vector spaces over \mathbf{R} of dimension n. Let v_1, \ldots, v_n be a basis of V and w_1, \ldots, w_n be a basis of W. Define the group operation

$$\langle r, v, w \rangle \cdot \langle r', v', w' \rangle = \left\langle r, \sum \alpha_i v_i, \sum \beta_i w_i \right\rangle \cdot \left\langle r', \sum \alpha'_i v_i, \sum \beta'_i w_i \right\rangle$$
$$= \left\langle r + r', \sum (\alpha_i + \alpha'_i) v_i, \sum (\beta_i + \beta'_i) w_i + \sum r \alpha'_i w_i \right\rangle$$

Then $G = \mathbf{R} \times V \times W$ is a nilpotent goup with centre (0, 0, W).

For each non-singular linear transformation $L: W \to W$, $L(w_i) = \sum \gamma_{ij} w_j$, we have a non-singular linear transformation $L^*: V \to V$, $L^*(v_i) = \sum \gamma_{ij} v_j$. Now for each L, define $\theta: G \to G$ by $\theta\langle r, v, w \rangle = \langle r, L^*(v), L(w) \rangle$. We claim that θ is an automorphism. Clearly, θ is one-to-one and onto. To show θ is a homomorphism, let $g, g' \in G$, where $g = \langle r, \sum \alpha_i v_i, \sum \beta_i w_i \rangle$ and $g' = \langle r', \sum \alpha'_i v_i, \sum \beta'_i w_i \rangle$. Then

$$\begin{aligned} \theta(g) \cdot \theta(g') &= \left\langle r, \sum \alpha_i L^*(v_i), \sum \beta_i L(w_i) \right\rangle \cdot \left\langle r', \sum \alpha'_i L^*(v_i), \sum \beta'_i L(w_i) \right\rangle \\ &= \left\langle r + r', \sum (\alpha_i + \alpha'_i) L^*(v_i), \sum (\beta_i + \beta'_i) L(w_i) + \sum r \alpha'_i L(w_i) \right\rangle \\ &= \theta \left\langle r + r', \sum (\alpha_i + \alpha'_i) v_i, \sum (\beta_i + \beta'_i) w_i + \sum r \alpha'_i w_i \right\rangle \\ &= \theta(g \cdot g'). \end{aligned}$$

Let Z be a uniform subgroup of W such that W/Z is an n-dimensional torus. Consider the group $G/Z = \mathbb{R} \times V \times W/Z$. Then the restriction map $\operatorname{Aut}(G/Z) \to \operatorname{Aut}(W/Z)$ is onto. If dim $W = n \ge 2$, $\operatorname{Aut}(W/Z)$ has infinitely many connected components. Thus $\operatorname{Aut}(G/Z)$ has infinitely many connected components, and is therefore not almost algebraic.

[10]

EXAMPLE. Let H be the three-dimensional Heisenberg group and let D be a uniform subgroup contained in the centre of H. Let T be a 1-dimensional torus. Consider the group $H/D \times T$. Then Aut $(H/D \times T)$ has infinitely many connected components. This follows from the following proposition.

PROPOSITION 3.1. Let H be an analytic group and suppose that the maximal central torus in H is of dimension 1. Let T be a 1-dimensional torus, and let $G = H \times T$. Then Aut G has infinitely many connected components. Hence Aut G is not almost algebraic.

PROOF: Let $T_1 \subseteq H$ be the central torus. Consider the automorphisms of the 2-dimensional torus $T_1 \times T$. Then $\pi : \mathbf{R} \times \mathbf{R} \to T_1 \times T$ is the simply connected group covering, where π is the quotient morphism. Thus Aut $(T_1 \times T)$ may be identified with the subgroup of Aut $(\mathbf{R} \times \mathbf{R})$ consisting of all **R**-linear automorphisms $\theta : \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ with $\theta(\mathbf{Z} \times \mathbf{Z}) = \mathbf{Z} \times \mathbf{Z}$. If we identify Aut $(\mathbf{R} \times \mathbf{R})$ with $GL(2, \mathbf{R})$, then Aut $(T_1 \times T)$ is $GL(2, \mathbf{Z})$, the group of all 2×2 integral matrices with determinant ± 1 .

Let $B \in \mathbb{Z}$, and define $\theta_B : G \to G$ by $\theta_B(h, e^{2\pi i t}) = (he^{2\pi i Bt}, e^{2\pi i t})$. Then θ_B is an automorphism of G. Since $\theta_B(T_1 \times T) = T_1 \times T$, we can consider the restriction map Aut $G \to \text{Aut } T_1 \times T$. Let $B \in \mathbb{Z}$, and consider the automorphism of $T_1 \times T$ given by $\tilde{\theta}_B(e^{2\pi i s}, e^{2\pi i t}) = (e^{2\pi i (s+Bt)}, e^{2\pi i t})$. Then $\tilde{\theta}_B$ extends to the automorphism $\theta_B :$ $G \to G$. Thus the image of Aut G under the restriction map contains $\{\tilde{\theta}_B : B \in \mathbb{Z}\}$. Thus, Aut G has infinitely many connected components.

To conclude, we consider the following result of Dani [2]. If G is an analytic group with no compact central subgroup of positive dimension, then the group of automorphisms that leave a central element fixed is almost algebraic. For such a G, Aut G is almost algebraic. It is natural to ask the following question: if G is an analytic group whose automorphism group is almost algebraic, is the group of automorphisms that leave a central element fixed necessarily almost algebraic? Here we provide an example to show that this is not the case in general.

EXAMPLE. Let H be the three-dimensional Heisenberg group, and let D be a uniform subgroup contained in the centre of H. Let $G = H/D \times \mathbf{R}$. Since the maximal torus T_1 of G is of dimension 1, Aut G is almost algebraic. For $B \in \mathbf{Z}$ consider the automorphism θ_B of G given by $\theta_B(h,r) = (he^{2\pi i Br},r)$. Then $\theta_B(1,1) = (1,1)$. We claim $\Phi = \{\tau \in \operatorname{Aut} G : \tau(1,1) = (1,1)\}$ is not almost algebraic. Let E be the central subgroup generated by $(1,1) : E = \{(1,m) : m \in \mathbf{Z}\}$. Then $G/E \cong H/D \times T$, where T is a 1-dimensional torus. The centre of G/E is the 2-dimensional torus $T_1 \times T$. By viewing Φ as a subgroup of Aut (G/E), we can consider the restriction map $\Phi \to \Phi|_{T_1 \times T}$. The image of Φ under this restriction map is infinite, so Φ is not [11]

almost algebraic.

References

- P.B. Chen and T.S. Wu, 'On the component group of the automorphism group of a Lie group', J. Austral. Math. Soc. Ser. A 57 (1994), 365-385.
- S.G. Dani, 'On automorphism groups of connected Lie groups', Manuscripta Math. 74 (1992), 445-452.
- [3] M. Goto, 'Dense imbeddings of locally compact connected groups', Ann. of Math. 61 (1955), 154-169.
- [4] D. Wigner, 'On the automorphism group of a Lie group', Proc. Amer. Math. Soc. 45 (1974), 140-143.
- [5] D. Wigner, 'Erratum to "On the automorphism group of a Lie group"', Proc. Amer. Math. Soc. 60 (1976), 376-376.

Department of Mathematics Case Western Reserve University Cleveland OH 44106 United States of America