A MOORE STRONGLY RIGID SPACE

V. TZANNES

ABSTRACT. It is proved that for every Hausdorff space \mathbb{R} and for every Hausdorff (regular or Moore) space X, there exists a Hausdorff (regular or Moore, respectively) space S containing X as a closed subspace and having the following properties:

1a) Every continuous map of S into \mathbb{R} is constant.

- b) For every point x of S and every open neighbourhood U of x there exists an open neighbourhood V of x, $V \subseteq U$ such that every continuous map of V into \mathbb{R} is constant.
- 2) Every continuous map f of S into S ($f \neq$ identity on S) is constant.

In addition it is proved that the Fomin extension of the Moore space S has these properties.

The first example of a strongly rigid space was given by J. de Groot [2]. In [4, Remark 3.5.4] V. Kannan and M. Rajagopalan posed the question whether every Hausdorff space can be embedded in a Hausdorff strongly rigid space. (A space S is called *strongly rigid* if every continuous map $f: S \rightarrow S, f \neq i$ dentity on S, is constant).

We solve this problem by proving that for every Hausdorff space \mathbb{R} and for every Hausdorff (or regular) space X there exists a Hausdorff (or regular) space S containing X as a closed subspace and having the following properties: 1) Every continuous map of S into \mathbb{R} is constant. 2) For every point x of S and every open neighbourhood U of x there exists an open neighbourhood V of x, $V \subseteq U$, such that every continuous map of V into \mathbb{R} is constant. (Spaces having these properties are called in [3] \mathbb{R} -monolithic and locally \mathbb{R} -monolithic, respectively and by their construction are connected and locally connected). 3) The space S is strongly rigid.

The method of construction of these spaces is basically the same as in [3] which needs an auxiliary space T having two points a, b such that f(a) = f(b), for every continuous map f of T into \mathbb{R} . Thus, using in place of space T the Moore space constructed in [1, Lemma 2] it follows that for every Hausdorff space \mathbb{R} and for every Moore space X, there exists a Moore space S containing X as a closed subspace and having properties (1), (2), (3). A direct consequence of this, is that the Fomin extension of the Moore space S has properties (1), (2), (3).

The terminology and the notation used here are the same as in [3], which is necessary background for the later results.

Let \mathbb{R} be a Hausdorff space and \aleph be a cardinal number such that $\aleph > \max\{\psi^+(\mathbb{R}), \aleph_1\}$. We construct the space $T_1(\mathbb{R})$, [3, Theorem 1] setting $|T_{4n+2}| =$

Received by the editors May 2, 1988; revised: April 2, 1990.

AMS subject classification: 54G99, 54C05, 54D10, 54D15.

Key words and phrases: Embedding, Hausdorff, Regular, Moore, Fomin, Strongly rigid spaces.

[©] Canadian Mathematical Society 1991.

 $|T_{2q+1}^m| = \aleph^+$ and considering that for every point α_{4t}^m a basis of open neighbourhoods are the sets of the form $\{\alpha_{4t}^m\} \cup B$, where the set *B* contains all but \aleph number of elements of the set $T_{4t-1}^m \cup T_{4t+1}^m$. We denote this space by $T(\aleph^+)$.

- LEMMA 1. The space $T(\aleph^+)$ has the following properties:
- (1) It is regular totally disconnected and for every continuous map f of $T(\aleph^+)$ into $\mathbb{R}, f(p^-) = f(p^+).$
- (2) If M is a subspace of T(ℵ⁺) containing the points p⁻, p⁺ and having cardinality < ℵ⁺, then the points p⁻, p⁺ are separated by disjoint open-and-closed subsets in M.

PROOF. (1). That $T(\aleph^+)$ is regular totally disconnected is easily proved. The proof that, for every continuous map f of $T(\aleph^+)$ into \mathbb{R} , $f(p^-) = f(p^+)$ is similar to that of the corresponding property of $T_1(\mathbb{R})$ (in [2]). It should be noticed that the proof in [3] is based on the fact that $|T_{4n+2}| = |T_{2q+1}^m| = \max\{\psi^+(\mathbb{R}), \aleph_1\}$, for then both sets $A_{4t+1}^m = T_{4t+1}^m \setminus f^{-1}(f(\alpha_{4t}^m)), A_{4t-1}^m = T_{4t-1}^m \setminus f^{-1}(f(\alpha_{4t}^m))$ have cardinality $\leq \max\{\psi(\mathbb{R}), \aleph_0\}$. In our case here, the cardinality of both sets A_{4t+1}^m, A_{4t-1}^m is \aleph , that is, the map f is constant on a neighbourhood of the point α_{4t}^m .

(2) Let $M \subseteq T(\aleph^+)$, $|M| < \aleph^+$, p^- , $p^+ \in M$ and let $U(n, p^+)$ be an open neighbourhood of p^+ in $T(\aleph^+)$. Then

$$U(n,p^{+}) = \bigcup_{k>4n+2} T_{k} \cup \bigcup_{k>4n+2} T_{k}^{m} \cup \{\alpha_{k}^{m} : k>4n+2, m=1,2,\ldots\} \cup \{p^{+}\}.$$

But then the points α_{4n}^m of $U(n, p^+)$ (if they belong to M) are isolated in M, because $|M| \leq \aleph$ and every open neighbourhood of α_{4n}^m consists of all but \aleph number of elements of the set $T_{4n+1} \cup T_{4n-1}$. Hence $\overline{U(n, p^+)} \cap \overline{M} = U(n, p^+) \cap M$ and therefore the points p^- , p^+ are separated by open-and-closed subsets in M.

We now apply Theorem 2, [3], setting $X = T(\aleph^+)$, $T_1(\mathbb{R}) = T(\aleph^+)$ and $a = p^+$ and we construct the space $I(T(\aleph^+))$ which in the sequel will be denoted by $C(p^+, \aleph^+)$.

LEMMA 2. The space $C(p^+,\aleph^+)$ has the following properties:

- (1) It is regular \mathbb{R} -monolithic and locally \mathbb{R} -monolithic only at the point p^+ .
- (2) The cardinality of every open set is \aleph^+ .
- (3) $\psi(C(p^+,\aleph^+)) = \aleph^+.$
- (4) There is no non-trivial connected (hence \mathbb{R} -monolithic) subspace of $C(p^+, \aleph^+)$ containing the point p^+ and having cardinality $< \aleph^+$.

PROOF. (1) That it is regular \mathbb{R} -monolithic and locally \mathbb{R} -monolithic at the point p^+ , is proved as in [3, Lemma 2 and Theorem 1]. Since the subspace $C(p^+, \aleph^+) \setminus \{p^+\}$ is totally disconnected [3, Theorem 2], it follows that $C(p^+, \aleph^+)$ is locally \mathbb{R} -monolithic only at the point p^+ .

(2) and (3) are obvious by the construction of $C(p^+, \aleph^+)$ and by the fact that $|T(\aleph^+)| = \aleph^+$.

(4) Let M, $|M| < \aleph^+$ be a non-trivial connected subspace of $C(p^+, \aleph^+)$ containing the point p^+ .

By Lemma 1, (2) and the definition of topology on $C(p^+, \aleph^+)$ [3,§4] it follows that for the set $O(U(n, p^+), H, G)$, (which is an open neighbourhood of p^+ in $C(p^+, \aleph^+)$), it holds that $O(U(n, p^+), H, G) \cap M = O(U(n, p^+), H, G) \cap M$, which implies that M is not connected hence not \mathbb{R} -monolithic since every \mathbb{R} -monolithic is obviously connected.

THEOREM. For every Hausdorff space \mathbb{R} and for every Hausdorff (or regular) space X, there exists a Hausdorff (or regular, respectively) \mathbb{R} -monolithic, locally \mathbb{R} -monolithic, strongly rigid space S containing X as a closed subspace.

PROOF. Let \mathbb{R} be a Hausdorff space, X be a Hausdorff (or regular) space and I_0 an index set for which $|I_0| = |X|$. Let A_0 be a set of cardinal numbers such that

(a)
$$|A_0| = |X|$$
,

(b) For every $\aleph_{0i} \in A_0$, $i \in I_0$, $\aleph_{0i}^+ \notin A_0$,

(c) For every $i \in I_0$, $\aleph_{0i}^+ > \max\{\psi^+(X), \psi^+(\mathbb{R}), \aleph_1\}$.

We construct for every $\aleph_{0i} \in A_0$, $i \in I_0$, the spaces $T(\aleph_{0i}^+)$ and then the corresponding spaces $C(p_{0i}^+, \aleph_{0i}^+)$. We attach the spaces $\{C(p_{0i}^+, \aleph_{0i}^+)\}_{i \in I_0}$ to the space $X = X_0$ as follows:

First we set

$$C = C(p_{0i}^+, \aleph_{0i}^+) \setminus \{p_{0i}^-, p_{0i}^+\}.$$

Then we fix a point $x_i \in X_0$ and we consider the set

$$\Lambda_0(x_i) = \{x_i\} \times (X_0 \setminus \{x_i\}).$$

For every $\lambda = (x_i, x) \in \Lambda_0(x_i)$ we denote by C^{λ} the copy of *C* attached to the points x_i, x .

We set

$$C_0^{\lambda}(x_i) = \{x_i, x\} \cup C^{\lambda}, \quad \lambda = (x_i, x)$$

and

$$L_0(x_i) = \bigcup_{\lambda \in \Lambda_0(x_i)} C_0^{\lambda}(x_i).$$

We consider the set

$$X_1 = X_0 \cup \bigcup_{\substack{\lambda \in \Lambda_0(x_i) \\ x_i \in X_0}} C^{\lambda}$$

on which we define a topology in exactly the same manner as on the set $I^{1}(X, \Lambda_{0})$ in [3].

The space X_{n+1} , n = 1, 2, ..., is constructed by induction: first we consider the space $S_n = X_n \setminus X_{n-1}$ and an index set I_n such that $|I_n| = |S_n|$. Then we consider a set A_n of cardinal numbers such that

(a) $|A_n| = |S_n|$,

- (b) For every $\aleph_{ni} \in A_n$, $i \in I_n$, $\aleph_{ni}^+ \notin A_n$,
- (c) For every $i \in I_n$, $\aleph_{ni}^+ > \psi^+(X_n)$.

We construct for every $\aleph_{ni} \in A_n$, $i \in I_n$ the spaces $T(\aleph_{ni}^+)$ and then the corresponding spaces $C(p_{ni}^+, \aleph_{ni}^+)$. We attach $\{C(p_{ni}^+, \aleph_{ni}^+)\}_{i \in I_n}$ to $S_n = X_n \setminus X_{n-1}$ and we construct the space

$$X_{n+1} = X_n \cup \bigcup_{\substack{\lambda \in \Lambda_n(x_i) \\ x_i \in S_n}} C_n^{\lambda}$$

V. TZANNES

where

 $\Lambda_n(x_i) = \{x_i\} \times (S_n \setminus \{x_i\})$

and

$$C_n = C(p_{ni}^+, \aleph_{ni}^+) \setminus \{p_{ni}^-, p_{ni}^+\}.$$

For every $\lambda = (x_i, x) \in \Lambda_n(x_i)$ we set

$$C_n^{\lambda}(x_i) = \{x_i, x\} \cup C_n^{\lambda}$$

and

$$L_n(x_i) = \bigcup_{\lambda \in \Lambda_n(x_i)} C_n^{\lambda}(x_i).$$

Thus to the fixed point x_i of S_n , n = 1, 2, ..., are attached $|S_n| = |\Lambda_n(x_i)|$ copies C_n^{λ} , $\lambda = (x_i, x)$ as x runs over the set S_n .

It should be observed that if $x_i, x_j \in S_n$ and $x_i \neq x_j$, then for the attached spaces $L_n(x_i)$ and $L_n(x_j)$, it holds that

$$L_n(x_i) \cap L_n(x_j) = S_n \text{ and } \aleph_{ni}^+ \neq \aleph_{nj}^+$$

Also, by the definition of $C_n^{\lambda}(x_i)$ it follows that if $\lambda = (x_i, x), \mu = (x_j, y), x, y \in S_n$ then

$$C_n^{\lambda}(x_i) \cap C_n^{\mu}(x_j) = \{x_i\}, \text{ if } x_i = x_j, \quad x \neq y,$$

$$C_n^{\lambda}(x_i) \cap C_n^{\mu}(x_j) = \emptyset, \text{ if } x_i \neq x_j, \quad x \neq y,$$

$$C_n^{\lambda}(x_i) \cap C_n^{\mu}(x_j) = \{x\}, \text{ if } x_i \neq x_i, \quad x = y.$$

It should also be observed that since for every n = 0, 1, 2, ... and $i \in I_n$, $\max\{\psi^+(\mathbb{R}), \aleph_1\} < \aleph_{ni}^+ < \aleph_{(n+1)i}^+$, it follows that $f(p^-) = f(p^+)$, for every continuous map f of $T(\aleph_{ni}^+)$ into \mathbb{R} . Hence for every $n = 0, 1, 2, ..., \aleph_{ni} \in A_n$ and $i \in I_n$, the corresponding spaces $C(p_{ni}^+, \aleph_{ni}^+)$ satisfy Lemma 2.

Also it is obvious that for every $n = 0, 1, 2, ..., \lambda \in \Lambda_n(x_i)$ and $\aleph_{ni} \in A_n$, the space $C_n^{\lambda}(x_i)$ is homeomorphic to the space $C(p_{ni}^+, \aleph_{ni}^+)$ and hence it also satisfies Lemma 2.

We consider the set $S = \bigcup_{n=0}^{\infty} X_n$ on which we define a topology in exactly the same manner as on the set I(X) in [3].

That *S* is Hausdorff (or regular, if the initial space X_0 is regular) \mathbb{R} -monolithic, locally \mathbb{R} -monolithic containing X_0 as a closed subspace is proved as in [3, Lemma 2 and Theorem 1].

We prove that *S* is strongly rigid. Let *f* be a continuous map of *S* into *S* and let $s_i \in S$ such that $f(s_i) \neq s_i$. Let *n*, *m* be the minimal integers for which $s_i \in X_n$ and $f(s_i) \in X_m$. The space $C_n^{\lambda}(s_i)$ is an \mathbb{R} -monolithic subspace of X_{n+1} and has cardinality \aleph_{ni}^+ . Hence the space $f(C_n^{\lambda}(s_i))$ is \mathbb{R} -monolithic (because the continuous image of an \mathbb{R} -monolithic is obviously \mathbb{R} -monolithic) and has cardinality $\leq \aleph_{ni}^+$.

Suppose first n < m. There exists a natural number k such that n+k = m. Since by (c), (see the construction of the space X_{n+1}) the corresponding cardinals \aleph_{ni}^+ , $i \in I_n$ satisfy the

550

inequality $\aleph_{ni}^+ > \psi^+(X_n)$, it follows that for the construction of X_{n+k} , k = 2, 3, ..., m-n, the corresponding cardinals $\aleph_{(n+k-1)i}^+$, $i \in I_{n+k-1}$, satisfy the inequalities

$$\aleph_{(n+k-1)i}^+ > \psi^+(X_{n+k-1}) > \aleph_{ni}^+ = \psi\left(C_n^\lambda(s_i)\right),$$

(the latter by Lemma 2, (3) and by the fact that $C_{\lambda}^{\lambda}(s_i)$ is homeomorphic to $C(p_{ni}^+, \aleph_{ni}^+)$. Hence, for every $i \in I_{n+k-1}$, every $C(p_{(n+k-1)i}^+, \aleph_{(n+k-1)i}^+)$ which is attached to a point of $S_{n+k-1} = X_{n+k-1} \setminus X_{n+k-2}$ (in order to construct X_{n+k}) has cardinality $> \aleph_{ni}^+$ and none of them contains a non-trivial connected subspace having cardinality $\leq \aleph_{ni}^+$ (Lemma 2, (4)). Hence $f(C_n^{\lambda}(s_i)) = f(s_i)$ which implies that $f(L_n(s_i)) = f(s_i)$ and finally that $f(X_n) = f(s_i)$.

Now suppose $n \ge m$. By the construction of spaces $X_1, X_2, ..., X_m$, it follows that $f(C_n^{\lambda}(s_i)) \subseteq X_{n+1}$, because by (c) again, the connected subspaces of $S \setminus X_{n+1}$ have cardinality $> \aleph_{ni}^+$. Consider the space $T(\aleph_{ni}^+)$ which was used for the construction of $C(p_{ni}^+, \aleph_{ni}^+)$. Then for the points of $T(\aleph_{ni}^+)$ having the form $\alpha_{4t}^m, t = 0, 1, ..., m = 1, 2, ...,$ it holds that the points $f(\alpha_{4t}^m)$ belong to an \mathbb{R} -monolithic subspace $C_m^{\mu}(s_k)$ of X_{n+1} having cardinality $< \aleph_{ni}^+$ (because $|f(C_n^{\lambda}(s_i))| \le \aleph_{ni}^+$ and no \mathbb{R} -monolithic subspace of X_{n+1} has cardinality exactly \aleph_{ni}^+ besides $C_n^{\lambda}(s_i)$). Therefore, for the pseudocharacter of $f(\alpha_{4t}^m)$ in $C_m^{\mu}(s_k)$ it holds that $\psi(C_m^{\mu}(s_k), f(\alpha_{4t}^m)) < \aleph_{ni}^+$. But then, by the construction of $C(p_{ni}^+, \aleph_{ni}^+)$ it follows that $f(C_n^{\lambda}(s_i)) = f(s_i)$, which implies that $f(L_n(s_i)) = f(s_i)$ and finally that $f(X_n) = f(s_i)$.

Thus in both cases $f(X_n) = f(s_i)$. Consequently, if *s* is an arbitrary point of $S \setminus X_n$ and *k* is the minimal integer for which $s \in X_k$ then by the above it follows that $f(X_k) = f(s)$ and since $X_n \subseteq X_k$ we have $f(s_i) = f(s)$ and therefore $f(S) = f(s_i)$, i.e., the space *S* is strongly rigid.

COROLLARY 1. For every Hausdorff space \mathbb{R} and for every Moore space X there exists an \mathbb{R} -monolithic, locally \mathbb{R} -monolithic, strongly rigid Moore space S containing X as a closed subspace.

PROOF. In [1, Lemma 2] it is proved that for every Hausdorff space \mathbb{R} (denoted there by *Y*) there exists a Moore space $T_1(\mathbb{R})$ (denoted by *S*) having two points $-\infty$, $+\infty$ such that $f(-\infty) = f(+\infty)$, for every continuous map *f* of $T_1(\mathbb{R})$ into \mathbb{R} . By its construction $T_1(\mathbb{R})$ is totally disconnected. Applying again Theorem 2 [3] (as we did before for the construction of $C(p^+, \aleph^+)$) we construct the space $I(T_1(\mathbb{R}))$ setting in place of the space *X* in Theorem 2 [3], the above space $T_1(\mathbb{R})$ and in place of *a* the point $+\infty$. Denote $I(T_1(\mathbb{R}))$ by $C(+\infty, 2^{\aleph})$, where \aleph is a cardinal number such that $|\mathbb{R}| < \aleph$ and $\aleph^{\aleph_0} = 2^{\aleph}$ (see [1]).

That $C(+\infty, 2^{\aleph})$ is Moore is proved as in [3, Theorem 3]. That it is \mathbb{R} -monolithic and locally \mathbb{R} -monolithic only at the point $+\infty$ is proved as property (1) in Lemma 2. That the cardinality of every open set is 2^{\aleph} (i.e., property (2) of Lemma 2) is implied by the construction of $C(+\infty, 2^{\aleph})$ and because $|T_1(\mathbb{R})| = 2^{\aleph}$. Property (4) is implied by the construction of space $C(+\infty, 2^{\aleph})$. For property (3), obviously $\psi(C(+\infty, 2^{\aleph})) = \aleph_0$ (because every Moore space is first countable). We now follow the proof of the Theorem above making the appropriate modifications. That is, for the construction of the space X_1 we consider an index set I_0 , $|I_0| = |X|$ and a set A_0 of cardinal numbers such that

(a) $|A_0| = |X|$,

(b) For every $\aleph_{0i} \in A_0$, $i \in I_0$, $\aleph_{01}^{\aleph_0} = 2^{\aleph_{0i}}$,

(c) For every $i \in I_0$, $\aleph_{0i} > \max\{ |\mathbb{R}|, |X| \}$.

Thus the spaces to be attached to $X = X_0$ are $\{C(+\infty_{0i}, 2^{\aleph_{0i}})\}_{i \in I_0}$.

For the construction of space X_{n+1} , n = 1, 2, ... we consider an index set I_n , $|I_n| = |S_n|$ and a set A_n of cardinal numbers such that

- (a) $|A_n| = |S_n|$,
- (b) For every $\aleph_{ni} \in A_n$, $i \in I_n$, $\aleph_{ni}^{\aleph_0} = 2^{\aleph_{ni}}$
- (c) For every $i \in I_n$, $\aleph_{ni} > |X_n|$,

and thus the spaces to be attached to $S_n = X_n \setminus X_{n-1}$ are $\{C(+\infty_{ni}, 2^{\aleph_{ni}})\}_{i \in I_n}$.

The final space S is defined as in the Theorem above and the proof that it is Moore is again the same as in [3, Theorem 3]. The other properties of S are proved as in the Theorem.

COROLLARY 2. If S is the Moore space constructed in Corollary 1, then the Fomin extension σS of S is \mathbb{R} -monolithic, locally \mathbb{R} -monolithic, strongly rigid.

PROOF. That σS is \mathbb{R} -monolithic, locally \mathbb{R} -monolithic is obvious since S is dense in σS .

We prove that σS is strongly rigid. Let $f: \sigma S \to \sigma S$ be continuous and $f \neq$ identity on *S*. Since *S* is first countable and the sequential closure of *S* in σS is *S* [5, Theorem 5.12], it follows that if $s \in S$ and $f(s) \in \sigma S \setminus S$, then $f(S) \subseteq \sigma S \setminus S$. Hence *f* is constant, because $\sigma S \setminus S$ is totally disconnected [5, Lemma 5.3(b)]. Therefore $f(S) \subseteq S$ and consequently *f* is constant on *S* and hence on σS .

REFERENCES

- 2. J. de Groot, Groups represented by homeomorphism groups, I, Math. Ann. 138(1959), 80–102.
- 3. S. Iliadis and V. Tzannes, Spaces on which every continuous map into a given space is constant, Canad. J. Math. 6(1986), 1281–1296.
- 4. V. Kannan and M. Rajagopalan, *Constructions and applications of rigid spaces, II*, Amer. J. Math. (6)100 (1978), 1139–1172.

5. J. Porter and C. Votaw, H-closed extensions, II, Trans.Am. Math. Soc. 202(1975), 193-209.

Department of Mathematics University of Patras Patras, Greece

552

^{1.} H. Brandenburg and A. Mysior, For every Hausdorff space Y there exists a non-trivial Moore space on which all continuous functions into Y are constant, Pacific J. of Mathematics (1)**111**(1984), 1–8.