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Abstract In this paper we extract some conclusions about Newton non-degenerate ideals and the
computation of �Lojasiewicz exponents relative to this kind of ideal. This motivates us to study the Newton
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Jacobian ideal is Newton non-degenerate.
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1. Introduction

The computation of the integral closure of an ideal is a central problem in commutative
algebra. Moreover, the notion of integral dependence has a transcendental or analytical
interpretation in terms of �Lojasiewicz exponents. This point of view allows us to study
some geometrical incidence relations in singularity theory, such as the Whitney conditions
(see [28]). Let On denote the ring of analytic function germs f : (Cn, 0) → C and let us
denote the integral closure of an ideal I of On by Ī. There is a class of ideals in On whose
integral closures are easily computable; these are called Newton non-degenerate ideals.
The definition of Newton non-degenerate ideal is formulated in terms of the Newton
polyhedron of I, which is denoted by Γ+(I) (see Definition 3.2). It was proved by Saia [26]
that an ideal I ⊆ On of finite colength is Newton non-degenerate if and only if the integral
closure of I is generated by the monomials xkn

1 · · ·xkn
n such that (k1, . . . , kn) belongs to

Γ+(I) (see also [2] for an algebraic approach to this result). We recall that Newton non-
degenerate functions in the sense of Kouchnirenko [15] are those functions such that the
ideal of On generated by xi∂f/∂xi, i = 1, . . . , n, is Newton non-degenerate.

We are interested in computing the �Lojasiewicz exponent α0(f) of an analytic function
germ f ∈ On. This is defined as the infimum of those real numbers α > 0 such that there
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22 C. Bivià-Ausina

exists a positive constant C > 0 and an open neighbourhood U of 0 ∈ Cn such that

|x|α � C sup
i

∣∣∣∣ ∂f

∂xi
(x)

∣∣∣∣, for all x ∈ U.

There are many works dealing with the computation of the number α0(f) (see [1,12,
17, 22]). Let J(f) denote the Jacobian ideal of a given f ∈ On, that is, the ideal of
On generated by the partial derivatives ∂f/∂x1, . . . , ∂f/∂xn. When the Jacobian ideal
J(f) is Newton non-degenerate we prove that the number α0(f) can be determined
easily (see Corollary 3.6). On the other hand, if f is a Newton non-degenerate function
with an isolated singularity at the origin, there exists a sharp upper bound for α0(f)
given by Fukui [12]. Therefore, the main objective of this paper is to study the Newton
non-degeneracy condition on a given Jacobian ideal and its relation with Newton non-
degenerate functions. Although both conditions are independent in general, we obtain a
characterization of the Newton polyhedra Γ+ ⊆ Rn

+ satisfying the condition that every
Newton non-degenerate function f ∈ On with Γ+(f) = Γ+ is such that the Jacobian ideal
J(f) is Newton non-degenerate. We also show that it is possible to find Newton polyhedra
Γ+ ⊆ Rn

+ such that no function f ∈ On with Γ+(f) = Γ+ has Newton non-degenerate
Jacobian ideal. This part is developed in § 5 of the paper.

The importance of the �Lojasiewicz exponents α0(f) in singularity theory lies also in
the following fact. Let r0(f) denote the degree of C0-sufficiency in On of a complex germ
f ∈ On. Then it is known (see [4,7]) that

r0(f) = [α0(f)] + 1, (1.1)

where [a] stands for the integer part of a given a ∈ R. We recall that r0(f) is defined as
the minimum of those r > 1 such that, for all g ∈ On with the same r-jet as f , there
exists a germ of homeomorphism φ : (Cn, 0) → (Cn, 0) such that g = f ◦ φ.

It is known that some topological invariants of a given Newton non-degenerate function
f are codified by means of Γ+(f), as can be seen in [10] or [30]. Therefore, in view of these
results and our interest in studying the Newton non-degeneracy condition on Jacobian
ideals, it is convenient to have some rapid method to test if a given function or ideal is
Newton non-degenerate. This is the objective of § 4. We take advantage of the techniques
of this section to show an effective method to test if a given point k ∈ Zn

+ belongs to a
fixed Newton polyhedron Γ+.

In § 6 we obtain an effective formula to compute the sequence of mixed multiplicities
{ei(I, J) : i = 1, . . . , n} for a pair of Newton non-degenerate ideals of finite codimension
in On. In particular, this allows us to compute the sequence {ei(mn, J(f)) : i = 1, . . . , n}
when the ideal J(f) is Newton non-degenerate. As a consequence we establish a result
on the µ∗-constancy of analytic families ft : (Cn, 0) → (C, 0) such that the ideal J(f0) is
Newton non-degenerate.

2. Reduced orders and �Lojasiewicz exponents

In this section we give the definitions of reduced order and of �Lojasiewicz exponent and
we recall some known fundamental results.
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Definition 2.1. Let I ⊆ On be an ideal and let h ∈ I, h �= 0. We define νI(h) to be
the largest power of I which contains the element h. Then, if h ∈

√
I, h �= 0, the reduced

order of h with respect to I is

ν̄I(h) = lim
r→∞

νI(hr)
r

.

Moreover, we set ν̄I(0) = +∞ and ν̄I(h) = 0, if h /∈
√

I. The definition of reduced order
was originally given by Samuel in [27].

It is proved in the works of Nagata [21] and Rees [23] that if ν̄I(h) < ∞, then
ν̄I(h) ∈ Q. Moreover, an element h ∈ On is integral over an ideal I if and only if ν̄I(h) � 1
(see [21] or [28]). We recall that h is said to be integral over I when h satisfies an equation
of the form

hr + a1h
r−1 + · · · + ar−1h + ar = 0,

where ai ∈ Ii, i = 1, . . . , r, for some r � 1. The set of elements that are integral over I is
another ideal of On containing I that is denoted by Ī, and is called the integral closure
of I.

By the properties of ν̄I (see [19,28]), given an integer r � 1, the integral closure of
Ir is equal to the set of those h ∈ On such that ν̄I(h) � r. Therefore, given a positive
rational number θ and an ideal I ⊆ On, the ideal Iθ is defined in [28] as

Iθ = {h ∈ On : ν̄I(h) � θ}. (2.1)

Therefore, if p, q are positive integers, an element h ∈ On belongs to Ip/q if and only if
hq ∈ Ip. As we shall see, the reduced-order filtration ν̄I can be reformulated in analytical
terms.

If S ⊆ On, we denote by V (S) the set germ at 0 ∈ Cn of the set of common zeros of S.
Moreover, we denote by |x| the Euclidean norm of a point x ∈ Rn.

Definition 2.2. Let I be an ideal of On generated by the germs g1, . . . , gs and let
h ∈ On. We define L(h, I) as the set of those α ∈ R+ such that there exists some open
neighbourhood U of 0 in Cn and a constant C > 0 such that

|h(x)|α � C sup
i

|gi(x)|, for all x ∈ U. (2.2)

It is proved in [18, p. 136] that when V (I) ⊆ V (h), the set L(h, I) is non-empty. Then,
in this case, we define the �Lojasiewicz exponent of h with respect to I as

�(h, I) = inf L(h, I).

Moreover, the number �(h, I) belongs to L(h, I) (that is, the number �(h, I) is actually
a minimum), as can be seen in [16].

We observe that the definition of L(h, I) does not depend on the system of generators
of I.

https://doi.org/10.1017/S0013091504000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000173


24 C. Bivià-Ausina

It is proved by Lejeune and Teissier [16] that if I is an ideal of On, then the following
equality holds:

�(h, I) =
1

ν̄I(h)
, (2.3)

for any h ∈
√

I. In particular, by the mentioned result of Nagata and Rees on the ratio-
nality of ν̄I(h), the �Lojasiewicz exponents �(h, I) are rational numbers.

Remark 2.3. Let us denote the ring of analytic real germs (Rn, 0) → R by An.
Then, Definition 2.2 can be reproduced analogously in the context of ideals I of An, thus
leading to the �Lojasiewicz exponents �R(h, I) for a given h ∈ An. Therefore, following
the analytic formulation of integral closure in the complex case, an element h ∈ An is
said to be integral over an ideal I ⊆ An when �R(h, I) � 1. The set of integral elements
over I forms an ideal of An that we also call the integral closure of I and we denote by Ī.
Fekak [11] has given an algebraic formulation of this notion of real integral closure in
terms of order functions. If I is an ideal of An and h ∈ An, the numbers �R(h, I) are also
rational, by virtue of [5].

We denote by mn the maximal ideal of On. By an abuse of notation, if there is no risk
of confusion, we also denote the maximal ideal of An by mn. Let us fix, from now on, a
system of coordinates x1, . . . , xn in Cn.

Definition 2.4. We say that an ideal I ⊆ On has finite colength when dimC On/I <

∞. Since this is equivalent to saying that V (I) = {0}, we can consider the number
�(mn, I) = max{�(xi, I) : i = 1, . . . , n}. Therefore, the number �(mn, I) is equal to
the infimum of those α > 0 such that there exists a constant C > 0 and an open
neighbourhood U of 0 in Cn such that

|x|α � C sup
i

|gi(x)|, for all x ∈ U.

Let f : (Cn, 0) → (C, 0) be an analytic function germ with an isolated singularity at
the origin. We define the �Lojasiewicz exponent of f as α0(f) = �(mn, J(f)), where J(f)
denotes the ideal of On generated by the partial derivatives

∂f

∂x1
, . . . ,

∂f

∂xn
.

3. The Newton non-degeneracy condition

As mentioned in the introduction, there is a characterization of the class of ideals I ⊆ On

of finite colength such that Ī is generated by monomials. In order to show the motivation
of our problem, here we expose some basic facts about this characterization and its
implications for the computation of �Lojasiewicz exponents.

We denote by R+ the set of non-negative real numbers. Therefore, let Z+ = Z ∩ R+

and let Q+ = Q ∩ R+.

Definition 3.1. We say that a subset Γ+ ⊆ Rn
+ is a Newton polyhedron when there

exists some A ⊆ Zn
+ such that Γ+ is equal to the convex hull in Rn

+ of the set {k + v :
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k ∈ A, v ∈ Rn
+}. In this case, we say that Γ+ is the Newton polyhedron determined by A

and we write Γ+ = Γ+(A).

Let us fix a Newton polyhedron Γ+ ⊆ Rn
+. Let A0 be the minimal subset of Zn

+, with
respect to inclusion, between those A ⊆ Zn

+ such that Γ+(A) = Γ+. We say that k ∈ Zn
+

is a vertex of Γ+ when k ∈ A0. Thus, we call A0 the set of vertices of Γ+.
If v ∈ Rn

+ � {0}, we define �(v, Γ+) = min{〈v, k〉 : k ∈ Γ+} and the subset ∆(v, Γ+) =
{k ∈ Γ+ : 〈v, k〉 = �(v, Γ+)}. The sets of the form ∆(v, Γ+), for some v ∈ Rn

+ � {0} are
called faces of Γ+. If ∆ is a face of Γ+ and ∆ = ∆(v, Γ+), where v ∈ Rn

+ � {0}, then we
say that ∆ is the face of Γ+ supported by v. We observe that a face ∆ of Γ+ is compact
if and only if it is supported by a vector v ∈ (R � {0})n. We denote by Γ the union of
compact faces of Γ+. Then we will denote by Γ− the union of all segments joining the
origin and some point of Γ .

We say that a vector v ∈ Rn
+ � {0} is primitive when the non-zero coordinates of v are

mutually prime integer numbers. Then any face of Γ+ of dimension n − 1 is supported
by a unique primitive vector. Let us denote by F(Γ+) the set of primitive vectors of Rn

+
supporting some compact face of Γ+ of maximal dimension.

If k = (k1, . . . , kn) ∈ Zn
+, we denote the monomial xk1

1 · · ·xkn
n by xk. Given a function

germ f ∈ On, if f =
∑

k akxk is the Taylor expansion of f , then the support of f is
defined as supp(f) = {k ∈ Zn

+ : ak �= 0}. We define the Newton polyhedron of f as
Γ+(f) = Γ+(supp(f)). If I is an ideal of On, the support of I, denoted by supp(I), is
defined as the union of the supports of the elements of I. We denote by Γ+(I) the Newton
polyhedron determined by supp(I). It is a simple exercise to check that if g1, . . . , gs is a
system of generators of I, then Γ+(I) is equal to the convex hull of Γ+(g1)∪· · ·∪Γ+(gs).
It is known that I and Ī have the same Newton polyhedron (see [2] or [3]).

Definition 3.2. If g =
∑

k akxk ∈ On and A is a subset of Rn
+, we denote by gA the

series given by the sum of those akxk such that k ∈ A. If supp(g) ∩ A = ∅, then we fix
gA = 0.

Let I ⊆ On be an ideal. Suppose that I is generated by the germs g1, . . . , gs. We say
that I is Newton non-degenerate when, for each compact face ∆ of Γ+(I), we have that

{x ∈ Cn : (g1)∆(x) = · · · = (gs)∆(x) = 0} ⊆ {x ∈ Cn : x1 · · ·xn = 0}. (3.1)

It is easy to check that the above definition does not depend on the chosen system of
generators of I.

Definition 3.3 (see [15, 31]). Let f ∈ On. Then we denote by I(f) the ideal of On

generated by the germs

x1
∂f

∂x1
, . . . , xn

∂f

∂xn
.

The function f is said to be Newton non-degenerate when the ideal I(f) is Newton
non-degenerate.

As mentioned in the introduction, several topological invariants of Newton non-
degenerate functions are expressed in terms of their Newton polyhedra.
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Theorem 3.4 (see [26]). Let I ⊆ On be an ideal of finite colength. Then I is Newton
non-degenerate if and only if the integral closure Ī is equal to the ideal generated by the
monomials xk such that k ∈ Γ+(I).

A version of the above result for ideals I(f), f ∈ On, was initially proved by Yoshi-
naga [31], although the notion of integral closure is not explicitly mentioned in [31]. We
now give some details about the construction of the Newton filtration attached to a New-
ton polyhedron (see also [15] or [30]). This will help us in determining the reduced-order
filtration ν̄I when I is a Newton non-degenerate ideal.

Let us fix a Newton polyhedron Γ+ ⊆ Rn
+ intersecting each coordinate axis. Given a

face ∆ of Γ+, the cone over ∆, denoted by C(∆), is the closure of the union of all half
lines starting at the origin and passing through a point of ∆. It is clear that the union
of all cones C(∆), where ∆ varies in the set of faces of Γ+, is equal to Rn

+.
Let {v1, . . . , vr} be the family of vectors of F(Γ+) such that �(vi, Γ+) �= 0, for

all i = 1, . . . , r. Then we denote by MΓ the least common multiple of the integers
�(v1, Γ+), . . . , �(vr, Γ+). Thus we define

ΦΓ (k) = min
{

MΓ

�(vi, Γ+)
〈k, vi〉 : i = 1, . . . , r

}
, for all k ∈ Rn

+.

We observe that ΦΓ is constant (and equal to MΓ ) on Γ , the map ΦΓ is linear on each
cone C(∆), where ∆ is any compact face of Γ+, and it is clear that ΦΓ (Zn

+) ⊆ Zn
+.

Now we define the ideals

Rq = {h ∈ On : ΦΓ (supp(h)) ⊆ [q, ∞[ } ∪ {0}, for all q ∈ Zn
+. (3.2)

We also define the map νΓ : On → R+ ∪ {+∞} given by νΓ (h) = max{q : h ∈ Rq}, if
h �= 0, and νΓ (0) = +∞. We refer to νΓ as the Newton filtration induced by Γ+ (see
also [3]).

Proposition 3.5. Let I ⊆ On be an ideal of finite codimension, let Γ+ = Γ+(I)
and let M = MΓ . Then Mν̄I � νΓ and equality holds if and only if I is a Newton
non-degenerate ideal.

Proof. Let {Rq}q�0 denote the ideals associated with the Newton filtration ν̄I (see
(3.2)). The ideal I is contained in RM . Therefore, given an integer p > 0, we have

Ip ⊆ Rp
M = RMp. (3.3)

Let p/q ∈ Q+ and let h ∈ On. Then h ∈ Ip/q if and only if hq ∈ Ip. But Ip ⊆ RMp,
by (3.3). Then the element hq belongs to RMp. But this is equivalent to saying that
h ∈ RMp/q. Therefore, we obtain the inclusion

Ip/q ⊆ RMp/q, for any p/q ∈ Q+. (3.4)

If I were Newton non-degenerate, then Ī = RM and the inclusion of (3.3) becomes an
equality, for any positive integer p. Then, by a similar argument, we find that the inclu-
sion (3.4) must also be an equality, if I is Newton non-degenerate. The converse is a
consequence of Theorem 3.4. Now the result comes from the definition of ν̄I and νΓ . �
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Let I ⊆ On be an ideal of finite colength. Then the Newton polyhedron of I intersects
each coordinate axis. Let Pi be the intersection of Γ+(I) with the xi-axis, i = 1, . . . , n.
A version of the following result for the case n = 2 can be found in [14, p. 9].

Corollary 3.6. Under the above conditions, we have

�(mn, I) � max{|P1|, . . . , |Pn|}, (3.5)

and equality holds if I is Newton non-degenerate.

Proof. From relation (2.3) and Proposition 3.5, we deduce that

�(mn, I) = max{�(xi, I) : i = 1, . . . , n} = max{(ν̄I(xi))−1 : i = 1, . . . , n}
� max{M/νΓ (xi) : i = 1, . . . , n} = max{|P1|, . . . , |Pn|}. (3.6)

If I is Newton non-degenerate, the inequality in (3.6) becomes an equality, by virtue
of Proposition 3.5. �

Therefore, it is natural to study the Newton non-degeneracy condition on Jacobian
ideals, since the computation of the �Lojasiewicz exponent �(mn, J(f)) is quite direct in
this case, as we have deduced in Corollary 3.6.

If I is an ideal of An, the Newton polyhedron of I is defined analogously. The Newton
non-degeneracy condition is also extended to ideals of An by replacing C by R in (3.1).
Moreover, the proof of Theorem 3.4 is based on the analytic formulation of the integral
closure of an ideal in On. Therefore, Theorem 3.4 is also valid in the context of elliptic
ideals of An. We recall that an ideal I of An is said to be elliptic when the germ at
0 ∈ Rn of the set of real zeros of I is equal to {0}.

Given an ideal I of An and p/q ∈ Q+, we define

Ip/q = {h ∈ An : hq ∈ Ip}. (3.7)

Considering this definition and the real version of Theorem 3.4, the statement and the
proof of Proposition 3.5 can be extended naturally to ideals of An. Thus if I is an elliptic
ideal of An, we also have the inequality

�R(mn, I) � {|P1|, . . . , |Pn|}, (3.8)

where Pi denotes the point where Γ+(I) meets the xi-axis, i = 1, . . . , n, as in Corol-
lary 3.6.

Remark 3.7. Let f ∈ An and suppose that the Taylor expansion of f around the
origin defines a complex germ fC ∈ On. If fC has an isolated singularity at the origin
and the ideal J(fC) is Newton non-degenerate, then we observe that the �Lojasiewicz
exponents �R(mn, J(fR)) and �(mn, J(fC)) are equal, by virtue of (3.8) and Corollary 3.6.
In general, equality between these numbers does not hold, as the reader may check in [5].
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4. A method to test the Newton non-degeneracy condition

The task of deciding whether an ideal of finite colength I ⊆ On is Newton non-degenerate
or not using Definition 3.2 involves the task of listing the set of compact faces of a Newton
polyhedron in Rn

+. This is not a straightforward task at all, even when n = 3. Here we
present an alternative way to check when an ideal I ⊆ On is Newton non-degenerate by
means of computing multiplicities. In particular, by Definition 3.3, the resulting test is
useful in detecting Newton non-degenerate functions (Cn, 0) → (C, 0).

We denote the n-dimensional volume of a compact subset K ⊆ Rn by Vn(K). However,
by an abuse of notation, if Γ+ is a Newton polyhedron in Rn

+, we denote the n-dimensional
volume of Γ− by Vn(Γ+).

If I is an ideal of finite colength of On, we will denote the number Vn(Γ+(I)) by v(I).
Moreover, the multiplicity of I will be denoted by e(I) (see [20, § 14]).

Theorem 4.1 (see [2, 3]). Let I be an ideal of On of finite colength. Then e(I) �
n!v(I) and equality holds if and only if I is Newton non-degenerate.

Therefore, in view of the above result, we can say that Newton non-degenerate ideals
of finite colength of On are those ideals of On having minimal multiplicity.

If Γ+ ⊆ Rn is a Newton polyhedron, we denote by ρΓ the polynomial obtained as the
sum of those monomials xk such that k ∈ Γ .

Lemma 4.2 (see [2]). If Γ+ is a Newton polyhedron in Rn, then ρΓ is a Newton
non-degenerate function.

Corollary 4.3. Let I ⊆ On be an ideal of finite colength and let Γ = Γ (I). Then I

is Newton non-degenerate if and only if

e(I) = dimC

On

I(ρΓ )
.

Proof. The function ρΓ is Newton non-degenerate, by Lemma 4.2. Then the colength
of the ideal I(ρΓ ) is equal to n!Vn(Γ+(ρΓ )). But Γ+(I) = Γ+(ρΓ ). Hence the number
n!Vn(Γ+(I)) is equal to the colength of I(ρΓ ) and the result follows from Theorem 4.1.

�

We recall that if I ⊆ On is an ideal of finite colength generated by n elements, then
e(I) = dimC On/I. Hence, as a consequence of the above lemma, if f : (Cn, 0) → (C, 0)
is an analytic map germ such that the ideal I(f) has finite colength and if Γ+ = Γ+(f),
then f is Newton non-degenerate if and only if

dimC

On

I(f)
= dimC

On

I(ρΓ )
. (4.1)

If f =
∑

k akxk is the Taylor expansion of a function germ f ∈ On, we denote by p(f)
the polynomial obtained as the sum of those terms akxk such that k ∈ supp(f) ∩ Γ (f).
We will refer to p(f) as the principal part of f . We observe that the definition of a Newton
non-degenerate function f ∈ On depends only on p(f). Therefore, if f is a polynomial
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function such that I(f) has finite colength, we have that f is Newton non-degenerate if
and only if

dimC

On

I(f)
= dimC

On

I(ρf )
, (4.2)

where ρf denotes the sum of the monomials xk such that k ∈ supp(f). We remark that
the dimensions appearing on both sides of (4.2) are easily computable via a computer
algebra system such as Singular [13].

Example 4.4. Let f : (C4, 0) → (C, 0) be given by f(x, y, z, t) = x9 − y9 + z9 − t9 +
(x2t − y3z)2 + xyzt. Using the program Singular, we can check that

dimC

O4

I(f)
= 2268.

On the other hand, the colength of the ideal I(ρf ) in O4 is also equal to 2268. Therefore,
the function f is Newton non-degenerate, by Corollary 4.3.

The test given in (4.1) works when I(f) has finite colength; in particular, the New-
ton polyhedron Γ+(f) must intersect each coordinate axis. We can extend this test to
arbitrary functions f ∈ On with an isolated singularity at the origin using a result of
Kouchnirenko. Let us give some preliminary definitions in order to state this result.

We say that a Newton polyhedron Γ+ ⊆ Rn
+ is q-installed, where q ∈ {0, 1, . . . , n},

when Γ+ intersects the axes corresponding to the variables x1, . . . , xq and Γ+ does not
intersect the remaining coordinate axes. For an arbitrary Newton polyhedron Γ+ ⊆ Rn

+,
we define

d(Γ+) = max{|k| : k ∈ Γ}. (4.3)

Lemma 4.5 (see [15]). Let f ∈ On have an isolated singularity at the origin. Suppose
that Γ+(f) is q-installed and let r0 = d(Γ+(f))n + 1. Then f is Newton non-degenerate
if and only if f + xr0

q+1 + · · · + xr0
n is Newton non-degenerate.

Under the conditions of the previous lemma, the Newton polyhedron of the function
g = f + xr0

q+1 + · · · + xr0
n intersects each coordinate axis. Then it makes sense to ask if

equality (4.1) is satisfied for the function g.
It is worth noting here the following observation. If we fix a Newton polyhedron

Γ+ ⊆ Rn
+, then we can deduce an effective criterion to determine whether a point

k = (k1, . . . , kn) ∈ Zn
+ belongs to Γ+ or not. This method helps in determining equi-

singular deformations of a given function f ∈ On, by virtue of Theorem 6.3 and other
results on equisingularity theory of deformations (see [8]).

Corollary 4.6. Let Γ+ ⊆ Rn
+ be a Newton polyhedron intersecting each coordinate

axis, let k0 ∈ Zn
+ and let ρ = ρΓ + xk0 . Then the point k0 belongs to Γ+ if and only if

dimC

On

I(ρΓ )
= dimC

On

I(ρ)
.
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Proof. Let I denote the ideal generated by all monomials xk such that k ∈ Γ+.
Then we observe that k0 ∈ Γ+ if and only if xk0 ∈ Ī. Moreover, the monomial xk0 is
integral over I if and only if e(I) = e(xk0 , I), by Rees’s theorem (see [24] or [28]). The
ideals I and 〈I, xk0〉 are generated by monomials; in particular, both ideals are Newton
non-degenerate. Then the result follows from Corollary 4.3. �

There is an alternative method to check if a point k ∈ Zn
+ belongs to a Newton poly-

hedron Γ+ in the paper of Delfino et al . [9]. This method is based on integer programming
techniques.

5. Newton non-degenerate Jacobian ideals

Let f : (Cn, 0) → (C, 0) be an analytic map germ. In this section we study the rela-
tion between Newton non-degenerate functions (see Definition 3.3) and functions whose
Jacobian ideal J(f) is Newton non-degenerate.

Let L ⊆ {1, . . . , n}. Then we denote the set {(x1, . . . , xn) ∈ Rn : xi = 0, for all i ∈ L}
by Rn

L and the number of elements of L by |L|. If L ⊆ {1, . . . , n} and f =
∑

k akxk ∈ On,
we write fL to denote the sum of those akxk such that k ∈ supp(f) ∩ Rn

L.
Suppose that Γ+ ⊆ Rn

+ is a Newton polyhedron intersecting each coordinate axis. Then
in [15] the Newton number of Γ+ is defined as

ν(Γ+) = n!Vn − (n − 1)!Vn−1 + · · · + (−1)n−11!V1 + (−1)n,

where Vi denotes the sum of i-dimensional volumes of the intersection of Γ− with coor-
dinate planes of dimension i, for i ∈ {1, . . . , n}.

The Newton number of a q-installed Newton polyhedron Γ+ is defined as

ν(Γ+) = sup
r∈N

ν(Γ+(ρΓ + xr
q+1 + · · · + xr

n)).

It is proved in [15, p. 19] that if Γ+ is a Newton polyhedron as above, then

ν(Γ+) = ν(Γ+(ρΓ + xr0
q+1 + · · · + xr0

n )),

where r0 = (d(Γ+))n + 1 (see the definition given in (4.3)).
If f ∈ On has an isolated singularity at the origin, the Milnor number of f is defined

as

µ(f) = dimC

On

J(f)
.

Here we state a known result of Kouchnirenko on the computation of the Milnor number
of a Newton non-degenerate function.

Theorem 5.1 (see [15]). Let f : (Cn, 0) → (C, 0) be an analytic map germ with
an isolated singularity at the origin. Then µ(f) � ν(Γ+(f)), and equality holds if f is
Newton non-degenerate.
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Theorem 5.2. Let f : (Cn, 0) → (C, 0) be an analytic function germ with an isolated
singularity at the origin such that

∂fL

∂xi
=

(
∂f

∂xi

)
L

, (5.1)

for all L ⊆ {1, . . . , n} and all i = 1, . . . , n. Suppose that the ideal I(f) has finite colength
in On. If J(f) is Newton non-degenerate, then I(f) is also Newton non-degenerate.

Proof. We observe that, since the ideal I(f) has finite colength, the Newton poly-
hedron Γ+ = Γ+(f) intersects each coordinate axis.

By [15, Lemma 3.2], we know that

dimC

On

I(f)
=

∑
L⊆{1,...,n}

µ(fL), (5.2)

where we set µ(f∅) = µ(f) and µ(f{1,...,n}) = 0.
Moreover, since the ideal J(f) is Newton non-degenerate, the ideal generated by the

elements (∂f/∂xi)L, i = 1, . . . , n, is also Newton non-degenerate (as an ideal of On−|L|),
for all L ⊆ {1, . . . , n}. Then, as a consequence of condition (5.1), we deduce that J(fL)
is Newton non-degenerate, for all L ⊆ {1, . . . , n}. Thus, applying Theorem 4.1 and rela-
tion (5.2), we have

n!Vn(Γ+) � dimC

On

I(f)
=

∑
L⊆{1,...,n}

(n − |L|)!Vn−|L|(Γ+(J(fL))). (5.3)

Let us denote by g the polynomial ρΓ . Considering condition (5.1), we observe that

supp
(

∂fL

∂xi

)
= supp

(
∂f

∂xi

)
L

⊇ supp
(

∂g

∂xi

)
L

⊇ supp
(

∂gL

∂xi

)
.

Then we have the inclusion

Γ+(J(gL)) ⊆ Γ+(J(fL)), (5.4)

for all L ⊆ {1, . . . , n}.
Therefore, since the function g is Newton non-degenerate, we have

n!Vn(Γ+) = dimC

On

I(g)
=

∑
L⊆{1,...,n}

µ(gL) �
∑

L⊆{1,...,n}
(n − |L|)!Vn−|L|(J(gL))

�
∑

L⊆{1,...,n}
(n − |L|)!Vn−|L|(J(fL)),

where the last inequality is a consequence of (5.4). Then joining the above inequalities
with relation (5.3), we deduce that n!Vn(Γ+) is equal to the colength of I(f). But this
implies that I(f) is Newton non-degenerate, by Theorem 4.1. �
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We give an example showing that condition (5.1) cannot be removed from Theorem 5.2.

Example 5.3. Let us consider the map f : (C3, 0) → (C, 0) given by f(x, y, z) =
yz3 + x10 + z10 + x2z4(x − z)2 + y5. We observe that f is not Newton non-degenerate,
since f does not satisfy condition (4.2). Let us see that the Jacobian ideal of f is Newton
non-degenerate. The Milnor number of f is µ(f) = 99. Let S be the union of the supports
of ∂f/∂x, ∂f/∂y and ∂f/∂z and let gS denote the sum of those monomials xk such that
k ∈ S. Then we observe that

gS(x, y, z) = x9 + xz6 + x3z4 + x2z5 + z3 + y4 + yz2 + z9 + x4z3.

and Γ+(gS) = Γ+(J(f)). Moreover, by Theorem 4.2, the map gS is Newton non-degen-
erate. Therefore,

3!V3(J(f)) = 3!V3(Γ+(gS)) = dimC

O3

I(gS)
= 99.

Then we have obtained the equality µ(f) = 3!V3(J(f)), which implies that J(f)
is Newton non-degenerate, by Theorem 4.1. Hence, we conclude that the �Lojasiewicz
exponent α0(f) is the least possible, that is, it is equal to 9, by virtue of Corollary 3.6.

Given a Newton polyhedron Γ+ ⊆ Rn
+, we define

O(Γ+) = {f ∈ On : Γ+(f) = Γ+ and V (J(f)) = {0}}.

Then, when O(Γ+) �= ∅, we can consider the number

δ(Γ+) = min{n!Vn(Γ+(J(f))) : f ∈ O(Γ+)}.

By Theorem 5.1, we have that

ν(Γ+) = min{µ(f) : f ∈ O(Γ+)}.

Therefore, the inequality ν(Γ+) � δ(Γ+) holds, by Theorem 4.1, and these numbers are
different in general. We observe that the minimum δ(Γ+) is attained at the function f

defined as the sum of all monomials xk such that k ∈ Γ+ and {k−ei : ki > 0} is contained
in Γ−, where {ei}n

i=1 denotes the canonical basis in Rn.
Given a Newton polyhedron Γ+ in Rn

+, we define

K(Γ+) = {f ∈ O(Γ+) : f is Newton non-degenerate},

B(Γ+) = {f ∈ O(Γ+) : J(f) is a Newton non-degenerate ideal}.

Proposition 5.4. Let Γ+ ⊆ Rn
+ be a Newton polyhedron. Then K(Γ+) ⊆ B(Γ+) if

and only if ν(Γ+) = δ(Γ+).

Proof. Suppose that ν(Γ+) = δ(Γ+) and let f ∈ K(Γ+). Then we obtain the following
inequalities:

ν(Γ+) = µ(f) � n!Vn(Γ+(J(f))) � δ(Γ+).
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Since we are assuming that ν(Γ+) = δ(Γ+), the above relation implies that µ(f) is equal
to n!Vn(Γ+(J(f))) and then the ideal J(f) is Newton non-degenerate, by Theorem 4.1.

Suppose that K(Γ+) ⊆ B(Γ+) and let f ∈ O(Γ+) be such that

δ(Γ+) = n!Vn(Γ+(J(f))).

The Newton non-degeneracy condition for functions is generic in the space of polynomial
functions g such that supp(g) ⊆ Γ+ (see [15, Theorem 6.1]). Thus, modifying the coef-
ficients of f , we can suppose that f is Newton non-degenerate. In particular, the ideal
J(f) is Newton non-degenerate, since we are assuming K(Γ+) ⊆ B(Γ+). Therefore,

ν(Γ+) = dimC

On

J(f)
= n!Vn(Γ+(J(f))) = δ(Γ+).

�

It is worth remarking here that the class of functions f ∈ On with isolated singularity
at the origin and such that ν(Γ+(f)) = δ(Γ+(f)) includes the class of homogeneous
functions of On with isolated singularity at the origin.

We denote by VΓ+ the set of vertexes of a Newton polyhedron Γ+. Then we will denote
by ρVΓ+ the polynomial obtained as the sum of those monomials xk such that k ∈ VΓ+.
It is clear that K(Γ+) �= ∅ for any Newton polyhedron Γ+ (see also Lemma 4.2). On
the other hand, the family B(Γ+) is not always non-empty, as the following proposition
shows.

Proposition 5.5. Let Γ+ be a Newton polyhedron in Rn
+. Then B(Γ+) �= ∅ if and

only if the ideal J(ρVΓ+) is Newton non-degenerate.

Proof. The if part is obvious. Let f ∈ O(Γ+) be such that the ideal J(f) is Newton
non-degenerate. Then we observe that supp(ρVΓ+) is contained in supp(f), which implies
that supp(J(ρVΓ+)) ⊆ supp(J(f)). In particular, we have the inequality

Vn(Γ+(J(f))) � Vn(Γ+(J(ρVΓ+))). (5.5)

Since the ideal J(f) is Newton non-degenerate and the function ρVΓ+ is always Newton
non-degenerate, we deduce that

Vn(Γ+(J(ρVΓ+))) � Vn(Γ+(J(f))) = µ(f) � ν(Γ+) = µ(ρVΓ+) � Vn(Γ+(J(ρVΓ+))).

Then the ideal J(ρVΓ+) is Newton non-degenerate, by Theorem 4.1. �

Example 5.6. Let f = x5 + x3y2 + xy5 + y10 and let Γ+ = Γ+(f). It is easy to check
that supp(f) is the set of vertices of Γ+; then f = ρVΓ+ . The ideal J(f) is not Newton
non-degenerate, as can be checked by applying Corollary 4.3. Hence there is no function
g ∈ On such that Γ+(g) = Γ+ and J(g) is Newton non-degenerate, by the previous result.

In view of the preceding results and examples, we can say that Newton polyhedra such
that B(Γ+) �= ∅ are somehow special. It would be desirable to characterize this kind of
Newton polyhedron from a different point of view.
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6. Mixed multiplicities

We recall that if I, J are two ideals of On of finite colength, then ei(I, J) denotes the
mixed multiplicity e(I, . . . , I, J, . . . , J), where I is repeated i times and J is repeated
n − i times, i ∈ {0, 1, . . . , n}. Therefore, we have e0(I, J) = e(J) and en(I, J) = e(I).
We refer to the works of Teissier [28] and Rees [25] for the definition of, properties of
and nice results concerning the notion of mixed multiplicity of a set of n ideals of finite
colength in On.

The following result of Rees [25] will help us in finding an expression for the set of
mixed multiplicities {ei(mn, J(f)) : i = 0, 1, . . . , n} in terms of Γ+(J(f)) when J(f) is a
Newton non-degenerate ideal.

Theorem 6.1 (see [25]). Let I1, . . . , In be ideals in On of finite colength. Then

e(I1, . . . , In) =
1
n!

∑
J⊆{1,...,n}

J �=∅

(−1)n−|J|e

(∏
j∈J

Ij

)
,

where |J | denotes the number of elements of a subset J ⊆ {1, . . . , n}.

We recall that if g ∈ On, then we denote by I(g) the ideal of On generated by the
germs

x1
∂g

∂x1
, . . . , xn

∂g

∂xn
.

Corollary 6.2. Let I, J be ideals of On of finite colength. If r, s are non-negative
integer numbers, we denote by gr,s the sum of the monomials xk whose support belongs
to Γ (IrJs). If I and J are Newton non-degenerate and i ∈ {0, 1, . . . , n}, then

ei(I, J) =
1
n!

n∑
s=1

(−1)n−s

( min{i,s}∑
r=max{0,i−(n−s)}

(
i

r

)(
n − i

s − r

)
dimC

On

I(gr,s−r)

)
.

Proof. If I and J are Newton non-degenerate ideals, then Ī and J̄ are monomial
ideals. However, the integral closure of IJ is equal to the integral closure of the product
Ī · J̄ . Then the ideal IJ also has monomial integral closure, and, consequently, IJ is
also a Newton non-degenerate ideal, by Theorem 3.4. Therefore, the ideals IrJs are
Newton non-degenerate, for all r, s ∈ Zn

+. Then the result follows as an application of
Theorem 6.1, Corollary 4.3 and a simple combinatorial computation. �

Consider an analytic deformation F : (C × Cn, 0) → (C, 0) of a function germ f :
(Cn, 0) → (C, 0), where we write F (t, x) = ft(x). Suppose that ft : (Cn, 0) → (C, 0)
has an isolated singularity at the origin for all t. Then the deformation is said to be
µ∗-constant, when ei(mn, J(ft)) does not depend on t, for all i = 0, 1, . . . , n.

Theorem 6.3. Let ft : (Cn, 0) → (C, 0) be an analytic deformation of a function germ
f : (Cn, 0) → (C, 0). Suppose that ft has an isolated singularity at the origin for all t

and suppose that
Γ+(J(ft)) ⊆ Γ+(J(f)), (6.1)

for all t. If J(f) is a Newton non-degenerate ideal, then the family ft is µ∗-constant.
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Proof. The ideal J(f) is Newton non-degenerate. Then, by Theorem 4.1 we have

n!v(J(f)) = dimC

On

J(f)
� dimC

On

J(ft)
� n!v(J(ft)), (6.2)

for all t small enough, where the first inequality comes from the upper semicon-
tinuity of the colength function [29, p. 39]. However, we have that n!v(J(ft)) �
n!v(J(f)) from inclusion (6.1). Then, joining this fact with (6.2), we deduce the equal-
ity Γ+(J(f)) = Γ+(J(ft)). Hence each ideal J(ft) is Newton non-degenerate, by Theo-
rem 4.1, and the mixed multiplicities ei(mn, J(ft)) only depend on the Newton poly-
hedron of J(ft), by virtue of Corollary 6.2. Therefore, the family ft is µ∗-constant. �

Under the conditions of the above result we conclude that the deformation ft is Whit-
ney equisingular along {0} × Cn (see [28]).

In particular cases, we can apply Corollary 4.6 in order to study when condition (6.1)
is satisfied. As we see in the next example, which consists of the example of Briançon
and Speder [6], condition (6.1) cannot be removed from the previous theorem.

Example 6.4. Let us consider the analytic deformation ft : (C3, 0) → (C, 0) given by
ft(x, y, z) = z5 +xy7 +x15 + ty6z. We observe that J(f0) is Newton non-degenerate, as a
consequence of Corollary 4.3. Moreover, a simple computation shows that condition (6.1)
does not hold in this case. It is proved in [6] that the deformation ft is not µ∗-constant.
However, by the previous proposition, if we consider a deformation of the form gt =
z5 +xy7 +x15 + txk1yk2zk3 , such that the supports of the partial derivatives of xk1yk2zk3

belong to Γ+(J(f)) = Γ+(y7, x14, xy6, z4), where k1, k2, k3 > 0, then the deformation gt

is µ∗-constant.
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29. C. Tougeron, Idéaux de fonctions différentiables, Ergebnisse der Mathematik, no. 71

(Springer, 1972).
30. A. N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. Math.

37 (1976), 253–262.
31. E. Yoshinaga, Topologically principal part of analytic functions, Trans. Am. Math. Soc.

314 (1989), 803–814.

https://doi.org/10.1017/S0013091504000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000173

