
Canad. Math. Bull.Vol. 34 (4), 1991 pp. 547-552 

A MOORE STRONGLY RIGID SPACE 

V TZANNES 

ABSTRACT. It is proved that for every Hausdorff space R and for every Hausdorff 
(regular or Moore) space X, there exists a Hausdorff (regular or Moore, respectively) 
space S containing X as a closed subspace and having the following properties: 

la) Every continuous map of S into R is constant. 
b) For every point x of S and every open neighbourhood U of x there exists an 

open neighbourhood V of x, V Ç U such that every continuous map of V into 
R is constant. 

2) Every continuous map/ of S into S if ^ identity on S) is constant. 
In addition it is proved that the Fomin extension of the Moore space S has these 

properties. 

The first example of a strongly rigid space was given by J. de Groot [2]. In [4, Re
mark 3.5.4] V. Kannan and M. Rajagopalan posed the question whether every Hausdorff 
space can be embedded in a Hausdorff strongly rigid space. (A space S is called strongly 
rigid if every continuous map/: S —> S,f ^ identity on S, is constant). 

We solve this problem by proving that for every Hausdorff space R and for every 
Hausdorff (or regular) space X there exists a Hausdorff (or regular) space S containing 
X as a closed subspace and having the following properties: 1) Every continuous map 
of S into R is constant. 2) For every point x of S and every open neighbourhood U of x 
there exists an open neighbourhood V of x, V Ç U, such that every continuous map of 
V into R is constant. (Spaces having these properties are called in [3] R -monolithic and 
locally R -monolithic, respectively and by their construction are connected and locally 
connected). 3) The space S is strongly rigid. 

The method of construction of these spaces is basically the same as in [3] which needs 
an auxiliary space T having two points a, b such that f(a) = f(b), for every continuous 
map/ of T into R. Thus, using in place of space T the Moore space constructed in [1, 
Lemma 2] it follows that for every Hausdorff space R and for every Moore space X, 
there exists a Moore space S containing X as a closed subspace and having properties 
(1), (2), (3). A direct consequence of this, is that the Fomin extension of the Moore space 
S has properties (1), (2), (3). 

The terminology and the notation used here are the same as in [3], which is necessary 
background for the later results. 

Let R be a Hausdorff space and H be a cardinal number such that H > 
max{i/;+(R), Ki}. We construct the space Ti(R), [3, Theorem 1] setting 174W+21 = 
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548 V. TZANNES 

I ^2q+\ I = ^ + a nd considering that for every point a™t a basis of open neighbourhoods 
are the sets of the form { a™t} U B, where the set B contains all but K number of elements 
of the set T%t_x U TJt+l. We denote this space by 7(H +). 

LEMMA 1. The space T(K+) has the following properties : 
(1) It is regular totally disconnected and for every continuous map f o/T(K+) into 

K,f(p-)=f(p+\ 
(2) If M is a subspace ofT(R+) containing the points p~, p+ and having cardinality 

< K+, then the points p~, p+ are separated by disjoint op en-and-closed subsets 
inM. 

PROOF. (1). That 7(K+) is regular totally disconnected is easily proved. The proof 
that, for every continuous map / of 7(K+) into R,f(p~) = f(p+) is similar to that of 
the corresponding property of T\(K ) (in [2]). It should be noticed that the proof in [3] is 
based on the fact that | r4n+2| = 17^+11 = max{ xjj +(R ), Ki}, for then both sets A%t+l — 

K+x\f~X(f«)\ Al-x = K-i\f~l(f«t)) h a v e cardinality < max{ ̂  (R ), No}. In 
our case here, the cardinality of both sets A™t+l, A™t_x is K, that is, the map/ is constant 
on a neighbourhood of the point a™r 

(2) Let M Ç 7(N+), \M\ < N+, p~, p+ e M and let U(n,p+) be an open neighbour
hood of p+ in 7(H+). Then 

U(n,p+)= (J TkU (J 77 U {a? :k>4n + 2, m = 1,2,...} U {//} . 
k>4n+2 k>4n+2 

But then the points a™n of U(n,p+) (if they belong to M) are isolated in M, because 
\M\ < N and every open neighbourhood of a™n consists of all but N number of elements 
of the set T^n+X U T/±n-X. Hence U(n,p+) f l M = U(n,p+) D M and therefore the points 
p~, p+ are separated by open-and-closed subsets in M. 

We now apply Theorem 2, [3], setting X = T(H+), T{(K) = T(K+) and a = p+ and 
we construct the space l(T(& +)) which in the sequel will be denoted by C(p+, K +). 

LEMMA 2. The space C(p+, H+) has the following properties: 
(1) It is regular R -monolithic and locally R -monolithic only at the point p+. 
(2) The cardinality of every open set is H +. 
(3) y(C(p+,K+)) = K+. 
(4) There is no non-trivial connected (hence R-monolithic) subspace ofC(p+,R+) 

containing the pointp+ and having cardinality < N +. 

PROOF. (1) That it is regular R-monolithic and locally R-monolithic at the point 
p+, is proved as in [3, Lemma 2 and Theorem 1]. Since the subspace C(/?+,K+)\ {p+} 
is totally disconnected [3, Theorem 2], it follows that C(p+, N +) is locally R -monolithic 
only at the point p+. 

(2) and (3) are obvious by the construction of C(p+, N +) and by the fact that | T(H +)| = 
N+. 

(4) Let M, \M\ < N + be a non-trivial connected subspace of C(/?+,H+) containing 
the point p+. 
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By Lemma 1, (2) and the definition of topology on C(p+, H +) [3,§ 4] it follows that for the 
set 0(U(n,p+), H, G), (which is an open neighbourhood of p+ in C(p+, H +)), it holds that 

0(U(n,p+), H,G)DM = 0{U(n,p% H, G) D M, which implies that M is not connected 
hence not R -monolithic since every R -monolithic is obviously connected. 

THEOREM. For every Hausdorffspace R and for every Hausdorff (or regular) space 
X, there exists a Hausdorff (or regular, respectively) R -monolithic, locally R -monolithic, 
strongly rigid space S containing X as a closed subspace. 

PROOF. Let R be a Hausdorff space, X be a Hausdorff (or regular) space and IQ an 
index set for which |/o| = |X|. Let AQ be a set of cardinal numbers such that 

(a) |A0| = |X|, 
(b) For every Ho/ G A0, i G /o, H0+ £ A0, 
(c) For every i G /0, ^ > max{ ̂  +(X), V> +(R ), Hi}. 
We construct for every Ho/ G A0, / G /o, the spaces 7XH(J) and then the corresponding 

spaces C(pQi9 HQ^). We attach the spaces { Cip^, H(J)}ie/0
 t o t n e space X = Xo as follows: 

First we set 

c = c(p+
0i,K)\{pôrP+

0i}-

Then we fix a point JC/ G Xo and we consider the set 

Aote) ={*«'} x(X0 \{x/}). 

For every À = (JC/, JC) G AO(JC/) we denote by Cx the copy of C attached to the points *,-, x. 
We set 

C^ixt) = {xi9x} U CA, A = (xi9x) 

and 

Lo(xt)= (J ^ote). 
AeAota) 

We consider the set 
X i = x 0 u U cA 

A GAoU,-) 
Xi&Co 

on which we define a topology in exactly the same manner as on the set Il(X, Ao) in [3]. 
The space Xn+\ ,n= 1,2,..., is constructed by induction: first we consider the space 

Sn = Xn\Xn-\ and an index set /„ such that |/„| = \Sn\. Then we consider a set An of 
cardinal numbers such that 

(a) \An\ = |5„|, 
(b) For every Hm G An, i G /„, H„+ £ An, 

(c) Forevery/G/„,H„+> V>+(*n). 
We construct for every Hm- G An, / € /„ the spaces r(Hn+) and then the corresponding 
spaces C(p^-,Hn+). We attach { C(p+i9 H^)}/G/n to Sn = Zn\X„_i and we construct the 
space 

%n+\ = XnU (J Cn 
XeAn(xi) 

XitSn 
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where 
An(Xi)= {Xt} X (5 n \ {x /} ) 

and 

cn = c(p+
ni^:i)\{p-,P

+
ni}. 

For every À = (xi,x) G An(xt) we set 

Cx
n(xt) = {xt,x} U Cx

n 

and 

Ln(Xi)= U ^nfe)' 
A<EA„(JC,) 

Thus to the fixed point xt of Sn, n = 1,2,..., are attached \Sn\ — | A„(JC/)| copies Cx, 
À = (X(,x) as x runs over the set Sn. 

It should be observed that if JC/, Xj G S« and JC* ̂  JC7-, then for the attached spaces Ln(xt) 
and Ln(xj), it holds that 

Ln(Xi) H Lrt(x7) = Sn and N + ̂  K+ . 

Also, by the definition of Cx(xi) it follows that if À = (x/,x), \i — (xj,y), x,y G Sn then 

Cx
n(Xi) H C*(xj) = {xt}, if x, = *,-, x ^ y, 

C^ fe) n C*(xj) = 0, if x, ^ XJ, x^y, 

Cx
n(xdH C£(*y) = {x}, if *,- ^ XJ, x = y. 

It should also be observed that since for every n — 0,1,2, . . . and / G ln, 
max{ V>+(R),Ki} < K + < N(++1)l-, it follows that/(p~) = f(p+), for every continu
ous map / of T ( ^ ) into R. Hence for every rc = 0,1 ,2 , . . . , Km G An and / G In, the 
corresponding spaces C(p+/S Nn+) satisfy Lemma 2. 

Also it is obvious that for every n — 0,1,2 , . . . , À G \n(xf) and Km- G An, the space 
Cx (xi) is homeomorphic to the space C(p*t, &n*) and hence it also satisfies Lemma 2. 

We consider the set S = U^LQ Xn on which we define a topology in exactly the same 
manner as on the set I(X) in [3]. 

That S is Hausdorff (or regular, if the initial space XQ is regular) R -monolithic, lo
cally R -monolithic containing Xo as a closed subspace is proved as in [3, Lemma 2 and 
Theorem 1]. 

We prove that S is strongly rigid. Let / be a continuous map of S into S and let si G S 
such that/($i) ^ s/. Let n,m be the minimal integers for which si G Xn and/(s,-) G Xm. 
The space Cx (s,-) is an R -monolithic subspace of Xn+i and has cardinality Kn+. Hence the 
space f(Cx (s/)) is R-monolithic (because the continuous image of an R-monolithic is 
obviously R-monolithic) and has cardinality < H^. 

Suppose first n < m. There exists a natural number k such that n+k = m. Since by (c), 
(see the construction of the space Xn+\ ) the corresponding cardinals Kn+, / G /„ satisfy the 
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inequality Kn+ > xjj +(Xn), it follows that for the construction of Xn+k, k = 2 , 3 , . . . , m — n, 
the corresponding cardinals H(^_1)/, i € In+k-\* satisfy the inequalities 

(the latter by Lemma 2, (3) and by the fact that C„ (57) is homeomorphic to C(p^ fyj). 
Hence, for every i G ln+k-\^ every C(pJI+À._1)/,K(^+Â:_1)/) which is attached to a point of 
Sn+k-\ — Xn+k-i\Xn+k-2 (in order to constructXn+k) has cardinality > K„+ and none of 
them contains a non-trivial connected subspace having cardinality < Nn+ (Lemma 2, (4)). 
Hence /(C^ (Sij) = f(st) which implies that/(L„te)) = f(st) and finally that/(X„) = 

Now suppose n > m. By the construction of spaces Xi, X2,... ,Xm, it follows that 
f(C% (st)) Ç Xn+\, because by (c) again, the connected subspaces of 5\ Xn+\ have cardi
nality > K„+. Consider the space r(K,J) which was used for the construction of C(p+i9 H^). 
Then for the points of r(Nn+) having the form a^, t = 0 , 1 , . . . , m = 1,2,..., it holds 
that the points f(a™t) belong to an R -monolithic subspace C^(sk) of Xn+\ having car
dinality < K^ (because |/(C^(s/))| < H^ and no R-monolithic subspace of Xn+\ has 
cardinality exactly K^ besides C*(si)). Therefore, for the pseudocharacter of / (a^) in 
C£(sk) it holds that V> (C£(sk),f(a%j) < K+. But then, by the construction of C(p+i9 N„+) 
it follows that/(C* fa)) = /fa), which implies that/(L„fa)) = /fa) and finally that 
f(Xn)=f(Si). 

Thus in both cases f(Xn) = /fa) . Consequently, if s is an arbitrary point of S\Xn and 
k is the minimal integer for which s G Xk then by the above it follows that/(X^) = f(s) 
and since Xn Ç Xk we have/fa) = f(s) and therefore f(S) = /fa), i.e., the space S is 
strongly rigid. 

COROLLARY 1. For every Hausdorff space R and for every Moore space X there 
exists an R -monolithic, locally R -monolithic, strongly rigid Moore space S containing 
X as a closed subspace. 

PROOF. In [ 1, Lemma 2] it is proved that for every Hausdorff space R (denoted 
there by Y) there exists a Moore space Ti(R) (denoted by S) having two points —00, 
+00 such that/(—00) = /(+00), for every continuous map / of T\(R) into R. By its 
construction T\(R) is totally disconnected. Applying again Theorem 2 [3] (as we did 
before for the construction of C(/?+, K +)) we construct the space l(Ti (R )) setting in place 
of the space X in Theorem 2 [3], the above space T\ (R ) and in place of a the point +00. 
Denote l(T\(K)) by C(+oo, 2K), where K is a cardinal number such that | R | < K and 
KKo = 2* (see[l]). 

That C(+oo, 2H) is Moore is proved as in [3, Theorem 3]. That it is R-monolithic 
and locally R-monolithic only at the point +00 is proved as property (1) in Lemma 2. 
That the cardinality of every open set is 2^ (i.e., property (2) of Lemma 2) is implied by 
the construction of C(+oo, 2K) and because | T\(K )| = 2K. Property (4) is implied by 
the construction of space C(+oo, 2K ). For property (3), obviously \j) (C(+oo, 2H )) — Ko 
(because every Moore space is first countable). 
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We now follow the proof of the Theorem above making the appropriate modifications. 
That is, for the construction of the space Xi we consider an index set IQ, \IQ\ — \X\ and 
a set Ao of cardinal numbers such that 

(a) |A0| = | X | , 
(b) For every %i e A0, i G /<>, ̂  = 2*°<, 
(c) For every i G 70, %t > max{ | R |, |X|} . 

Thus the spaces to be attached to X = X0 are { C(+oo0/, 2**0,')},-G/0. 
For the construction of space Xn+\, n = 1,2,... we consider an index set In, \ In | = \Sn\ 

and a set An of cardinal numbers such that 
(a) \An\ = \Sn\, 
(b) For every Ki e An, i G /rt, K„*° = 2*™ 
(c) For every / G /„, Km > |X„|, 

and thus the spaces to be attached to Sn = Xn\Xn-\ are { C(+oom, 2K")}/e/w. 
The final space S is defined as in the Theorem above and the proof that it is Moore 

is again the same as in [3, Theorem 3]. The other properties of S are proved as in the 
Theorem. 

COROLLARY 2. If S is the Moore space constructed in Corollary 7, then the Fomin 
extension a S of S is R -monolithic, locally R -monolithic, strongly rigid. 

PROOF. That a S is R -monolithic, locally R -monolithic is obvious since S is dense 
inaS. 

We prove that G S is strongly rigid. Let/: a S —+ a S be continuous and/ ^ identity on 
S. Since 5 is first countable and the sequential closure of S in a S is S [5, Theorem 5.12], 
it follows that if s G S andf(s) G crS\ S, then/(S) Ç aS\ S. Hence/ is constant, because 
aS\ S is totally disconnected [5, Lemma 5.3(b)]. Therefore f(S) Ç S and consequently/ 
is constant on S and hence on aS. 
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