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The endocannabinoid (EC) system consists of two main receptors: cannabinoid type
1 receptor cannabinoid receptors are found in both the central nervous system (CNS)
and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found
principally in the immune system and to a lesser extent in the CNS. The EC family
consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as
N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as
2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes
have been (with the exception of AEA synthesis) elucidated. To date, much work has
examined the role of EC in nociceptive processing and the potential of targeting the EC
system to produce analgesia. Cannabinoid receptors and ligands are found at almost
every level of the pain pathway from peripheral sites, such as peripheral nerves and immune
cells, to central integration sites such as the spinal cord, and higher brain regions such as the
periaqueductal grey and the rostral ventrolateral medulla associated with descending control
of pain. EC have been shown to induce analgesia in preclinical models of acute nociception
and chronic pain states. The purpose of this review is to critically evaluate the evidence
for the role of EC in the pain pathway and the therapeutic potential of EC to produce
analgesia. We also review the present clinical work conducted with EC, and examine
whether targeting the EC system might offer a novel target for analgesics, and also
potentially disease-modifying interventions for pathophysiological pain states.

Pain: Endocannabinoid: Analgesia

From an evolutionary standpoint, pain can be considered
a necessary evil, providing a potent warning system to
protect an individual from present and future harm.
However, not all pain is part of this adaptive response,
e.g. persistent pain after injury healing (chronic pain)
or pain arising from damage to nerve tissue (neuropathic
pain). Pain is the most common complaint in those seek-
ing a physician, and a recent study suggests that pain rep-
resents the greatest economic burden of any pathological
condition in the USA, with an estimated annual cost
of $565–635 billion(1). Many chronic pain states are

refractory to standard analgesics, and even in those
which do respond, pain control can be incomplete or
only short-term in nature. Of the imperfect currently
available analgesics, the most efficacious are the opioids
which exploit an endogenous pain control pathway
within the central nervous system. However, opioids
have significant issues with tolerance, dependence, respir-
atory depression and opioid-induced hyperalgesia(2).
Over the past few decades, the existence of a second
endogenous anti-nociceptive pathway has been revealed:
the endocannabinoid (EC) system.
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Cannabinoids and the endocannabinoid system

Extracts from Cannabis sativa have been used as
analgesics for centuries, but paucity of knowledge of
the molecular pharmacology, combined with moral
reservations about the psychotropic effects of this drug
and its abuse for recreational purposes, led to its prohibi-
tion in the early 20th century. However, the identification
of Δ9-tetrahydrocannabinol as the major psychoactive
component of cannabis extracts(3), and the subsequent
isolation of a cannabinoid receptor highly expressed
in nervous tissue(4–6), led to an explosion of research
interest in this area. Since Devane’s landmark papers,
firstly identifying the cannabinoid receptor(4), and sub-
sequently anandamide (AEA) the first endogenous
ligand(7) over 5000 articles featuring EC have been pub-
lished. The extent of the literature signifies the breadth
of pivotal roles this system plays in physiological and
pathophysiological functioning, and it is now known
that in neurones these are fundamentally predicated on
the modulation of neuronal signalling via retrograde
inhibition (for reviews, see(8,9)).

The EC system is composed of two G protein-coupled
cannabinoid receptors (cannabinoid type 1 receptor
(CB1) and cannabinoid type 2 receptor (CB2)), the EC
ligands that activate them, and their synthetic and
catabolic enzymes. The EC system possesses several
unique properties when compared with other neuro-
transmitter systems, and it is these properties that
underlie its role in analgesia: (i) EC act in a retrograde
manner at neuronal synapses, being synthesised in the
post-synaptic cell and travelling back across the synapse
to interact with the receptors on the pre-synaptic
cell(10,11); (ii) EC are not stored in vesicles prior to
release, but instead are produced through activity-driven
‘on demand’ synthesis following strong neuronal acti-
vation(12,13); (iii) The EC system involves a multitude of
ligands acting at just two major receptors, in contrast
to the single ligand/multiple receptor paradigm present
in other systems (e.g. glutamate, γ-aminobutyric acid,
5-hydroxytryptamine, etc.)(14).

EC are thought to act as a brake on neuronal hyper-
activity, being produced in response to high levels of
stimulation and feeding back negatively on the circuit
through interaction with pre-synaptic cannabinoid recep-
tors. In pain pathways, these actions produce analgesia
by inhibiting the transmission of pain signals.

Cannabinoid receptors

The cannabinoid receptors have divergent expression
patterns underlying their separate physiological roles.
CB1 is predominantly found on nerve cells, while CB2
is mostly expressed on cells of the immune system, with
some evidence of limited neuronal expression (see discus-
sion and references in(15)).

The CB1 receptor is predominantly found pre-
synaptically on axon terminals(10), and is coupled with
adenylate cyclase via Gi/o proteins. Activation leads to
a reduction of pre-synaptic neurotransmitter release via

inhibition of N- and P/Q-type calcium channels, and acti-
vation of potassium channels(16). The net result of these
actions can be inhibition or excitation of neuronal cir-
cuits, depending on whether the pre-synaptic cell secretes
excitatory or inhibitory neurotransmitters.

Endocannabinoids

The EC are lipid signalling molecules, produced
on-demand by the activity-dependent enzymatic
cleavage of membrane phospholipids(17). The most widely
investigated are the arachidonic acid derivatives AEA and
2-arachidonoyl glycerol (2-AG; structures shown in
Fig. 1). AEA was the first to be discovered, and is thus
the most studied, although it is present at far lower levels
in tissue than 2-AG (∼170-fold lower in brain(18)). Both
AEA and 2-AG activate cannabinoid receptors; 2-AG is
a full agonist at both CB1 and CB2 receptors

(19), whereas
AEA shows slight selectivity for CB1 over CB2. AEA
has also been shown to activate the ion channel
receptor TRPV1(20) and as such can be considered an
EC/endovanilloid substance (for review, see(21)).

Endocannabinoids and nutrition

The EC are lipid-based, and as such are more susceptible
to dietary-induced fluctuations in tissue levels than other
transmitter substances(22,23). Elevations in EC levels in
epididymal fat and pancreas have been reported in a
mouse model of diet-induced obesity(24), and these
diet-induced elevations may alter the EC system func-
tionally, since female mice on a high-fat diet show
decreased sensitivity to Δ9-tetrahydrocannabinol(25).
Recent clinical data suggests dietary modulation of EC
also occurs in human subjects(26), with an 84 % decrease
in plasma AEA observed following chronic exposure to
dietary DHA and EPA. Although the functional rel-
evance of circulating EC levels remains unclear, this
robust effect of fatty acid intake suggests that nutritional
factors can influence the EC system, and may offer a
means to modulate the analgesic potential discussed here.

Endocannabinoid synthesis and degradation

The major EC have distinct synthetic and degradative
pathways, with the localisation of the synthetic and
degradative machinery for each ligand determining its
physiological effects (for review, see(27)). A schematic
diagram of the actions of EC at a generic neuronal
synapse can be seen in Fig. 1.

AEA was initially thought to be synthesised by a path-
way involving the enzyme N-acyl-phosphatidyletha-
nolamine-hydrolysing phospholipase D(28,29). However,
generation of an N-acylphosphatidylethanolamine-
hydrolysing phospholipase D knock-out mouse revealed
normal brain levels of AEA(30), and additional synthetic
pathways have since been identified(31,32). It remains
unclear which pathway predominates in the production
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of AEA in pain pathways. The major catabolic enzyme
for AEA is fatty acid amide hydrolase (FAAH), although
other catabolic pathways have been identified (for review
see(33)).

2-AG is produced from cleavage of membrane
phospholipids by phospholipase C-β to produce diacylgly-
cerol species, and subsequent cleavage to form2-AGby the
enzymes diacyglycerol lipase-α and β(34), and metabolism
is primarily via monoacylglycerol lipase (MAGL)(35).

Other enzymes participating in 2-AG metabolism have
been identified(36), although their roles in termination of
2-AG signalling have yet to be fully elucidated.

Pain and nociception

Pain is an integrative experience, involving physiological,
emotional and cognitive aspects (for a useful glossary of

Fig. 1. (Colour online) Endocannabinoid (EC) signalling at a notional neuronal synapse. The major synthetic, signalling and
catabolic pathways for anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are shown. Alongside cannabinoid receptors
(CB1) and (CB2) the other G protein coupled receptors (GPCR) may be involved in cannabinoid signalling. FLAT-1, a truncated
form of fatty acid amide hydrolase (FAAH), and ECT are the putative EC transporters. MAGL, monoacylglycerol lipase; DAGL,
diacyglycerol lipase; GPR, specific G protein-coupled receptor such as GPR55. Compounds in red are recognised enzyme
inhibitors/receptor antagonists, which can modulate EC signals.
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pain terminology, see(37)). The subjective experience of
pain varies significantly between individuals and cannot
be reported by the non-human animals on which the
majority of basic pain research is conducted. For the pur-
poses of this review, we differentiate between the subjec-
tive experience of pain, and the measurable neuronal
events which underlie it, hereafter referred to as
nociception.

Nociceptive pathways begin with the transduction of a
noxious stimulus, such as mechanical pressure, into
action potentials by a specialised class of sensory afferent
neurones in the periphery (e.g. mechanoreceptors in the
skin). Action potentials travel via the axon of the pri-
mary afferent neurone, past the cell body located in a
dorsal root ganglion, to a synapse in the superficial dor-
sal horn of the spinal cord. Following the integration of
inputs from multiple cells types within the spinal cord,
these action potentials will then pass up one of several
ascending pathways to the brainstem, and subsequently
to the thalamus, which then relays the signal to higher
brain regions involved in the sensory (e.g. the somatosen-
sory cortex) and emotional/affective (e.g. the amygdala
and cingulate cortex) aspects of pain. There is significant
cross-talk between supra-spinal nociceptive regions, and
nociceptive signals can be amplified or dampened by des-
cending modulatory pathways projecting from the brain
to the spinal cord (pathways reviewed in(38–40)). Fig. 2
displays a schematic of a typical nociceptive pathway.

Location of the endocannabinoid system in the
pain pathway

The components of the EC system are expressed ubiqui-
tously throughout the pain processing pathways, under-
lining its key modulatory role in nociception. Both
ligands and receptors can be detected in the periphery,
at the level of the spinal cord, and in nociceptive regions
of the brain(6,41–71). CB1 is predominantly localised in
neurones, while CB2 is found in immune cells, although
there is some evidence for non-neuronal CB1 in B cells
of the immune system(47–49) and astroglial cells of the
central nervous system(59,64,68). CB2 expression has been
reported in microglia of the central nervous system(62–64),
with some evidence suggesting neuronal CB2 expression
(see commentary in(69)), although this remains
controversial.

Peripheral mechanisms

The peripheral compartment of the EC system plays
a substantial role in cannabinoid-receptor-mediated anti-
nociception, as demonstrated by the greatly reduced
efficacy of locally and systemically administered cannabi-
noids following selective deletion of peripheral CB1

( 70).
Evidence indicates that both neuronal and non-neuronal
cannabinoid receptors contribute to the anti-nociceptive
effects of peripheral EC, and the contributions of these
and the ligands AEA, and 2-AG have been partially

revealed via use of specific enzyme inhibitors and recep-
tor antagonists in animal models of pain.

The most studied paradigm is that of inflammatory
pain, in which application of an inflammatory substance
to the rodent hindpaw elicits an oedemic response and
measureable nociceptive behaviour. Peripheral adminis-
tration of AEA in the formalin model temporarily
reduced the nociceptive behaviour in a CB1-sensitive
manner(71). Conversely, blocking CB1 and/or CB2 recep-
tors prior to formalin administration increased nocicep-
tive responses, suggesting an intrinsic role for EC in
inflammatory pain. This may be restricted to early
inflammatory pain states, since the hindpaw levels of
EC are decreased at later time-points (see reviews
in(17,72,73)). Similarly, intra-plantar administration of
2-AG blocked the second phase of formalin-evoked
pain behaviour in rats(74), via a CB2-mediated
mechanism.

Exogenously administered AEA and 2-AG are rapidly
metabolised by FAAH and MAGL, respectively.
Further studies have therefore focused on the use of
FAAH and MAGL inhibitors to prolong the effects of
endogenous EC actions. Systemic inactivation of
FAAH via compounds such as URB597, OL135 and
PF-3845 has been shown to be anti-nociceptive in models
of acute and inflammatory pain(75–80). Elevations in both
AEA and 2-AG have been shown, as well as reduced
carrageenan-induced hyperalgesia(81) and expansion of
peripheral receptive field size of wide dynamic range
neurons (a marker of central sensitisation) following
intra-plantar URB597(82). Similarly, capsaicin-induced
pain behaviour and thermal hypersensitivity were attenu-
ated following blockade of peripheral MAGL via
JZL184(83), and peripheral administration of JZL184
produces local inhibition of MAGL activity, increased
levels of 2-AG and anti-nociceptive effects in both phases
of the formalin model through mechanisms involving
both CB1 and CB2

( 84). A peripherally restricted FAAH
inhibitor URB937(85), which cannot cross the blood–
brain barrier, blocked the hypersensitivity induced by
both inflammation and peripheral nerve injury via a
CB1-mediated mechanism, without altering thermal
nociceptive thresholds. These data reinforce the notion
that peripheral EC tone is increased in pain states, and
that actions of EC at peripheral CB1 receptors can reduce
the transmission of nociceptive information. Further
enhancing EC signalling may therefore prove an effective
analgesic strategy, although it should be noted that
FAAH and MAGL are not the only enzymes that can
degrade EC(33,36), and thus, the effects of specific enzyme
inhibitors may not present the entire story.

Alongside direct anti-nociceptive effects at CB1 recep-
tors on afferent neurones, EC can also act at peripheral
CB2 on immune cells such as macrophages(86), lympho-
cytes(87) and mast cells(88). CB2 receptor activation inhi-
bits the production and release of pro-inflammatory
and pro-nociceptive mediators, such as reactive oxygen
species(89) and cytokines(87). In addition, metabolism of
2-AG produces arachidonic acid, a key precursor of
pro-inflammatory PG, and disruption of 2-AG hydro-
lysis reduces the available pool of arachidonic acid and
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thus reduces inflammation(90). In summary, elevating
levels of peripheral AEA produces anti-nociceptive
effects in models of inflammatory and neuropathic
pain, largely via the inhibitory actions of CB1 receptors
on the primary neurones which transmit nociceptive sig-
nals. Similarly, increased 2-AG signalling at peripheral
CB1 receptors is also anti-nociceptive, but there also
appears to be a prominent CB2-mediated component,
probably involving the inhibition of pro-nociceptive
actions of immune cells.

Spinal mechanisms

Exogenous application of EC is anti-nociceptive at the
level of the spinal cord(91,92), while intra-thecal adminis-
tration of a CB1 receptor antagonist produces

hyperalgesia in mice(93), enhancing nociception-evoked
firing of wide dynamic range neurones in the dorsal
horn of the spinal cord(94). In addition, spinal EC are
elevated in animal models of acute and chronic
pain(95–97). These data indicate a role for the spinal EC
system in nociceptive transmission. In the surgical
incision model of acute resolving pain in rats, spinal
levels of AEA are reduced at early time-points coinciding
with maximal mechanical hypersensitivity, returning to
baseline as nociceptive behaviour subsides(64). In com-
parison, 2-AG levels were elevated at time-points
coinciding with the appearance of glial cell activation
and up-regulation of CB2 receptors, suggesting a tem-
poral segregation of AEA and 2-AG signalling. In agree-
ment with these data, spinal levels of AEA are
significantly elevated at early time-points in the chronic
constriction injury (neuropathic pain model) model of

Fig. 2. (Colour online) Nociceptive pathways. Schematic of nociceptive pathways. Nociceptive stimuli are
conducted from the periphery to the dorsal horn of the spinal cord, and then transmitted to the supra-spinal
regions via the spinothalamic tract (STT, blue) and spinoparabrachial tract (SPBT, red). The major descending
modulatory control pathway (DMCP, purple) is displayed on the right. This pathway crosses the midline at the
level of the medulla. Coloured areas indicate the position of synapses in each pathway. The positions of laminae
I–VI in the dorsal horn are indicated by dotted lines, while the black region in the brain represents the lateral
ventricles. Thal., thalamus; VMH, ventromedial hypothalamus; PbN, parabrachial nucleus; PAG, periaqueductal
grey matter; RVM, rostroventral medulla; Pyr., pyramidal tract; DRG, dorsal root ganglion. Adapted from(39).
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neuropathic pain in mice(98). Spinal administration of
URB597 reduced mechanically evoked responses of
wide dynamic range neurones in rats that underwent
spinal nerve ligation and this effect was blocked by pre-
administration of a CB1 selective receptor inverse ago-
nist/antagonist(99). Similarly, we have shown that spinal
application of the MAGL selective inhibitor JZL184 pro-
duced a dose-related reduction in mechanically-evoked
nociceptive neurotransmission in the spinal cord of
naive rats, which was reversed in the presence of the
CB1 selective antagonist, a CB1 selective receptor inverse
agonist/antagonist(100). Spinally administered JZL184
was also able to prevent intra-plantar carrageenan-
induced receptive field expansion of dorsal horn wide
dynamic ranges, indicating that the inhibition of
MAGL can block mechanisms underlying the develop-
ment of central sensitisation following peripheral
inflammation.

Further evidence of the involvement of the spinal EC
system is provided by alterations seen in receptor
expression in established pain states. CB1 expression is
elevated in the spinal cord of neuropathic rats from 4d
post-injury, with levels continuing to rise until day
14(101) while CB2 receptor up-regulation also occurs by
day 4(102). Genetic deletion of CB2 receptors results
in enhanced microglia and astrocytic expression in the
contralateral spinal horn following nerve injury,
accompanied by profound contralateral mechanical and
thermal allodynia(62). Conversely, overexpression of
CB2 receptors protected against nerve injury-induced
thermal and mechanical allodynia and prevented glial
activation in the spinal cord. Numerous other studies
have also implicated EC signalling in glial cell
activation(64,103,104).

Exogenous 2-AG has been shown to stimulate micro-
glial migration, whereas the CB2 receptor antagonist a
CB2 selective receptor antagonist inhibits basal micro-
glial migration(105). However, caution should be taken
when interpreting these results as cell culture models
might not reflect the in vivo situation. Nevertheless,
these converging lines of research strongly suggest that
the EC system, especially at the level of the spinal cord,
is intimately involved in glial cell signalling. Further
information regarding the links between the EC system
and neuro-glial interactions can be found in the following
review(106). The analgesic actions of EC and cannabinoid
receptor activation in the spinal cord suggest that
targeting the EC system at this level could inhibit both
neuronal hyper-excitability and glial cell activation.
Thus, enhancing this endogenous pathway could prove
to have a wide range of therapeutic applications in the
treatment of multiple pain sates, including the underlying
central sensitisation.

Supra-spinal mechanisms

The supra-spinal sites of cannabinoid anti-nociceptive
action were first identified in rodents via microinjection
of CB1 ligands into pain-associated regions including
the rostroventral medulla, the dorsal raphe nucleus,

the periaqueductal grey matter and the amygdala, prior
to tests of acute nociception(107). Later work revealed
the role of endogenous ligands by demonstrating mobil-
isation of AEA(108), and CB1-mediated anti-
nociception, following either electrical stimulation of
these regions or a peripheral administration of forma-
lin(109). Enhancing AEA signalling in these areas via
inhibition of FAAH activity is anti-nociceptive in
acute pain(110), probably via disinhibition of descending
inhibitory inputs from the brainstem to the spinal cord,
inhibiting spinal nociceptive signalling (for a review of
the pathways involved, see(38–40)).

Supra-spinal EC are also responsible for a phenom-
enon known as stress-induced analgesia, in which brief
exposure to environmental stress (e.g. immersion in
cold water, or an electric shock to the paw) produces
reduced nociceptive responses in a subsequent pain test.
Detailed study of this effect revealed the mobilisation
of both AEA and 2-AG in the periaqueductal grey
matter(111), and suggested that 2-AG acting at CB1 recep-
tors was the predominant mechanism. Additional work
indicated that further enhancing stress-induced EC sig-
nalling via FAAH or MAGL inhibition produces still
greater anti-nociceptive effects(112,113), and confirmed
the pivotal role of 2-AG signalling in the periaqueductal
grey matter(114). The involvement of stress in human pain
responses and the presence of an EC-mediated mechan-
ism are now being studied clinically(115). These data indi-
cate a physiological role for supra-spinal EC in acute
nociception, although agonism of supra-spinal CB1
receptors is an unappealing prospect due to the psycho-
tropic side-effects. Instead, research has focused on mod-
ulating the altered EC signalling seen in pain states.

The EC system is plastic, with changes in levels of
receptor expression, ligand concentrations and synthetic
and catabolic enzymatic activity occurring in pain states
(reviewed in(116)). Elevated levels of EC in the peri-
aqueductal grey matter and dorsal raphe nucleus have
been observed at 3 and 7d in the chronic constriction
injury model of neuropathic pain(98). Interestingly, desen-
sitisation of CB1 receptors in a pain-related cortical brain
region has been described in this model at 10d, when
nociceptive behaviour is maximal(117). CB1 receptor
desensitisation is known to occur following chronic
exposure to ligands(118), and thus may reflect the result
of chronically elevated EC levels in the brain. It remains
to be seen whether pharmacologically enhancing EC sig-
nalling in pain-related brain regions is advantageous or
detrimental under these conditions.

Supra-spinal EC can also modulate the affective
(or emotional) aspects of pain, which are mediated by
frontal and limbic brain regions, and can be dissected
from the somatosensory aspects. A recent neuroimaging
study of the analgesic effects of Δ9-tetrahydrocannabinol
on capsaicin-evoked cutaneous pain in human
subjects revealed no change in the intensity of pain
sensation(119). Instead, test subjects reported that
Δ9-tetrahydrocannabinol reduced the unpleasantness of
capsaicin-evoked cutaneous ongoing pain, rather than
reduced sensation, concurrent with reduced activity in
the anterior cingulate cortex and enhanced activity in
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the right amygdala compared with the control subjects.
Whether modulation of the EC system can mimic these
effects is as yet unknown. Ablation of the anterior cingu-
late cortex has been utilised as an effective last-resort
treatment for intractable pain(120), and thus unlocking
the potential of the EC system in this region could
address the great unmet clinical need in chronic pain
states.

Novel metabolic pathways

Modulating EC levels by FAAH and MAGL inhibition,
as described earlier, can produce anti-nociceptive effects.
However, bioactive lipids such as AEA and 2-AG are
promiscuous, and can be metabolised by multiple
enzymes(121). Artificially elevating EC levels can unmask
alternative metabolic routes, producing additional
bioactive products. Interestingly, pathological conditions
such as chronic pain states are associated with changes
in levels of enzymes, such as cyclooxygenase (COX),
lipoxygenase, αβ hydrolase and members of the cyto-
chrome P450 family(122–125), which can metabolise the
EC to novel lipid signalling molecules. The physiological
actions of these metabolic products are as yet unknown,
but some preliminary investigations have been per-
formed. The cytochrome P450 metabolite of AEA,
5,6-epoxyeicosatrienoic acid ethanolamide, has been
shown to be a potent CB2 receptor ligand(125), whereas
the 15-lipoxygenase metabolite of 2-AG,
15-hydroxyeicosatetraenoic acid glyceryl ester, acts as a
PPARα agonist(123). COX-2 metabolites of AEA and
2-AG have been shown to have pro-nociceptive actions
in the spinal cord. COX-2 metabolises AEA to prosta-
mide F2α, whose spinal application increases the firing
of nociceptive neurons and reduces paw withdrawal
latencies, and levels of prostamide F2α are elevated in
spinal cord tissue in mice with knee inflammation(124).
Similarly, the COX-2 metabolite of 2-AG, PGE2 gly-
cerol ester, is endogenously generated in rat tissue, and
induces mechanical allodynia and thermal hyperalgesia
following intraplantar administration(126). Based on
these reports, it is clear that determining the levels of
these potential ligands in pain states is of great interest,
as many of these metabolites may have effects on pain
processing. These findings may also limit the utility of
FAAH and MAGL inhibitors as therapeutics in chronic
pain states, as they may increase substrate levels for gen-
eration of alterative pro-nociceptive EC metabolites, and
thus counteract the anti-nociceptive effects of AEA and
2-AG.

Cannabinoids and endocannabinoids in clinical trials

Despite the growing use of medicinal marijuana, and
the development of licensed cannabinoid drugs such
as Sativex for multiple sclerosis(127), concerns remain
overdependence, tolerance and the cognitive side-effects
produced by these medications. Despite the wealth of

pre-clinical data on alternative EC-mediated compounds,
the only major clinical trial conducted utilising an
EC-directed compound looked at the ability of the
selective FAAH inhibitor PF-04457845 to produce
analgesia in an osteoarthritic patient population(128).
Despite significant elevations in plasma AEA, no analge-
sic effect was observed. Although disappointing, per-
haps, the negative outcome of this trial may indicate a
limitation of elevating AEA to induce analgesia in pain
sates. Previous work has shown that, in addition to
being a CB1 receptor agonist, at higher concentrations
AEA binds to and activates the pro-nociceptive TRPV1
channel(129). Since AEA can be also converted into pro-
nociceptive signalling molecules in the presence of
COX-2 activity, then it is feasible that under pathological
pain states where COX-2 activity is up-regulated (e.g.
osteoarthritis), pro-nociceptive effects of AEA at
TRPV1 may outweigh the anti-nociceptive actions. It
has previously been suggested that the development of
dual FAAH and COX-2 inhibitors(130) or substrate-
selective inhibitors of COX-2(131) would be advantageous
in terms of uncoupling the pro- and anti-nociceptive
actions of AEA, and producing compounds with superior
analgesic profiles. An alternative approach that has been
explored pre-clinically utilises N-arachidonoyl-serotonin,
a dual FAAH inhibitor/TRPV1 antagonist. This com-
pound has enhanced anti-nociceptive effects v. a FAAH
inhibitor alone, in several models of pain(72,132,133). In
addition, changes in AEA biotransformation in the
aged patient population may contribute to the lack of
analgesia following FAAH inhibition. A recent report
describes greater susceptibility to chronic pain and
decreased AEA-mediated anti-nociceptive effects in aged
animals(134).

An approach with potentially greater therapeutic
appeal than FAAH inhibition involves the targeting of
2-AG signalling. The recent development of MAGL
inhibitors such as JZL184 and KML 29(135,136), and sub-
sequent preclinical studies suggest that low doses of
MAGL inhibitors are devoid of analgesic tolerance(137),
and also decrease arachidonic acid pools that are
required for the generation of pro-nociceptive molecules
such as PGE2(90). This approach thus delivers a dual
analgesic mechanism, elevating 2-AG and reducing
pro-inflammatory PG levels. This may have particular
utility in the treatment of inflammatory bowel diseases
and the associated pain, especially as MAGL inhibitors
have already been shown to attenuate non-steroidal anti-
inflammatory drug-induced gastric haemorrhages in
mice(138). Inflammatory bowel diseases, such as irritable
bowel syndrome, result in significant pain and distress.
Recently, several converging lines of evidence suggest
that targeting the EC system may provide much sought
after disease modifying therapeutics for these con-
ditions(139). At the present stage, little clinical work has
been conducted to evaluate the efficacy of FAAH and/
or MAGL inhibition in treating inflammatory bowel dis-
eases and associated pain. Given the large unmet clinical
need in this area, the disease-modifying potential of an
EC therapy with a dual mechanism involving both
CB1- and CB2-mediated analgesia, as well as a reduction
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of pathologically elevated levels of pro-inflammatory
mediators, is very appealing.

Concluding remarks

Owing to the breadth and depth of the literature cited
here, we have only presented a fraction of the excellent
studies conducted in this area, though we hope this infor-
mation is sufficient to demonstrate the significant poten-
tial of targeting the EC system to analgesic effect. It is
our belief that such an approach can produce novel
efficacious analgesic agents required to help fill the
unmet clinical need in chronic pain states. However, to
reach this goal, the current gap between the wealth of
pre-clinical data and the paucity of clinical trials must
be bridged. Translation from the laboratory to the clinic
is fraught with difficulties, as evidenced by the failure of
the FAAH inhibitor PF-04457845 in osteoarthritic
patients, despite a seemingly well-designed study.
Future attempts in this area should perhaps utilise
patient stratification based on aspects of disease aetiol-
ogy or stratification based on neuroimaging of the pain
matrix in human subjects. Clinical work is also clearly
needed that focuses on whether targeting the EC system
in highly inflammatory conditions such as irritable bowel
syndrome, may offer new analgesic treatments.

It remains to be seen whether medications producing
chronic elevations of EC will suffer from similar side-
effects to those seen with phytocannabinoids, or the
issues of tolerance highlighted in recent animal studies.
However, the recent success of Sativex clearly highlights
the potential of this area of research.
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