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Cyclic inner functions in growth classes
and applications to approximation
problems
Bartosz Malman

Abstract. It is well known that for any inner function θ defined in the unit disk D, the following
two conditions: (i) there exists a sequence of polynomials {pn}n such that limn→∞ θ(z)pn(z) = 1
for all z ∈ D and (ii) supn ∥θ pn∥∞ < ∞, are incompatible, i.e., cannot be satisfied simultaneously.
However, it is also known that if we relax the second condition to allow for arbitrarily slow growth of
the sequence {θ(z)pn(z)}n as ∣z∣ → 1, then condition (i) can be met for some singular inner function.
We discuss certain consequences of this fact which are related to the rate of decay of Taylor coefficients
and moduli of continuity of functions in model spaces Kθ . In particular, we establish a variant of a
result of Khavinson and Dyakonov on nonexistence of functions with certain smoothness properties
in Kθ , and we show that the classical Aleksandrov theorem on density of continuous functions in Kθ is
essentially optimal. We consider also the same questions in the context of de Branges–Rovnyak spaces
H(b) and show that the corresponding approximation result also is optimal.

1 Background and the main results

1.1 Cyclic singular inner functions

Let X be a topological space consisting of functions which are analytic in the unit disk
D = {z ∈ C ∶ ∣z∣ < 1} and which satisfy some customary desirable properties, such as
that the evaluation f ↦ f (λ) is a continuous functional on X for each λ ∈ D and that
the function z ↦ z f (z) is contained in the space X whenever f ∈ X. A function g ∈ X
is said to be cyclic if there exists a sequence of analytic polynomials {pn}n for which
the polynomial multiples {g pn}n converge to the constant function 1 in the topology
of the space.

The well-known Hardy classes H p are among the very few examples of analytic
function spaces in which the cyclicity phenomenon is completely understood. The
cyclic functions g are of the form

g(z) = exp
⎛
⎝∫

T

ζ + z
ζ − z

log(∣g(ζ)∣) dm(ζ)
⎞
⎠

, z ∈ D,(1.1)
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750 B. Malman

where dm is the (normalized) Lebesgue measure of the unit circleT = {z ∈ C ∶ ∣z∣ = 1}.
Functions as in (1.1) are called outer functions. The inner functions are of the form

θ(z) = B(z)Sν(z)

= ∏
n

αn

∣αn ∣
αn − z
1 − αnz

⋅ exp
⎛
⎝
− ∫

T

ζ + z
ζ − z

dν(ζ)
⎞
⎠

, z ∈ D,(1.2)

where ν is a positive finite singular Borel measure on T and {αn}n is a Blaschke
sequence. It is clear that if the Blaschke product B on the left is nontrivial, then θ
vanishes at points in D and therefore cannot be cyclic in any reasonable space of
analytic functions X. The right factor Sν is a singular inner function, and it is well
known that if a function g ∈ H p has a singular inner function as a factor, then g is not
cyclic in H p . As a consequence, if {pn}n is a sequence of polynomials for which we
have

lim
n→∞

θ(z)pn(z) = 1, z ∈ D,

then necessarily the Hardy class norms of the sequence must explode

lim
n→∞

∥θ pn∥p
H p ∶= lim

n→∞∫
T

∣θ pn ∣pdm = ∞

for finite p ≥ 1, or in case p = ∞,

lim
n→∞

∥θ pn∥∞ ∶= lim
n→∞

sup
z∈D

∣θ(z)pn(z)∣ = ∞.

When other norms are considered, cyclic singular inner functions might exist, and
here the Bergman spaces Lp

a(D) provide a famous set of examples. The Bergman
norms are of the form

∥g∥p
L p(D)

∶= ∫
D

∣g(z)∣pdA(z),

where dA is the normalized area measure of D. After a sequence of partial results by
multiple authors, Korenblum in [12] and Roberts in [15] independently characterized
the cyclic singular inner functions in the Bergman spaces in terms of the vanishing
on certain subsets of T of the corresponding singular measure ν appearing in (1.2). A
construction of a singular inner function which is cyclic in the classical Bloch space
appears in [3].

Recently, Ransford in [14] noted that singular inner functions exist which decay
arbitrarily slowly near the boundary of the disk. As we shall see below, this fact has
as a direct consequence the existence of an abundance of spaces of analytic function
which admit cyclic singular inner functions. Here is the precise statement of the main
result of [14].

Theorem 1.1 Let w ∶ [0, 1) → (0, 1) be any function satisfying limr→1− w(r) = 0. Then
there exists a singular inner function θ for which we have

min
∣z∣<r

∣θ(z)∣ ≥ w(r), r ∈ (0, 1).(1.3)
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It has been remarked to the present author that, in fact, this theorem appears
already in the literature. For instance, Shapiro similarly mentions in [17] that a singular
inner function always satisfies an estimate of the form

∣Sν(z)∣ ≥ exp
⎛
⎝
− C ω(1 − ∣z∣)

1 − ∣z∣
⎞
⎠

,(1.4)

where C is some positive constant, and ω = ων is the modulus of continuity of the
measure ν:

ων(h) = sup
∣I∣=h

ν(I).(1.5)

The supremum above is taken over arcs I of the circle T which are of length h. In
[18], Shapiro proves that a singular measure ν exists with a modulus of continuity ων
for which ων(h)/h grows to infinity arbitrarily slowly as h decreases to zero, hence
proving Theorem 1.1 as a consequence of the estimate (1.4). In fact, such singular
measures have been known to exist at least since the work of Hartman and Kershner
in [10]. The proof of Ransford in [14] also involves establishing the existence of such
a measure.

The following result is the abovementioned consequence of Theorem 1.1 on exis-
tence of cyclic singular inner function. The result is surely well known, and has an
elementary proof which we include for convenience.

Corollary 1.2 Let w ∶ [0, 1) → (0, 1) be any decreasing function satisfying limt→1− w(t) =
0. There exist a singular inner function θ = Sν and a sequence of analytic polynomials
{pn}n such that:
(1) limn→∞ θ(z)pn(z) = 1, z ∈ D,
(2) supz∈D ∣θ(z)pn(z)∣w(∣z∣) ≤ 2.

Proof Apply Theorem 1.1 to the function w to produce a singular inner function θ
satisfying (1.3). For integers n ≥ 2, we set rn ∶= 1 − 1/n and Qn(z) ∶= 1/θ(rnz). Then
Qn is holomorphic in a neighborhood of the closed disk D, and because we are
assuming that w is decreasing, we have the estimate

sup
z∈D

∣Qn(z)∣w(∣z∣) ≤ sup
z∈D

w(∣z∣)
w(rn ∣z∣)

≤ 1.

We can approximate Qn by an analytic polynomial pn so that

sup
z∈D

∣Qn(z) − pn(z)∣ ≤ 1/n.

Then

sup
z∈D

∣θ(z)pn(z)∣w(∣z∣) ≤ sup
z∈D

(∣θ(z)Qn(z)∣ + 1/n)w(∣z∣) ≤ 2.

It is clear from the construction that θ(z)pn(z) → 1 as n → ∞, for any z ∈ D. ∎
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Corollary 1.2 says that there exist cyclic singular inner functions in essentially any
space of analytic functions defined in terms of a growth condition, or in any space in
which such a growth space is continuously embedded.

The purpose of this note is to apply Theorem 1.1, or more precisely its simple conse-
quence stated in Corollary 1.2, to the questions of existence of functions with certain
smoothness properties in model spaces Kθ . We will establish sharpness of certain
existing approximation results in these spaces. Moreover, we take the opportunity to
discuss similar questions in the broader class of de Branges–Rovnyak spaces H(b).
Our results are proved by rather well-known methods, but their statements seem to
be missing in the existing literature, and we wish to fill in this gap.

In the proofs of the main results, which will be stated shortly, we will concern
ourselves with the following weak type of cyclicity of singular inner functions. Let
Y be some linear space of analytic functions which is contained in H1. We want to
investigate if there exist a singular inner function θ and a sequence of polynomials
{pn}n such that

f (0) = ∫
T

f dm = lim
n→∞∫ f θ pn dm(1.6)

holds for all f ∈ Y . The above situation means that the sequence {θ pn}n converges
to the constant 1, weakly over the space Y. Now, clearly, if Y is too large of a space
(say, Y = H2), then (1.6) can never hold for all f ∈ Y . However, if Y is sufficiently
small, then the situation in (1.6) might occur. For instance, in the extreme case,
when Y is a set of analytic polynomials, then any singular inner function θ and any
sequence of polynomials {pn}n which satisfies limn→∞ pn(z) = 1/θ(z) for z ∈ D is
sufficient to make (1.6) hold. Philosophically speaking, it is the uniform smoothness
of the functions in the class Y that allows the existence of singular inner functions
θ for which the above situation occurs. Under insignificant assumptions on Y, a
straightforward argument shows that if (1.6) occurs, then the intersection between
Y and Kθ is trivial, whereas Corollary 1.2 provides us with a huge class of spaces Y for
which (1.6) can be achieved.

1.2 Main results

Recall that the space Kθ is constructed from an inner function θ by taking the
orthogonal complement of the subspace

θH2 ∶= {θh ∶ h ∈ H2}

in the Hardy space H2:

Kθ = H2 ⊖ θH2 .

For background on the spaces Kθ , one can consult the books [5, 9]. In our first
result, we will show that the famous approximation theorem of Aleksandrov from
[1] on density in Kθ of functions which extend continuously to the boundary is in
fact essentially sharp, as it cannot be extended to any class of functions satisfying an
estimate on their modulus of continuity. By a modulus of continuity ω, we mean here a
function ω ∶ [0,∞) → [0,∞) which is continuous, increasing, satisfies ω(0) = 0, and

https://doi.org/10.4153/S0008439522000704 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000704


Cyclic inner functions and applications to approximation problems 753

for which ω(t)/t is a decreasing function with

lim
t→0+

ω(t)/t = ∞.

For such a function ω, we define Λω
a to be the space of functions f which are analytic

in D, extend continuously to D, and satisfy

sup
z ,w∈D,z≠w

∣ f (z) − f (w)∣
ω(∣z − w∣) < ∞.(1.7)

Then Λω
a is the space of analytic functions on D which have a modulus of continuity

dominated by ω. We make Λω
a into a normed space by introducing the quantity

∥ f ∥ω ∶= ∥ f ∥∞ + sup
z ,w∈D,z≠w

∣ f (z) − f (w)∣
ω(∣z − w∣) .

By a theorem of Tamrazov from [19], we could have replaced the supremum over D
by a supremum over T, and obtain the same space of functions (we remark that a nice
proof of this result is contained in [4, Appendix A]). The following is an optimality
statement regarding Aleksandrov’s density theorem.

Theorem 1.3 Let ω be a modulus of continuity. There exists a singular inner function
θ such that

Λω
a ∩ Kθ = {0}.

This statement will be proved in Section 3. In fact, we will see that Theorem 1.3 is
a consequence of a variant, and in some directions a strengthening, of a theorem of
Dyakonov and Khavinson from [6]. For a sequence of positive numbers λ = {λn}∞n=0,
we define the class

H2
λ =

⎧⎪⎪⎨⎪⎪⎩
f =

∞

∑
n=0

fnzn ∈ Hol(D) ∶
∞

∑
n=0

λn ∣ fn ∣2 < ∞
⎫⎪⎪⎬⎪⎪⎭

.(1.8)

The next theorem, proved in Section 2, reads as follows.

Theorem 1.4 Let λ = {λn}∞n=0 be any increasing sequence of positive numbers with
limn→∞ λn = ∞. Then there exists a singular inner function θ such that

H2
λ ∩ Kθ = {0}.

The result can be compared to the mentioned result of Dyakonov and Khavinson in
[6], from which the above result can be deduced in the special case λ = {(k + 1)α}∞k=0
with any α > 0.

The theory of de Branges–Rovnyak spaces H(b) is a well-known generalization of
the theory of model spaces Kθ . The symbol of the space b is now any analytic self-
map of the unit disk, and we have H(b) = Kb whenever b is inner. For background
on H(b) spaces, one can consult [16] or [7, 8]. A consequence of the author’s work
in collaboration with Aleman in [2] is that the abovementioned density theorem of
Aleksandrov generalizes to the broader class of H(b) spaces: any such space admits a
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dense subset of functions which extend continuously to the boundary. Since Theorem
1.3 proves optimality of Aleksandrov’s theorem for inner functions θ, one could ask if
at least for outer symbols b any improvement of the density result in H(b) from [2]
can be obtained. In Section 4, we remark that this is not the case, and the result in [2]
is also essentially optimal, even for outer symbols b.

Theorem 1.5 Let λ = {λn}∞n=0 be any increasing sequence of positive numbers with
limn→∞ λn = ∞. There exists an outer function b ∶ D → D such that

H2
λ ∩H(b) = {0}.

Theorem 1.6 Let ω be a modulus of continuity. There exists an outer function b ∶ D →
D such that

Λω
a ∩H(b) = {0}.

We will show that the above results are essentially equivalent to a theorem of
Khrushchev from [11].

In Section 5, we list a few questions we have not found an answer for, and some
ideas for further research.

2 Proof of Theorem 1.4

In the proof of the theorem, we will need to use the following crude construction of
an integrable weight with large moments.

Lemma 2.1 Let {λn}∞n=0 be a decreasing sequence of positive numbers with
limn→∞ λn = 0. There exists a nonnegative function Λ ∈ L1([0, 1]) which satisfies

λn ≤ ∫
1

0
x2n+1Λ(x) dx , n ≥ 0.

Proof Recall that the sequence (1 − 1/n)n = exp(n log(1 − 1/n)) is decreasing and
satisfies

lim
n→∞

(1 − 1/n)n = e−1 .

It follows that

inf
x∈(1−1/n ,1)

x2n+1 ≥ α

for some constant α > 0 which is independent of n. For n ≥ 1, we define the intervals
In = (1 − 1/n, 1 − 1/(n + 1)). Our function Λ will be chosen to be of the form

Λ(x) =
∞

∑
n=0

1In cn ,
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where 1In is the indicator function of the interval In and the cn are positive constants
to be chosen shortly. Note that

∫
1

0
x2N+1Λ(x) dx ≥ ∫

1

1−1/N
x2N+1Λ(x) dx ≥ α

∞

∑
n=N

∣In ∣cn .(2.1)

We choose

cn = α−1∣In ∣−1(λn − λn+1).

This choice of coefficients cn makes Λ integrable over [0, 1]:

∫
1

0
Λ(x)dx =

∞

∑
n=1

∣In ∣cn = α−1
∞

∑
n=1

λn − λn+1

= lim
M→∞

α−1
M
∑
n=1

λn − λn+1 = lim
M→∞

α−1(λ1 − λM+1)

= α−1 λ1 .

In the last step, we used the assumption that the sequence {λn}n converges to zero.
Moreover, by (2.1) and the choice of cn , we can estimate

∫
1

0
x2N+1Λ(x) dx ≥ α

∞

∑
n=N

∣In ∣cn

= lim
M→∞

α
M
∑

n=N
∣In ∣cn = lim

M→∞

M
∑

n=N
λn − λn+1

= lim
M→∞

λN − λM+1 = λN .

The proof is complete. ∎

The significance of the above lemma is the estimate
∞

∑
k=0

λk ∣ fk ∣2 ≤ c ∫
D

∣ f (z)∣2Λ(∣z∣)dA(z)(2.2)

for some numerical constant c > 0 and any function f which is holomorphic in a
neighborhood of the closed diskD. The estimate can be verified by direct computation
of the integral on the right-hand side, using polar coordinates.

We will also use the following well-known construction.

Lemma 2.2 For any function g ∈ L1([0, 1]), there exists a positive and increasing
function w ∶ [0, 1) → R which satisfies

lim
t→1−

w(t) = ∞

and

wg ∈ L1([0, 1]).
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Proof The integrability condition on g implies that

lim
t→1− ∫

1

t
∣g(x)∣dx = 0.

Thus, there exists a sequence of intervals {In}∞n=1 which have 1 as the right endpoint
and length shrinking to zero, which satisfy In+1 ⊂ In for all n ≥ 1, and

∫
In
∣g(x)∣dx ≤ 4−n .

If we set

w(t) = 1[0,1)∖I1 +
∞

∑
n=1

2n1In∖In+1 ,

where 1In∖In+1 is the indicator function of the set difference In ∖ In+1, then w is
increasing, satisfies limt→1− w(t) = ∞, and

∫
In∖In+1

w(x)∣g(x)∣dx ≤ 2−n

for all n ≥ 1. Consequently,

∫
1

0
w(x)∣g(x)∣dx ≤ ∫

1

0
∣g(x)∣dx +∑

n
∫

In∖In+1
w(x)∣g(x)∣dx < ∞. ∎

Proof of Theorem 1.4 Let Λ be the function in Lemma 2.1 which corresponds to
the sequence {1/λn}∞n=0. That is, Λ satisfies

1
λn

≤ ∫
1

0
x2n+1Λ(x) dx , n ≥ 0,

and Λ ∈ L1[0, 1]. Now, let w be a positive decreasing function which satisfies w(x) <
1/2, limx→1− w(x) = 0 and

∫
1

0

Λ(x)
w2(x) dx < ∞.

Existence of such a function follows readily from Lemma 2.2. Apply Corollary 1.2 to
w and obtain a corresponding inner function θ and a sequence of polynomials {pn}n
for which the conclusions (i) and (ii) of Corollary 1.2 hold. We will show that for this
θ, we have Kθ ∩ H2

λ = {0}.
Indeed, assume that f ∈ Kθ ∩ H2

λ = {0}, but that in fact f is nonzero. Since both Kθ
and H2

λ are invariant for the backward shift operator, we may without loss of generality
assume that f (0) ≠ 0. Fix an integer n, and let

g(z) = θ(z)pn(z) − 1, z ∈ D.(2.3)

Let { fk}k , {gk}k be the sequences of Taylor coefficients of f and g, respectively. Since
f ∈ Kθ , we have
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∣ f (0)∣ = ∣∫
T

f dm∣ = ∣∫
T

f θ pn − 1 dm∣ = lim
r→1−

∣
∞

∑
k=0

r2k fk gk ∣

≤ lim sup
r→1−

⎛
⎝
∞

∑
k=0

λk r2k ∣ fk ∣2
⎞
⎠

1/2
⎛
⎝
∞

∑
k=0

1
λk

∣rk gk ∣2
⎞
⎠

1/2

.

Using inequality (2.2) on the term on the right-hand side in the last expression (with
λn replaced by 1/λn), we obtain

∣ f (0)∣ ≤ C lim sup
r→1−

⎛
⎝
∞

∑
k=0

λk ∣ fk ∣2
⎞
⎠

1/2
⎛
⎝∫

D

∣g(rz)∣2Λ(∣z∣)dA(z)
⎞
⎠

1/2

= C
⎛
⎝
∞

∑
k=0

λk ∣ fk ∣2
⎞
⎠

1/2
⎛
⎝∫

D

∣g(z)∣2Λ(∣z∣)dA(z)
⎞
⎠

1/2

.

By assertion in part (ii) of Corollary 1.2, the function ∣g(z)∣2Λ(∣z∣) is dominated
pointwise in D by the integrable function

4Λ(∣z∣)
w2(∣z∣) , z ∈ D

independently of which polynomial pn is used to defined g in (2.3). However, if we let
n → ∞ in (2.3), then ∣g(z)∣2Λ(∣z∣) → 0, and so we infer from the computation above
and the dominated convergence theorem that f (0) = 0, which is a contradiction. The
conclusion is that Kθ ∩ H2

λ = {0}, and the proof of the theorem is complete. ∎

3 Proof of Theorem 1.3

Theorem 1.3 will follow immediately from Theorem 1.4 together with the following
embedding result for the spaces Λω

a .

Lemma 3.1 Let ω be a modulus of continuity. There exists an increasing sequence of
positive numbers α = {αn}∞n=0 satisfying limn→∞ αn = ∞ such that for any f ∈ Λω

a we
have the estimate

∑
n=0

αn ∣ fn ∣2 ≤ C∥ f ∥2
ω ,(3.1)

where C > 0 is a numerical constant and { fn}n is the sequence of Taylor coefficients
of f.

Proof For each r ∈ (0, 1), we have the estimate

∑
n=0

(1 − r2n)∣ fn ∣2 = ∫
T

∣ f (ζ) − f (rζ)∣2dm(ζ) ≤ ω(1 − r)2∥ f ∥2
ω .(3.2)

Since limt→0 ω(t) = 0, for each positive integer N, there exists a number rN ∈ (0, 1)
such that ω(1 − rN) ≤ 1

2N . Since limn→∞ r2n
N = 0, there exists an integer K(N) such
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that r2n
N < 1/2 for n ≥ K(N). Then

∞

∑
n=K(N)

∣ fn ∣2
2

≤
∞

∑
n=K(N)

(1 − r2n
N )∣ fn ∣2 ≤ 1

4N ∥ f ∥2
ω .

Consequently,

∑
n=K(N)

2N ∣ fn ∣2 ≤ 1
2N−1 ∥ f ∥2

ω .(3.3)

We can clearly choose the sequence of integers K(N) to be increasing with N. If we
define the sequence α by the equation αn = 1 for n < K(1), and αn = 2N for K(N) ≤
n < K(N + 1), then (3.1) follows readily from (3.3) by summing over all N ≥ 1. ∎

Proof of Theorem 1.3 Lemma 3.1 implies that Λω
a is contained in some space of the

form H2
α as defined in (1.8). If θ is a singular inner function given by Theorem 1.4 such

that H2
α ∩ Kθ = {0}, then obviously we also have that Λω

a ∩ Kθ = {0}, and so the claim
follows. ∎

4 Proofs of Theorems 1.5 and 1.6

Here, we prove the optimality of the continuous approximation theorem for the larger
class of H(b)-spaces. As remarked in the introduction, this is essentially equivalent
to a theorem of Khrushchev from [11].

Proof of Theorem 1.5 By a result of Khrushchev noted in [11, Theorem 2.4], there
exists a closed subset E of the circle T with the property that for no nonzero integrable
function h supported on E is the Cauchy integral

Ch(z) = ∫
T

h(ζ)
1 − zζ

dm(ζ),

a member of the space H2
λ . It suffices thus to construct an H(b) space for which

every function can be expressed as such a Cauchy integral. The simplest choice for
the space symbol b is the outer function with modulus 1 on T ∖ E and 1/2 on E.
Then b is invertible in the algebra H∞, and a consequence of the general theory (see
[8, Theorems 20.1 and 28.1]) is that every function in the space H(b) is a Cauchy
integral of a function h which is square-integrable on T and supported only on E.
Thus, H2

λ ∩H(b) = {0}, by Khrushchev’s theorem. ∎

Finally, Theorem 1.6 follows from Theorem 1.5 in the same way as Theorem 1.3
follows from Theorem 1.4.

5 Some ending questions and remarks

Since Theorem 1.1 seems to be such a powerful tool in establishing results of the kind
mentioned here, we are wondering whether it can be further applied. In particular,
the following questions come to mind.
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(1) Are our methods strong enough to prove that there exist model spaces Kθ which
admit no nonzero functions in the Wiener algebra of absolutely convergent
Fourier series? The result is known, and has been noted in [13]. However, it
was proved as a consequence of a complicated construction of a cyclic singular
inner function in the Bloch space. Is it so that the construction in Corollary 1.2
is sufficient to prove the nondensity result for the Wiener algebra in the fashion
presented here?

(2) For p > 2, the Banach spaces �p
a consisting of functions f ∈ Hol(D) with Taylor

series { fn}∞n=0 satisfying

∥ f ∥p
�

p
a
∶=
∞

∑
n=0

∣ fn ∣p < ∞

are of course larger than the space H2 = �2
a . Do there exist cyclic singular inner

functions in these spaces?
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