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ON PSEUDO-FINITE NEAR-FIELDS WHICH HAVE FINITE
DIMENSION OVER THE CENTRE

by PETER FUCHS
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1. Introduction

In [1] J. Ax studied a class of fields with similar properties as finite fields called
pseudo-finite fields. One can prove that pseudo-finite fields are precisely the infinite
models of the first-order theory of finite fields. Similarly a near-field F is called pseudo-
finite if F is an infinite model of the first-order theory of finite near-fields. The structure
theory of these near-fields has been initiated by U. Felgner in [5].

In this paper we characterize all pseudo-finite near-fields having finite dimension over
the centre. We prove that these near-fields are precisely the derivations of pseudo-finite
fields with finite cyclic Dickson groups.

Apart from the fact that we use right near-fields we mainly follow the terminology of
Wihling [8]. For a field (K, +,-) and a coupling map y:K\{o}—Aut(K) with Dickson
group A, we let Fix(A)={keK|y(k)=kVyeA,}, U,={ke K\{o}|x(k)=id} and K* be
the y-derivation of K. If (F, +, 0) is a near-field, then Z(F), K(F) shall denote the centre
and the kernel of F, respectively. If (g,n) is a Dickson pair, where g = p' for some prime p
and n is a positive integer, let F(gq, n) denote a finite Dickson near-field of order ¢". For
an index set A, an ultrafilter U on 4 and a collection {F,|ax€ 4} of near-fields F, we can
form the ultraproduct [ [y F,. Elements of [, F, shall be denoted by (f,)y. If F,=F for
all xe A, we write F4/U instead of [ F,.

Ultraproducts yield an alternative definition of pseudo-finite near-fields. A near-field F
is pseudo-finite if and only if F is infinite and elementarily equivalent to an ultraproduct
of finite Dickson near-fields. In particular the class of all pseudo-finite near-fields is
closed under ultraproducts. For ultraproducts consult Chang-Keisler [2]. To denote
elementary equivalence we shall use the symbol =.

We shall make frequent use of the following result. A proof can be found in
Trautvetter [7].

Proposition 2.1. Let {F,|ae A} be a collection of Dickson near-fields, where F,=Kx®
for a field K,, a€ A. For any ultrafilter U on A, [y F, is again a Dickson near-field and

[MoF.=(I v KJ* where x:([Tv KJ\{o} > Aut([v Ko, x(k)v)=(xuko))y- Here the action
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of (xdk))y on HUKa is component-wise. Moreover, A1=HUAM and Fix(A,)=
[1vFix(A,).

If F is pseudo-finite, then Z(F)=K(F) (3.1 in [5]), thus Z(F) is a subfield of F. The
dimension of F as a vector-space over Z(F) shall be denoted by [F:Z(F)].

Proposition 2.2 Let F be a pseudo-finite near-field with [F:Z(F)] finite. Then
(a) F is a Dickson near-field and there exists a commutative field K such that F =K* for
some coupling map y on K.

(b) Z(F)=Fix(A))<U,u{o}.

Proof.
(a) Has been mentioned by Felgner [5].

(b) By ([8, IIL5.7]) Z(F)<=Fix(A,). On the other hand Fix(A,) = Z(F) since Fix(A))<
K(F) and K(F)=Z(F). Moreover Z(F)\{o}< U, by ([8, II1.5.5.(b)]).

For a field K, a subfield L of K and /,,...,l,eK let L(l,...,1,) denote the subfield
generated by Lu{l,...,1}. If G is a group and geG then (g) shall denote the
subgroup generated by g.

Proposition 2.3. Let E be a commutative field and let y be a coupling map on E such
that A, ={y,y?...,y""',id} is cyclic of finite order n. If Fix(A,)=[]y GF(q,) where U is
an ultrafilter on a set A and q,=p* for a collection {p,|a€ A} of prime numbers and
positive integers {l,|a€ A}, then E* is isomorphic to an ultraproduct of finite Dickson
near-fields and [ E*: Z(E*)] =n.

Proof. Let L,=Fix(A,), L,=][]yGF(q) and a:L,—»L, be an isomorphism. Since
|A,|=n we have that [E:L,]J=n. If K=[[,GF(qD), then [K:L,]J=n since
[GF(q)):GF(q)])=n for all ae A. Both L, L, are perfect fields. Let I, € E such that
L,(l,)=E and let p,(x)=x"+a,x""'+---+a,,ay,...,a,eL,, be the minimal polynomial
of I,. Clearly all zeros of p,(x) are given by I, y(l,),...,y" *(l,). Let py(x)=x"+
o(a,)x" "'+ --- +a(a,) where a(a;)=(by)y, i€{l...n}. Since p,(x) is irreducible over L,
there exists an element we U such that p5(x)=x"+b,x""'+-- +b,, is irreducible over
GF(q,) for all aew. By ([6, Th. 3.46]) we can find elements I,€ GF(q?) such that [, is a
zero of p3(x) for all aew. If I,e GF(q}) is chosen arbitrarily for ae Cw, then I, =(l,)y is
a zero of p,(x). Let &K-oK, &(x)y)=(x)y. & is an element of Aut(K) and
L,=Fix({&,...,£""1,id}). All roots of p,(x) are given by I, &(ly),...,¢" " '(l,) and
K =Ly(l,,&Wy),-..,E""1(1,)). Extend o to an isomorphism ¢*:E—K such that o*(l,)=1,
and o*(y'(1,))=¢'(l,), ie{l...n—1}. From this we get a*(y'(x)) =¢(0*(x)) for all xe E. By
([8, 11.5.2]) we can define a coupling map ¢:K\{0} =>Aut(K) by yY(c*(x))=c*x(x)o* !,
xe E\{0}. Then ¢* becomes an isomorphism from E* onto KY. Let xeE\{0} and
x(x)=y" for some ie{l...n}. If yeK, then Y(a*(x))(y)=0*((c* ()
=& (o*(o* () =¢&(y). Thus A, ={¢&,&2,...,&""1,id} and Fix(A,)=L,.
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It remains to show that KY is an ultraproduct of finite Dickson near-fields. Let
ke K\{0} such that y/(k)=¢. For a positive integer m let k™ denote the mth power of k
in K¥. Since K*\{0}/U,=A,, koU,uk2oU, v -Ukx=oU, LU, is a partition of
K*\{0} into cosets, such that y(kicU,)={&}.

Let w, be a fixed generator of GF(q}) for aeA. U, is also a subgroup of K\{0},
(I1.3.3. in [8]) and by definition of U, we have that kioU,=kl- U, for ie{l...n—1}.
Consequently |K\{0}/U,|=n, hence (®)'*)y=((w*)y)"eU, for all sequences of non-
negative integers (I). Thus [[Kwl><U,. For aeA4, rGF(q;')\{O}/(w:)|=n, hence
|K\{O}/[]v @2y|=n. But then [[, <> =U,.

Let ki=(wl*)y, ie{l...n—1}. Since U is an ultrafilter there exists an element we U
such that o' (@}> U - U Wk (@i> U ) is a partition of GF(gm)\{0} for all aew.
Let ¢,:GF(qh)—~GF(qD), ¢fx)=x%, acA. For aeA we define a map ¥, GF(g)\{0}—
Aut(GF(g%) as follows. If aew, let Y (k)=id for ke{w®) and Y (k)=¢&! if ke vt (™).
For aeCw let Y k)=id for all keGF(qg)\{0}. Let k,e GF(q9)\{0}, aeA, and
(Wak))y: K= K, (Yo kD ((fDv) =Wk f))y- Then Y(k)y) =(W.(k,)y for all (k,)y € K\{0}
and since ¥ is a coupling map v={xeA|y, is a coupling map on GF(q})}eU. Thus
GF(q?)¥* is a finite Dickson near-field for aev. If we define Y (k)=id for aeCu,
ke GF(g)\{0} it is easy to verify that K¥ =[]y GF(¢g%)**.

We are now ready to establish our major result:

Theorem 2.4. The following are equivalent:
(1) F is a pseudo-finite near-field with [F:Z(F)]=n for some positive integer n.

(2) F=E”* where E is a pseudo-finite field and y is a coupling map on E such that the
Dickson group A, is cyclic of order n and Fix(A,) is a pseudo-finite field.

Proof. (1)=(2). Since F is pseudo-finite there exists an ultraproduct D=[],F, of
finite Dickson near-fields F,= F(q,,n,) with coupling maps 5, and Dickson groups A,
«€A, such that F=D. By Proposition 2.1 D=K" where K=[], GF(¢}), n:K\{0}—
Aut(K), n((k)y)=nu(k))y and A, =[]y A, The centre of a near-field can be described by
a first-order sentence, hence the property of having finite dimension n over the centre is
expressible by a first-order sentence. Consequently [D:Z(D)]=n. Since Z(F,)=GF(q,)
and [F,:Z(F,]}=n, an application of-£o§* theorem ([2, Th. 4.1.9]) yields {a|n,=n}eU.
We may therefore assume that n,=n for all ae A. By Proposition 2.2 F=E* for some
coupling map on a commutative field E. We show that E is a pseudo-finite field. Since
F=D there exists by the Theorem of Keisler-Shelah ([2, Th. 6.1.15]) a set I and an
uitrafilter # on I such that (E*)!/# =~ D'/#. Again by Proposition 2.1 (E*)!/# =(E'/#)°
where ¢:(E'/Z)\{0} - Aut(E'/Z), ¢((e)s) =(x(e))s with Dickson group A,=A!/# and
D'/F =(K'/F)* where Y:(K'/F)\{0}->Aut(K'/F), Y((k)s)=(nk))s with Dickson
group A,=A}/Z. Thus (E'/#F)*=(K'/#)* by some isomorphism ¢. By Proposition 2.2
Z(E*)=Fix(A,)cU,u{0}, hence [E*Fix(A,)]=[E:Fix(A)]=n and by Eo§ theorem
[E'/Z Fix(A,)]=[E"/Z :Fix(A)'/#]=n. Similarly [K'/# :Fix(A,)]=n, hence ¢ is an
isomorphism from E'/# onto K'/# ([8, 11L44]). By ([8, I152]) A,~A, and
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Fix(A)'/# =Fix(A,)=Fix(A))=([]y GF(4))'/#. Thus E=K=[][,GF(¢") and
Fix(A)=[]uv GF(q,). Since n,=n for all e 4, |A,|=n, hence [[yA,=A, for all BeA.
Consequently A,, A,, A, A, are all cyclic of order n.

(2)=(1). Since Fix(A,) is pseudo-finite there exists an ultraproduct L=]], GF(q,) of
finite fields such that Fix(A,)=L. Let I be an index set and & be an ultrafilter on |
such that Fix(A,)"/# =L/# by some isomorphism o. Fix(A)/# =Fix(A,) for the
coupling map ¢:(E'/F)\{0} > Aut(E"/F), o((e)s)=(x(e))s. Since A, is cyclic of order n
we have that A, is cyclic of order n. Let K=ﬂu GF(q?). In a way similar to the first
part of the proof of Proposition 2.3 we can extend ¢ to an isomorphism o*:E!/% —
K!/# such that o* is an isomorphism from (E'/%#)? onto (K!/%)" for some coupling
map 5 on K'/#, where A,={(y)s), vi=y: K=K, y(k)y)=(ki)y for all iel, U,=
([Tv<wi)'/# and Fix(A,)=L/#. Proceeding as in the second part of the proof of
Proposition 2.3 we eventually find coupling maps #;, iel, on K with A, ={p),
Fix(A,)=L and (K'/#)"=[]s K". By Proposition 2.3 each K" is pseudo-finite and
[K™:Z(K")]=n, hence [[|# K’“:Z(H_y K")]=n.

Since E*=(E¥!/F =(E'/F)*=(K /?)”’;hy K™, E* is pseudo-finite and [E*: Z(E*)] =n.

It follows from Theorem 2.4 that some locally finite near-fields are also pseudo-finite.
For information on Steinitz numbers see for example [1].

Example 25. Let F, be a finite Dickson near-field of order g", g=p', where
Z(Fo)=GF(q). Let P be the set of all prime numbers n such that z=1 (modn). It is
known that 2 is an infinite set, say #={p)i=1}. By ([5, Lemma 22]) we can
therefore construct an infinite chain of finite Dickson near-fields FocF, c---cF,<---
such that |F;|=¢"lh-17 |Z(F)|=g/lk=17 for i21 and Z(Fo)SZ(F,)< - S Z(F)<
If E,=GF(q") and E;=GF(q"!k-17) for iz 1, we may assume that F,=E? for some
coupling map y; on E;, i20, such that A, =(4;>, where 8y:Eq—E;, do(x)=x? and
8, E;—~E;, 8(x)=x=1pc for i 1.

Let F={J&oF, and E=|)XE, By ([4, Th. 2.2]) it can be shown that F is a
Dickson near-field. We briefly recall this construction. For ee E\{0} let k be the least
non-negative integer such that ecE,. Let y(e)=(y; .)i»0, Where y; ,=y(e) for ik and
¥, is the restriction of y,(e) to E; for 0<i<k. For feE define y(e)(f)=y.(f), where |
is the least non-negative integer such that feE, Then y(e)e Aut(E) for ee E\{0} and
x: E\{0} >Aut(E) is a coupling map on E such that E*~ F. From the construction of the
F7s it now easily follows that A, ={(6});0|0<j=<n}. Thus A, is cyclic of order n with
generator (3,);20 and Fix(A,) =GF(gq)u | J2 GF(gllk=1rx).

Fix(A)) is an algebraic extension of GF(q). Let S =pr,,~,,,e p"? denote the Steinitz
number of Fix(4,). Clearly n(p)#co for all primes p, n(p)=1 if peP and n(p)=0
otherwise. Since P is infinite, Fix(4,) is a pseudo-finite field ([1, §6, Cor.). Similarly it
follows that E is pseudo-finite. Thus F~ E* is a pseudo-finite near-field by Theorem 2.4.

For a pseudo-finite near-field F of characteristic p#0 let L(F) denote the union of all

finite sub-near-fields of F (the locally-finite socle of F, see [5]). It has been shown by J.
Ax ([1, §8, Th. 4]) that two pseudo-finite fields K,, K, of characteristic p#0 are
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elementarily equivalent if and only if their locally-finite socles are isomorphic. The
following example shows that this result does not continue to hold for pseudo-finite
near-fields. ‘

Example 2.6. Let F=| ), F, be the pseudo-finite near-field constructed in Example
2.5. By ([3, Lemma 2.1]) we can find an infinite set {;|i=2} of prime numbers ¢; such
that ¢, divides p'llk-17x— 1, but o; does not divide p'!li=i7x—1. For i>2 let g;=p'Tl-1px
and n;,=no;. There exists a positive integer j=2 such that ¢,7#2 for all i=j. Conse-
quently, if 4|n,- for some i=j, then 4|n. Since (g;,n) is a Dickson pair for all i=2, it
follows that (g;, n;) is a Dickson pair for all i=j. By ([4, Lemma 1.3]) there exists for i>j
a finite Dickson near-field D; such that |Di| =g} and Z(D;)= GF(q,) which contains F; as
a sub-near-field. Let U be a nonprincipal ultrafilter on A={i|i2j} and D=[][,D;
Clearly [D:Z(D)] is infinite since {i |n,-§l} is finite for every positive integer I. Similarly,
as in ([5, Th. 43]) we can prove that L(F)=F=L(D), but F is not elementarily
equivalent to D since [F:Z(F)]=n and the property of having finite dimension n over
the centre is first-order.
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