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1. Introduction

In [1] J. Ax studied a class of fields with similar properties as finite fields called
pseudo-finite fields. One can prove that pseudo-finite fields are precisely the infinite
models of the first-order theory of finite fields. Similarly a near-field F is called pseudo-
finite if F is an infinite model of the first-order theory of finite near-fields. The structure
theory of these near-fields has been initiated by U. Feigner in [5].

In this paper we characterize all pseudo-finite near-fields having finite dimension over
the centre. We prove that these near-fields are precisely the derivations of pseudo-finite
fields with finite cyclic Dickson groups.

Apart from the fact that we use right near-fields we mainly follow the terminology of
Wahling [8]. For a field (K, + , ) and a coupling map x-K\{o}->Aut(K) with Dickson
group Ax we let Fix(Ax) = {keK\y(k) = kVyeAx}, U x = {ke K\{o}\x(k) = id} and Kx be
the ^-derivation of K. If (F, +, 6) is a near-field, then Z(F), K(F) shall denote the centre
and the kernel of F, respectively. If (q,n) is a Dickson pair, where q=p' for some prime p
and n is a positive integer, let F(q, n) denote a finite Dickson near-field of order q". For
an index set A, an ultrafilter U on A and a collection {Fa|ae/4} of near-fields Fa we can
form the ultraproduct Y[u F*- Elements of Hi /^* s n a " be denoted by (/a)i/. If Fa = F for
all a 6/1, we write FA/U instead of I~[u^V

Ultraproducts yield an alternative definition of pseudo-finite near-fields. A near-field F
is pseudo-finite if and only if F is infinite and elementarily equivalent to an ultraproduct
of finite Dickson near-fields. In particular the class of all pseudo-finite near-fields is
closed under ultraproducts. For ultraproducts consult Chang-Keisler [2]. To denote
elementary equivalence we shall use the symbol = .

2.

We shall make frequent use of the following result. A proof can be found in
Trautvetter [7].

Proposition 2.1. Let {Fa|<xe.4} be a collection of Dickson near-fields, where Fa=K*x

for afield Kx, cue A. For any ultrafilter U on A, Yiu^i is again a Dickson near-field and
YluF. = (T\uKJx ^ere rtni/K-AM-Autflli/KJ, XttUt/HWUV Here the action
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of (xJJ<-<D)u on Y\vK<x is component-wise. Moreover, Ax = Y[u \* and Fix(A;t) =
ri

If F is pseudo-finite, then Z(F) = K(F) (3.1 in [5]), thus Z(F) is a subfield of F. The
dimension of F as a vector-space over Z(F) shall be denoted by [F:Z(F)~].

Proposition 2.2 Let F be a pseudo-finite near-field with [F:Z(F)] finite. Then
(a) F is a Dickson near-field and there exists a commutative field K such that F = KX for

some coupling map x on K.

(b) Z{F) = Fix(Ax)£Uxu{o}.

Proof.

(a) Has been mentioned by Feigner [5].

(b) By ([8, III.5.7]) Z(F) £ Fix(Ax). On the other hand Fix(Az) £Z(F) since Fix(Ax)s
K{F) and K(F) = Z(F). Moreover Z(F)\{o}^Ux by ([8, III.5.5.(b)]).

For a field K, a subfield L of K and lu...,lneK let L(llt...,ln) denote the subfield
generated by L u { l l v . . , l , } . If G is a group and geG then <g> shall denote the
subgroup generated by g.

Proposition 2.3. Let E be a commutative field and let x be a coupling map on E such
that Ax = {y,y2,...,y"~l,id} is cyclic of finite order n. //Fix(Ax)s]^[l /GF(ga) where U is
an ultrafilter on a set A and qx = px

x for a collection {pa\<xeA} of prime numbers and
positive integers {lx\<xeA}, then Ex is isomorphic to an ultraproduct of finite Dickson
near-fields and [£*: Z(£*)] = n.

Proof. Let Li = Fix(A;f), L2 = Y\vGF(q^ and <r:L1-»L2 be an isomorphism. Since
\Ax\ = n we have that [F.:L1] = «. If K = Y\vGF(q"a), then [K:L2] = n since
[GF(^):GF(qJ] = n for all <xeA. Both Lu L2 are perfect fields. Let / , e £ such that
L1(l1) = E and let p1(x) = x" + alx

n~l H +aa,al,...,aneL1, be the minimal polynomial
of /i. Clearly all zeros of pt(x) are given by li,y(li),...,y"~1(li). Let p2{x) = x" +
op(a1)x"~1 + \-o(an) where ff(aj) = (feai)l/, i e{ l . . . n} . Since P2W is irreducible over L2

there exists an element weU such that p2(x) = x" + baix"~1 H +fe«, is irreducible over
GF(qa) for all aew. By ([6, Th. 3.46]) we can find elements laeGF(q"J such that la is a
zero of P2M f° r aU aew. If laeGF(q"J is chosen arbitrarily for aeCw, then I2 = (lx)u is
a zero of p2{x). Let ^:/C-»/C, ^((xa)t/)=(x*a)t/. <̂  is an element of Aut(/C) and
L2 = Fix({Z,...,?-1,id}). All roots of p2(x) are given by / j . W a ) , . - , ^ " 1 ^ ) and
K = L2(l2,£(/2),...)^"~1(/2))- Extend ff to an isomorphism <r*:E->K such that CT*(/I) = /2

and ff*(y'(l1)) = ^(/2), ie{l...n-l}. From this we get o*(y'(x)) = ?(o*(x)) for all x e £ . By
([8, II.5.2]) we can define a coupling map \l/:K\{0}->A\it(K) by \l/(o*(x)) = o*x{x)o*~\
x e £ \ { 0 } . Then a* becomes an isomorphism from £* onto K*. Let xe£ \{0} and
X(x) = yl for some i"e{l. . .n}. If yeK, then *l>(o*(x))(y) = 0*^(0* ~l(y))
= cT(a*(<x*" »O0)) = ^'(y). Thus A^ = {Z, e, • •., ?-\ id) and Fix(A^) = L2.
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It remains to show that K* is an ultraproduct of finite Dickson near-fields. Let
k e K\{0} such that \j/{k) = t,. For a positive integer m let k- denote the mth power of k
in K*. Since K*\{0}/U^A^, fc°l^u/^oL^u---u fc^ol^u U+ is a partition of
K*\{0} into cosets, such that *p(kloU+) = {?}.

Let wx be a fixed generator of GF(ql) for <xeA C/̂ , is also a subgroup of K\{0},
(II.3.3. in [8]) and by definition of U+ we have that fc^-oU+ = k1- U+ for r e { l . . . n - l } .
Consequently \K\{0}/U^,\ = n, hence ((co3'a)l/=((«iI)l/)

nel/!l, for all sequences of non-
negative integers (JJ. Thus I l i X O s L V For aeX, |GFfa3\{0}/<G>:>| = n, hence
I^\{0}/]lu <«">! = »• But then UvW> = U+.

Let kL={oik
a
ai)v, ie{l...n — 1}. Since 1/ is an ultrafilter there exists an element weU

such that w*al<co">u-uaj*'"-1<aj;>u<<u;> is a partition of GF(qn
x)\{0} for all aew.

Let 5«:GF(«3-*GF(q3, {j(x) = j(«, a e A For as A we define a map *
Aut(GFfa3) as follows. If aew, let «̂(fc) = id for k e « > and tfg(fc) = # if
For aeCw let \pjik) = id for all fceGF(q;)\{0}. Let fcaeGF(q3\{0}, aeA, and
(ifra(kx))v:K^K, MkMtov) = WJLW$* Then Wfea)l,) = (W/ca))l/ for all (fcJDe A{0}
and since t/r is a coupling map u={ae/4|^a is a coupling map on GF(qa)}eXJ. Thus
GF(gJD*" is a finite Dickson near-field for aev. If we define tj/Jik) = id for aeCv,
keGF(q$\{0} it is easy to verify that K* = Y\uGF{qa)'

1"'.

We are now ready to establish our major result:

Theorem 2.4. The following are equivalent:

(1) F is a pseudo-finite near-field with [F:Z(F)~] = n for some positive integer n.

(2) F = EX where E is a pseudo-finite field and x IS " coupling map on E such that the
Dickson group Ax is cyclic of order n and Fix(Ax) is a pseudo-finite field.

Proof. (1)=>(2). Since F is pseudo-finite there exists an ultraproduct £> = n f ^ a °f
finite Dickson near-fields Fx = F(qa,nx) with coupling maps r\a and Dickson groups Aa,
a 6/4, such that F = D. By Proposition 2.1 D = K" where K = Y\uGF{qtt"), f/:K\{0}-»
Aut(/Q, >;((fcjy) = (f;l,(fcj)l; and A, = J~[l;Aa. The centre of a near-field can be described by
a first-order sentence, hence the property of having finite dimension n over the centre is
expressible by a first-order sentence. Consequently [D:Z{D)~]=n, Since Z(Fa)^GF(qa)
and [Fa.Z(Ftt)] = na an application of'tos' theorem ([2, Th. 4.1.9]) yields {<x\na = n}eU.
We may therefore assume that «a = n for all us A. By Proposition 2.2 F = EX for some
coupling map on a commutative field E. We show that £ is a pseudo-finite field. Since
F = D there exists by the Theorem of Keisler-Shelah ([2, Th. 6.1.15]) a set / and an
ultrafilter & on / such that (E^'/^^D1/^. Again by Proposition 2.1 (E*)1/^=(E'/$r)9

where (p:(E'/S^)\{0}^Aut(E'/^), <p((e,M =(z(e,))^ with Dickson group A9 = A'X/F and
D'I3F={K'I3FY where 4>-(^'/^)\{0}^Aut(K'/^), *((*,),)=fo(*i))* with Dickson
group Av, = Aj/i5r. Thus {E'/^y^(K'/^')* by some isomorphism a. By Proposition 2.2

= Fix(A;t)cU;[u{0}, hence [£':Fix(A;t)] = [£:Fix(AJ[)] = « and by -Eos' theorem
ix(A9)] = [£'/^:Fix(A;()

//^] = n. Similarly [K//izr:Fix(A^)] = n, hence <x is an
isomorphism from E'/& onto K'/& ([8, III.4.4]). By ([8, II.5.2]) A,sA^ and
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z v ^ Y[ Thus E = K = Y\VGF(<& and
Fix(Ax) = Y\vGF(q^. Since nt = n for all aeA, \Aa\ = n, hence Y\vA^Afi for all fie A.
Consequently A,, A ,̂ Av, Az are all cyclic of order n.

(2)=>(1). Since Fix(Az) is pseudo-finite there exists an ultraproduct L=\\vGF(q^ of
finite fields such that Fix(AJt) = L. Let / be an index set and 3F be an ultrafilter on /
such that Fix(Ax)

1/P^ll/P by some isomorphism a. Fix(A)t)
//ir = Fix(Av) for the

coupling map <p:(E'/^)\{0}-*Aut(E'/^), <p((e,)̂ ) = (x(e,))^. Since Â  is cyclic of order n
we have that Â  is cyclic of order n. Let K = Y\uGF(q"a). In a way similar to the first
part of the proof of Proposition 2.3 we can extend a to an isomorphism a*:E'/^^
Kll& such that a* is an isomorphism from (£'/Jr)") onto {K'/tFy for some coupling
map r\ on K'/P, where A,=<(y,)^>, y,=y: K-+K, y((kjv) = (ki% for all i e / , Un =
(Flu (fiO)'/^ and Fix(A,) = L//izr. Proceeding as in the second part of the proof of
Proposition 2.3 we eventually find coupling maps r\b iel, on K with A,, = <y>,
Fix(A,) = L and (/C7/^)" = FU K"'- By Proposition 2.3 each Km is pseudo-finite and
[K«:Z(K*)] = n, hence [ f ^ K"':Z(T[^ *"•)] = «•

Since E*3(Ex)'/& = (E'/&Y*(K'W*ll, *"> £* is pseudo-finite and [F/:Z(£*)] = n.

It follows from Theorem 2.4 that some locally finite near-fields are also pseudo-finite.
For information on Steinitz numbers see for example [1].

Example 2.5. Let Fo be a finite Dickson near-field of order q", q=p', where
Z(F0) s GF(q). Let P be the set of all prime numbers n such that n = 1 (mod«). It is
known that 9 is an infinite set, say ^={p ( | i ^ l} . By ([5, Lemma 2.2]) we can
therefore construct an infinite chain of finite Dickson near-fields Fo £ Fj £ • • • £ Fk s • • •
such that |FI-| = ^nu.w.,|Z(F,)l = gni-"i''k for i ^ l and Z{F0)^Z(F{)^--- cZ(F»)s---.
If E0 = GF(q") and £,, = GF(<f IIU • P«) for i^ l , we may assume that F, = £f for some
coupling map Xi o n ^h i^O, such that AX( = <(5I>, where ($0:£0-»£0, ^o(x) = x* a nd
8,:E,-*Eh 5Xx) = x«ni.,j* for i ^ l .

Let F=Qfc
a!

=0Ffc and £ = (Jt°°=0£k. By ([4, Th. 2.2]) it can be shown that F is a
Dickson near-field. We briefly recall this construction. For ee£\{0} let k be the least
non-negative integer such that eeEk. Let x(e) — (7i,e)i^o< where yiie = Xi(.e) f°r '^& and
yie is the restriction of Xk(e) to ^i f°r 0£i<k. For / e £ define z(c)(/) = >'/,c(/), where /
is the least non-negative integer such that / e £ , . Then x(e)eAut(£) for ee£\{0} and
#:£\{0}-»Aut(£) is a coupling map on £ such that £z = F. From the construction of the
F,'s it now easily follows that Ax = {(di)i^o\0<j^n}. Thus AX is cyclic of order n with
generator (<5,-),-ao a n d Fix(AJ = GF(q)u Q?l, GFOJ™=""<).

FixfA )̂ is an algebraic extension of GF(q). Let S = J7Pprlme p"'"' denote the Steinitz
number of Fix(A;(). Clearly n(p)#oo for all primes p, n(p) = l if peP and n(p)=0
otherwise. Since P is infinite, Fix(Az) is a pseudo-finite field ([1, §6, Cor.). Similarly it
follows that £ is pseudo-finite. Thus F s £ z is a pseudo-finite near-field by Theorem 2.4.

For a pseudo-finite near-field F of characteristic p^O let L(F) denote the union of all
finite sub-near-fields of F (the locally-finite socle of F, see [5]). It has been shown by J.
Ax ([1, §8, Th. 4]) that two pseudo-finite fields Ku K2 of characteristic p^O are
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elementarily equivalent if and only if their locally-finite socles are isomorphic. The
following example shows that this result does not continue to hold for pseudo-finite
near-fields.

Example 2.6. Let F = [J™=0Fk be the pseudo-finite near-field constructed in Example
2.5. By ([3, Lemma 2.1]) we can find an infinite set {<r,|i^2} of prime numbers <s{ such
that a,- divides p'nUiP*— 1, but a{ does not divide pl^=\p"—l. For i^.2 let q^pTlUiP*
and n,- = «ffj. There exists a positive integer j^.2 such that <r,#2 for all i^j. Conse-
quently, if 4|n, for some i^J, then 4|n. Since (qt,ri) is a Dickson pair for all i^2, it
follows that (qh n,) is a Dickson pair for all i^j. By ([4, Lemma 1.3]) there exists for i^j
a finite Dickson near-field Dt such that |D,| = qJ" and Z{Dj) s GF(q^ which contains Ft as
a sub-near-field. Let U be a nonprincipal ultrafilter on A = {i\i^.j} and D = PJl/Di.
Clearly [D:Z(D)~\ is infinite since {i|«,g/} is finite for every positive integer /. Similarly,
as in ([5, Th. 4.3]) we can prove that L(F) = F = L(D), but F is not elementarily
equivalent to D since [F:Z(F)~] = n and the property of having finite dimension n over
the centre is first-order.
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