SOME RECURRENCE RELATIONS AND SERIES FOR THE GENERALISED LAPLACE TRANSFORM

by B. R. BHONSLE
(Received 2 June, 1959)

1. Introductory. The Laplace transform

$$
\begin{equation*}
f(p)=p \int_{0}^{\infty} e^{-p x} h(x) d x \quad(\operatorname{Re} p>0) \tag{1.1}
\end{equation*}
$$

has been generalised by Varma [4] by the relation

$$
\begin{equation*}
\phi(p)=p \int_{0}^{\infty} e^{-\hbar p x}(p x)^{m-1} W_{k, m}(p x) h(x) d x \quad(\operatorname{Re} p>0) \tag{1.2}
\end{equation*}
$$

which reduces to (1.1) when $k=-m+\frac{1}{2}$ by virtue of the identity

$$
\begin{equation*}
W_{-m+k, m}(x)=x^{-m+\frac{1}{k}} e^{-k x} \tag{1.3}
\end{equation*}
$$

We shall define $\phi_{k, m, \lambda}(p)$ by the relation

$$
\begin{equation*}
\phi_{k, m, \lambda}(p)=p \int_{0}^{\infty} e^{-\xi p x}(p x)^{m-i} W_{k, m}(p x) x^{\lambda} h(x) d x \quad(\operatorname{Re} p>0) . \tag{1.4}
\end{equation*}
$$

The object of this paper is to obtain some recurrence formulae and series for $\phi_{k, m, \lambda}(p)$ and to use them to obtain recurrence formulae and series for MacRobert's E-function.
2. Formulae required in the proof. We have [5, p. 352]

$$
\begin{align*}
W_{k, m}(z) & =z^{\frac{1}{2}} W_{k-\frac{1}{2}, m-\frac{1}{}}(z)+\left(\frac{1}{2}-k+m\right) W_{k-1, m}(z), \tag{2.1}\\
W_{k, m}(z) & =z^{\ddagger} W_{k-k, m+\frac{1}{}}(z)+\left(\frac{1}{2}-k-m\right) W_{k-1, m}(z) \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
z W_{k, m}^{\prime}(z)=\left(k-\frac{1}{2} z\right) W_{k, m}(z)-\left\{m^{2}-\left(k-\frac{1}{2}\right)^{2}\right\} W_{k-1, m}(z) . \tag{2.3}
\end{equation*}
$$

We have also [3, p. 201]

$$
\begin{equation*}
\frac{d}{d z}\left[z^{m-\frac{1}{e}-\frac{1}{2} z} W_{k, m}(z)\right]=-z^{m-1} e^{-\frac{1}{2} z} W_{k+\mathfrak{k}, m-\mathbf{k}}(z) . \tag{2.4}
\end{equation*}
$$

It will be observed that (2.2) can be obtained from (2.1) by using the property

$$
\begin{equation*}
W_{k,-m}(z)=W_{k, m}(z) . \tag{2.5}
\end{equation*}
$$

From (2.3) we also observe that

$$
\begin{equation*}
W_{k,-m}^{\prime}(z)=W_{k, m}^{\prime}(z) \tag{2.6}
\end{equation*}
$$

Harishanker has obtained the following series for $W_{k . m}(z)$

$$
\begin{equation*}
W_{k+n, m}(z)=(-1)^{n} \Gamma\left(m+k+n+\frac{1}{2}\right) n!\sum_{r=0}^{n} \frac{(-1)^{r} z^{r / 2} W_{k+r / 2, m+r / 2}(z)}{(n-r)!r!\Gamma\left(m+k+r+\frac{1}{2}\right)} \quad\left(\operatorname{Re}\left(\frac{1}{2}-k+m\right)>0\right), \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{k-n, m}(z)=\frac{(-1)^{n} \Gamma\left(m+k+n+\frac{1}{2}\right) n!}{\Gamma\left(m+k+\frac{1}{2}\right)} \sum_{r=0}^{n} \frac{(-1)^{r} z^{r / 2} W_{k-r / 2, m+r / 2}(z)}{(n-r)!r!} \quad\left(\operatorname{Re}\left(\frac{1}{2}-k+m\right)>0\right) . \tag{2.8}
\end{equation*}
$$

3. Recurrence formulae for the Whittaker's confluent hypergeometric function.

 Eliminate $W_{k-1, m}(z)$ between (2.1) and (9.2), divide by $z^{\frac{1}{d}}$, replace k by $k+\frac{1}{2}$ and m by $m-\frac{1}{2}$ to obtain$$
\begin{equation*}
\left(m-k-\frac{1}{2}\right) W_{k, m}(z)=\left(\frac{1}{2}-k-m\right) W_{k, m-1}(z)+(2 m-1) z^{-\frac{1}{2}} W_{k+\frac{1}{2}, m-\frac{1}{k}}(z) . \tag{3.1}
\end{equation*}
$$

This has been otherwise obtained by Rathie [2, p. 392].
In (2.2) replace m by $m-1$ and eliminate $z^{\frac{d}{4}} W_{k-\frac{t}{2}, m-\frac{1}{4}}(z)$ from this relation and (2.1) to get

$$
\begin{equation*}
W_{k, m-1}(z)+\left(\frac{1}{2}-k+m\right) W_{k-1, m}(z)=\left(\frac{3}{2}-k-m\right) W_{k-1, m-1}(z)+W_{k, m}(z) \tag{3.2}
\end{equation*}
$$

Equating the values of $W_{k, m}^{\prime}(z)$ from (2.3) and (2.4), we obtain

$$
\begin{equation*}
\left(m+k-z-\frac{1}{2}\right) W_{k, m}(z)=\left\{m^{2}-\left(k-\frac{1}{2}\right)^{2}\right\} W_{k-1, m}(z)-z^{1} W_{k+\frac{1}{2}, m-\frac{1}{2}}(z) . \tag{3.3}
\end{equation*}
$$

Simplifying (2.4), we get

$$
\begin{equation*}
z W_{k, m}^{\prime}(z)=\left(\frac{1}{2} z-m+\frac{1}{2}\right) W_{k, m}(z)-z^{\frac{1}{2}} W_{k+\frac{1}{2}, m-\frac{1}{2}}(z) \tag{3.4}
\end{equation*}
$$

Using (2.6) with (3.4), we obtain

$$
\begin{equation*}
z W_{k, m}^{\prime}(z)=\left(\frac{1}{2} z+m+\frac{1}{2}\right) W_{k, m}(z)-z^{\frac{1}{2}} W_{k+\frac{1}{2}, m+\frac{1}{4}}(z) . \tag{3.5}
\end{equation*}
$$

4. Recurrence formulae for the generalised Laplace transform $\phi_{k, m, \lambda}(p)$. Using (3.2), we get
$r \phi_{k, m-1, \lambda+1}(p)+\left(\frac{1}{2}-k+m\right) \phi_{k-1, m, \lambda}(p)=p\left(\frac{3}{2}-k-m\right) \phi_{k-1, m-1, \lambda+1}(p)+\phi_{k, m, \lambda}(p)$.
Using (3.3), we get
$\left(m+k-\frac{1}{2}\right) \phi_{k, m, \lambda}(p)-p \phi_{k, m, \lambda+1}(p)=\left\{m^{2}-\left(k-\frac{1}{2}\right)^{2}\right\} \phi_{k-1, m, \lambda}(p)-p \phi_{k+\frac{1}{2}, m-\frac{1}{k}, \lambda+1}(p)$.
5. Recurrence formulae for MacRobert's \boldsymbol{E}-function. If

$$
x^{\lambda} h(x)=x^{\lambda-1} E\left(\alpha_{1}, \ldots, \alpha_{r-2}: \beta_{1}, \ldots, \beta_{s-1}: \frac{1}{x}\right)
$$

then [2, p. 392]

$$
\begin{equation*}
\phi_{k, m, \lambda}(p)=p^{1-\lambda} E\binom{\alpha_{1}, \ldots, \alpha_{r-2}, \lambda, \lambda+2 m: \quad p}{\beta_{1}, \ldots, \beta_{s-1}, \lambda+m-k+\frac{1}{2}:} . \tag{5.1}
\end{equation*}
$$

The formulae (4.1) and (4.2), on replacing λ by $\alpha_{r-1}, \lambda+2 m$ by α_{r} and $\lambda+m-k+\frac{1}{2}$ by β_{z}. then give us

$$
\begin{align*}
& E\binom{\alpha_{1}, \ldots, \alpha_{r-2}, \alpha_{r-1}+1, \alpha_{r}-1: p}{\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}:}+\left(\beta_{s}-\alpha_{r-1}\right) E\binom{\alpha_{1}, \ldots, \alpha_{r}:}{\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}+1:} \\
& =\left(1+\beta_{s}-\alpha_{r}\right) E\binom{\alpha_{1}, \ldots, \alpha_{r-1}+1, \alpha_{r}-1: p}{\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}+1:}+E\binom{\alpha_{1}, \ldots, \alpha_{r}: p}{\beta_{1}, \ldots, \beta_{s}:} \tag{5.2}
\end{align*}
$$

and

$$
\begin{gather*}
\quad\left(\alpha_{r}-\beta_{s}\right) E\binom{\alpha_{1}, \ldots, \alpha_{r}: p}{\beta_{1}, \ldots, \beta_{s}:}-E\binom{\alpha_{1}, \ldots, \alpha_{r-2}, \alpha_{r-1}+1, \alpha_{r}+1: p}{\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}+1:} \\
=\left(\beta_{s}-\alpha_{r-1}\right)\left(\alpha_{r}-\beta_{s}\right) E\binom{\alpha_{1}, \ldots, \alpha_{r}:}{\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}+1:}-E\binom{\alpha_{1}, \ldots, \alpha_{r-2}, \alpha_{r-1}+1, \alpha_{r}: p}{\beta_{1}, \ldots, \beta_{s}:} . \tag{5.3}
\end{gather*}
$$

6. Series for the generalised Laplace transform. Using the results (2.7) and (2.8), we obtain the following series for the generalised Laplace transform, $\phi_{k, m, \lambda}(p)$,

$$
\begin{equation*}
\phi_{k+n, m, \lambda}(p)=(-1)^{n} \Gamma\left(k+m+n+\frac{1}{2}\right) n!\sum_{r=0}^{n} \frac{(-1)^{r} \phi_{k+r / 2, m+r / 2, \lambda}(p)}{(n-r)!r!\Gamma\left(m+k+r+\frac{1}{2}\right)} \quad\left(\operatorname{Re}\left(\frac{1}{2}-k+m\right)>0\right) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{k-n, m, \lambda}(p)=\frac{n!\Gamma\left(m+k-n+\frac{1}{2}\right)(-1)^{n}}{\Gamma\left(m+k+\frac{1}{2}\right)} \sum_{r=0}^{n} \frac{(-1)^{r} \phi_{k-r / 2, m+r / 2, \lambda}(p)}{(n-r)!r!}\left(\operatorname{Re}\left(\frac{1}{2}-k+m\right)>0\right) . \tag{6.2}
\end{equation*}
$$

7. Series for the MacRobert's \boldsymbol{E}-function. Using (5.1) with the results (6.1) and (6.2), we obtain the following finite series involving MacRobert's E-function

$$
\begin{align*}
& E\binom{\alpha_{1}, \ldots, \alpha_{r}:}{\beta_{1}, \ldots, \beta_{s}-n:} \\
& \qquad=(-1)^{n} n!\Gamma\left(1+\alpha_{r}-\beta_{s}+n\right) \sum_{t=0}^{n} \frac{(-1)^{t} E\binom{\alpha_{1}, \ldots, \alpha_{r-1} \alpha_{r}+t: p}{\beta_{1}, \ldots, \beta_{s}:}}{(n-t)!t!\Gamma\left(1+\alpha_{r}-\beta_{s}+t\right)} \tag{7.1}
\end{align*}
$$

and

$$
\left.\begin{array}{l}
E\left(\begin{array}{l}
\alpha_{1}, \ldots, \alpha_{r}: \\
\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}+n:
\end{array} \quad p\right.
\end{array}\right) .
$$

My thanks are due to Dr N. G. Shabde for the help and guidance I received from him during the preparation of this paper and to Professor T. M. MacRobert for his various valuable suggestions.

REFERENCES

1. Harishanker, Proc. Benares Math. Soc., 4 (1942), 51-57.
2. C. B. Rathie, Proc. Nat. Inst. Sci. (India) 21 (1955), 382-393.
3. K. M. Saksena, Proc. Nat. Acad. Sci. India, 21 (1953), 202-208.
4. R. S. Varma, Proc. Nat. Acad. Sci. India, 20 (1951), 209.
5. E. T. Whittaker and G. N. Watson, Modern analysis, 4th edn (Cambridge, 1940).

Government Engineering Colleqe, Jabalpur, M.P., India

