UNIFORM DISTRIBUTION OF SEQUENCES IN RINGS OF INTEGRAL QUATERNIONS

by L. KUIPERS and JAU-SHYONG SHIUE

(Received 15 May, 1980; revised 30 October, 1980)

1. Introduction. Let \mathbb{Z} and $\mathbb{Z}[i]$ have their usual meaning. Let Y_{0} denote the noncommutative ring of integral quaternions, that is the set of all elements $a+b i+c j+d k$ with $a, b, c, d \in \mathbb{Z}$ and where i, j and k together with the number 1 are the four units of the system of quaternions.

Let $\mathcal{N}(\mu)=a^{2}+b^{2}+c^{2}+d^{2}$ be the norm of the element $\mu=a+b i+c j+d k \in Y_{0}$. The nontrivial ideals in Y_{0} are exactly the principal ideals (μ) generated by elements $\mu \in Y_{0}$ with $\mathcal{N}(\mu) \geqslant 2$.

Analogous to the definition of uniformly distributed sequences in \mathbb{Z} due to Niven [4] (see also Kuipers and Niederreiter [1, Chapter 5]) and that in $\mathbb{Z}[i]$ due to Kuipers, Niederreiter and Shiue [2] we consider sequences of integral quaternions and ask how they are distributed modulo an arbitrary nontrivial left ideal in Y_{0}. We introduce the following definition.

Definition 1. Let $\left(\mu_{n}\right)(n=1,2, \ldots)$ be a sequence of integral quaternions. Let $\beta, \mu \in Y_{0}$ with $\mathcal{N}(\mu) \geqslant 2$. For a positive integer N, let $A(\beta, \mu, N)$ denote the number of n $(1 \leqslant n \leqslant N)$ such that $\mu_{n} \equiv \beta(\bmod \mu)$. The sequence $\left(\mu_{n}\right)$ is said to be uniformly distributed modulo $\mu($ abbreviated $u . d . \bmod \mu)$ in Y_{0} if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} A(\beta, \mu, N) / N=(\mathcal{N}(\mu))^{-2}, \ldots \tag{1}
\end{equation*}
$$

for all $\beta \in Y_{0}$. (The choice of β may be restricted to all elements of a complete residue system modulo $\mu($ abbreviated c.r.s. $\bmod \mu)$). The sequence $\left(\mu_{n}\right)$ is said to be u.d. in Y_{0} if it is $u . d . \bmod \mu$ for all $\mu \in Y_{0}$ with $\mathcal{N}(\mu) \geqslant 2$.

When investigating specific sequences it is useful to have available an explicit description of a c.r.s. $\bmod \mu$.

Let $H(\gamma)$ denote a c.r.s. $\bmod \gamma(\gamma \in \mathbb{Z}[i])$ in $\mathbb{Z}[i]$. If $\mu=a+b i+c j+d k \in Y_{0}$, then we denote the g.c.d. (or one of its associates) of the elements $a+b i$ and $c-d i \in \mathbb{Z}[i]$ by $\delta=(a+b i, c-d i)$. The g.c.d. of the integers $a, b, c, d \in \mathbb{Z}$ is denoted by $g=(a, b, c, d)$. The conjugate of $\mu=a+b i+c j+d k \in Y_{0}$ is denoted by $\mu^{*}=a-b i-c j-d k$. We have

$$
\mu \mu^{*}=\mu^{*} \mu=a^{2}+b^{2}+c^{2}+d^{2}=\mathcal{N}(\mu)
$$

The following description of a c.r.s. modulo q was given by Shiue and Hwang [5].
Theorem 1. A c.r.s. $\bmod q$, where $q=a+b i+c j+d k \in Y_{0}(q \neq 0)$ is given by the set

$$
G(q)=\left\{r_{0}+r_{1} i+r_{2} j+r_{3} k \mid r_{0}+r_{1} i \in H(\delta), r_{2}+r_{3} i \in H\left(\mathcal{N}(q) \delta^{-1}\right)\right\}
$$

Here $\delta=(a+b i, c-d i)$.

Corollary. A c.r.s. $\bmod q$, where $q=a+b i+c j+d k(q \neq 0)$, is given by the set

$$
\begin{aligned}
& G(q)=\left\{r_{0}+r_{1} i+r_{2} j+r_{3} k \mid 0 \leqslant r_{0}<\mathcal{N}(\delta) g^{-1}, 0 \leqslant r_{1}<g,\right. \\
&\left.0 \leqslant r_{2}<\mathcal{N}(q) \mathcal{N}(\delta)^{-1} g, 0 \leqslant r_{3}<\mathcal{N}(q) g^{-1}\right\} .
\end{aligned}
$$

The cardinality of $G(q)$ is $\mathcal{N}(q)^{2}$.
2. Uniform distribution modulo an ideal. The elements of a c.r.s. modulo a nontrivial (left) ideal form an additive group. With regard to this group we have the following result.

Theorem 2. For $\mu=a+b i+c j+d k \in Y_{0}$ with $\mu \neq 0, g=(a, b, c, d), \delta=(a+b i, c-d i)$, the characters of the group $Y_{0} /(\mu)$ are given by

$$
\begin{aligned}
\chi(x+y i+z j+u k)= & \exp \left\{\left(r_{0}(a x+b y+c z+d u)+r_{1}(-b x+a y+d z-c u)\right.\right. \\
& \left.\left.+r_{2}(-c x-d y+a z+b u)+r_{3}(-d x+c y-b z+a u)\right) / \mathcal{N}(\mu)\right\}
\end{aligned}
$$

where $0 \leqslant r_{0}<\mathcal{N}(\delta) g^{-1}, 0 \leqslant r_{1}<g, 0 \leqslant r_{2}<\mathcal{N}(\mu) \mathcal{N}(\delta)^{-1} g, 0 \leqslant r_{3}<\mathcal{N}(\mu) g^{-1}$, and where $\exp t$ stands for $e^{2 \pi \mathrm{it}}$ for real t.

Proof. First, these expressions are really characters of $Y_{0} /(\mu)$, for assume that $x+y i+z j+u k \equiv x_{0}+y_{0} i+z_{0} j+u_{0} k \quad(\bmod \mu)$. Then we have $\chi(x+y i+z j+u k)=$ $\chi\left(x_{0}+y_{0} i+z_{0} j+u_{0} k\right)$ if and only

$$
r_{0}(a x+b y+c z+d u)+\ldots+r_{3}(-d x+c y-b z+a u)
$$

$$
\equiv r_{0}\left(a x_{0}+b y_{0}+c z_{0}+d u_{0}\right)+\ldots+r_{3}\left(-d x_{0}+c y_{0}-b z_{0}+a u_{0}\right) \quad(\bmod \mathcal{N}(\mu))
$$

a congruence which can be written in the form:

$$
\begin{aligned}
& r_{0}\left\{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)+d\left(u-u_{0}\right)\right\}+\ldots \\
& \quad+r_{3}\left\{-d\left(x-x_{0}\right)+c\left(y-y_{0}\right)-b\left(z-z_{0}\right)+a\left(u-u_{0}\right)\right\} \equiv 0 \quad(\bmod \mathcal{N}(\mu))
\end{aligned}
$$

Now we have for some $A, B, C, D \in \mathbb{Z}$ the relation

$$
\left(x-x_{0}\right)+\left(y-y_{0}\right) i+\left(z-z_{0}\right) j+\left(u-u_{0}\right) k=(a+b i+c j+d k)(A+B i+C j+D k)
$$

which implies the system

$$
\begin{array}{ll}
x-x_{0}=a A-b B-c C-d D, & y-y_{0}=a B+b A+c D-d C \\
z-z_{0}=a C-b D+c A+d B, & u-u_{0}=a D+b C-c B+d A
\end{array}
$$

and therefore we have

$$
\begin{array}{r}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)+d\left(u-u_{0}\right)=A \mathcal{N}(\mu) \\
-b\left(x-x_{0}\right)+a\left(y-y_{0}\right)+d\left(z-z_{0}\right)-c\left(u-u_{0}\right)=B \mathcal{N}(\mu) \\
-c\left(x-x_{0}\right)-d\left(y-y_{0}\right)+a\left(z-z_{0}\right)+b\left(u-u_{0}\right)=C \mathcal{N}(\mu) \\
-d\left(x-x_{0}\right)+c\left(y-y_{0}\right)-b\left(z-z_{0}\right)+a\left(u-u_{0}\right)=\operatorname{DN}(\mu)
\end{array}
$$

and thus the above congruence is satisfied.
Second, for $\xi, \eta \in Y_{0}$, one has $\chi(\xi+\eta)=\chi(\xi) \chi(\eta)$.

Third, the abelian group $Y_{0} /(\mu)$ has $\mathcal{N}(\mu)^{2}$ characters, so that it suffices to show that the $\mathcal{N}(\mu)^{2}$ characters χ given above are distinct.

Suppose that

$$
\begin{aligned}
r_{0}(a x+b y+c z+d u) & +\ldots+r_{3}(-d x+c y-b z+a u) \\
& \equiv s_{0}(a x+b y+c z+d u)+\ldots+s_{3}(-d x+c y-b z+a u) \quad(\bmod \mathcal{N}(\mu))
\end{aligned}
$$

for all $x+y i+z j+u k \in Y_{0}$, and where $r_{0}, r_{1}, r_{2}, r_{3}, s_{0}, s_{1}, s_{2}, s_{3}$ satisfy the abovementioned inequalities.

Now we substitute $x=-b / g, y=a / g, z=d / \mathrm{g}, u=-c / \mathrm{g}$. Then we have

$$
a x+b y+c z+d u=0,-c x-d y+a z+b u=0,-d x+c y-b z+a u=0
$$

and the last mentioned congruence reduces to $\left(r_{1}-s_{1}\right) \mathcal{N}(\mu) / g \equiv 0(\bmod \mathcal{N}(\mu))$, and since $\left|r_{1}-s_{1}\right|<g$ we must have $r_{1}=s_{1}$. Hence according to our assumption we have for all $x+y i+z j+u k \in Y_{0}$ the congruence

$$
\begin{aligned}
& r_{0}(a x+b y+c z+d u)+r_{2}(-c x-d y+a z+b u)+r_{3}(-d x+c y-b z+a u) \\
& \equiv s_{0}(a x+b y+c z+d u)+s_{2}(-c x-d y+a z+b u)+s_{3}(-d x+c y-b z+a u) \quad(\bmod \mathcal{N}(\mu))
\end{aligned}
$$

Now there are infinitely many numbers $x, y, z, u \in \mathbb{Z}$ such that

$$
a x+b y+c z+d u=g \mathcal{N}(\mu) / \mathcal{N}(\delta), \quad-c x-d y+a z+b u=0, \quad-d x+c y-b z+a u=0
$$

Upon substitution we obtain

$$
\left(r_{0}-s_{0}\right) \mathcal{N}(\mu) g / \mathcal{N}(\delta) \equiv 0 \quad(\bmod \mathcal{N}(\mu))
$$

which is possible only if $r_{0}=s_{0}$ since $\left|r_{0}-s_{0}\right|<\mathcal{N}(\delta) / g$. Hence the congruence we are investigating reduces to

$$
\left(r_{2}-s_{2}\right)(-c x-d y+a z+b u)+\left(r_{3}-s_{3}\right)(-d x+c y-b z+a u) \equiv 0 \quad(\bmod \mathcal{N}(\mu))
$$

valid for all $x+y i+z j+u k \in Y_{0}$. Now there are infinitely many integers $x, y, z, u \in \mathbb{Z}$ such that

$$
-c x-d y+a z+b u=\mathcal{N}(\delta) / g, \quad-d x+c y-b z+a u=0
$$

Then upon substitution one obtains the congruence

$$
\left(r_{2}-s_{2}\right) \mathcal{N}(\delta) / g \equiv 0 \quad(\bmod \mathcal{N}(\mu))
$$

Since $\left|r_{2}-s_{2}\right|<\mathcal{N}(\mu) g / \mathcal{N}(\delta)$, we must have $r_{2}=s_{2}$.
Finally assume that

$$
r_{3}(-d x+c y-b z+a u) \equiv s_{3}(-d x+c y-b z+a u) \quad(\bmod \mathcal{N}(\mu))
$$

for all $x+y i+z j+u k \in Y_{0}$. Now choose $\xi, \eta, \phi, \psi \in \mathbb{Z}$ such that $g=-d \xi+c \eta-b \phi+a \psi$. Then we obtain

$$
\left(r_{3}-s_{3}\right)(-d \xi+c \eta-b \phi+a \psi) \equiv 0 \quad(\bmod \mathcal{N}(\mu))
$$

or

$$
\left(r_{3}-s_{3}\right) g \equiv 0 \quad(\bmod \mathcal{N}(\mu))
$$

But since $\left|r_{3}-s_{3}\right|<\mathcal{N}(\mu) / g$ we have $r_{3}=s_{3}$.

Corollary. The characters of $Y_{0} /(\mu)$ are given by $\chi_{\theta}(\xi)=\exp \operatorname{Re}\left(\xi \theta^{*} / \mu\right)$, where

$$
\xi=x+y i+z j+u k, \quad \theta=r_{0}+r_{1} i+r_{2} j+r_{3} k \quad(\theta \in G(\mu)) .
$$

Theorem 3. (Weyl criterion). The sequence $\left(x_{n}\right)\left(n=1,2, \ldots, x_{n} \in Y_{0}\right)$ is u.d. $\bmod \mu$ if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \exp \operatorname{Re}\left(x_{n} \theta^{*} / \mu\right)=0
$$

for all $\theta \in G(\mu)$.
Proof. By viewing $Y_{0} /(\mu)$ as a compact abelian group with the discrete topology the assertion follows immediately from the Weyl criterion on such groups (see [1, Chapter 4]) and from the above corollary.

Theorem 4. Let $\mu \in Y_{0}$ with $\mathcal{N}(\mu) \geqslant 2$. Assume $\lambda \mid \mu$ where $\lambda \in Y_{0}$ with $\mathcal{N}(\lambda) \geqslant 2$. Then a sequence in Y_{0} is $u . d . \bmod \lambda$ whenever it is $u . d . \bmod \mu$.

Proof. For any $\nu \in Y_{0}$ we have $A(\nu, \lambda, N)=\sum_{\omega+(\mu) \in S} A(\omega, \mu, N)$ where S is the set of all distinct $\omega+(\mu)$ such that $\omega \equiv \nu(\bmod \lambda)$. The cardinality of S is equal to the cardinality of $(\lambda) /(\mu)$. From the group isomorphism theorem we know that

$$
Y_{0} /(\lambda) \cong\left(Y_{0} /(\mu)\right) /((\lambda) /(\mu)),
$$

and hence $\mathcal{N}(\lambda)^{2}=\mathcal{N}(\mu)^{2} / \operatorname{card}(\lambda) /(\mu)$, or

$$
\operatorname{card} S=\operatorname{card}(\lambda) /(\mu)=\mathcal{N}(\mu)^{2} / \mathcal{N}(\lambda)^{2}
$$

Hence

$$
\begin{aligned}
\lim _{N \rightarrow \infty} A(\nu, \lambda, N) / N & =\lim _{N \rightarrow \infty} \sum_{\omega+(\mu) \in S}(A(\omega, \mu, N) / N) \\
& =\sum_{\omega+(\mu) \in S} \lim _{N \rightarrow \infty}(A(\omega, \mu, N) / N) \\
& =\operatorname{card} S \cdot \mathcal{N}(\mu)^{-2} \\
& =\mathcal{N}(\lambda)^{-2} .
\end{aligned}
$$

Theorem 5. Let μ_{1}, μ_{2}, \ldots be a finite or denumerable collection of integral quaternions with $\mathcal{N}\left(\mu_{n}\right) \geqslant 2(n=1,2, \ldots)$. Then there exists a sequence in Y_{0} which is u.d. $\bmod \mu_{n}$ for all n, but which is not $u . d . \bmod \lambda$ for $\lambda \in Y_{0}, \mathcal{N}(\lambda) \geqslant 2$ with $\mu_{n} \notin(\lambda)$ for all n.

Proof. We apply the following theorem of Zame [6]: Let G be a locally compact abelian group with countable base, and let $\varphi \neq \varnothing$ and \mathscr{T} be countable collections of closed subgroups of G such that (i) finite intersections of members of $\varphi \cup \mathscr{T}$ are of compact index, (ii) for each $S \in \varphi$ and $T \in \mathscr{T}$ we have $S \notin T$, (iii) for each $T \in \mathscr{T}$ there exists a character χ_{T} of G such that χ_{T} is trivial on T but is nontrivial on each $S \in \varphi$. Then there is a sequence (g_{n}) $(n=1,2, \ldots)$ in G such that $\left(g_{n}\right)$ is u.d. $\bmod S$ for all $S \in \varphi$, but not u.d. $\bmod T$ for $T \in \mathscr{G}$.

Now let $G=Y_{0}$ with the discrete topology, and let φ consist of the left ideals $\left(\mu_{1}\right)$,
$\left(\mu_{2}\right), \ldots$ whereas \mathscr{T} consists of all nonzero left ideals $(\lambda), \mathcal{N}(\lambda) \geqslant 2$ with $\mu_{n} \notin(\lambda)$ for all n. Then conditions (i) and (ii) are easily checked. (Note that every nonzero left ideal in Y_{0} has finite, thus compact index.) As to condition (iii), let $(\lambda) \in \mathscr{T}$ be given, and choose $\theta=1$ in the character formula for $Y_{0} /(\lambda)$. Then we get a character χ with $\chi(\xi)=\exp \operatorname{Re}(\xi / \lambda)$ for $\xi \in Y_{0}$. This character is trivial on (λ). For any n we have

$$
\mu_{n} / \lambda=a_{n}+b_{n} i+c_{n} j+d_{n} k \notin Y_{0},
$$

and the following statements hold:

if	$a_{n} \notin \mathbb{Z}$	then	$\chi\left(\mu_{n}\right)=\exp \operatorname{Re}\left(\mu_{n} \lambda^{-1}\right)=\exp a_{n} \neq 1 ;$
if	$b_{n} \notin \mathbb{Z}$	then	$\chi\left(i \mu_{n}\right)=\exp \operatorname{Re}\left(i \mu_{n} \lambda^{-1}\right)=\exp \left(-b_{n}\right) \neq 1 ;$
if	$c_{n} \notin \mathbb{Z}$	then	$\chi\left(j \mu_{n}\right)=\exp \operatorname{Re}\left(j \mu_{n} \lambda^{-1}\right)=\exp \left(-c_{n}\right) \neq 1 ;$
if	$d_{n} \notin \mathbb{Z}$	then	$\chi\left(k \mu_{n}\right)=\exp \operatorname{Re}\left(k \mu_{n} \lambda^{-1}\right)=\exp \left(-d_{n}\right) \neq 1$.

In all cases χ is nontrivial on (μ_{n}). Thus χ satisfies the conditions in (iii) and the theorem follows immediately.

Lemma 1. Let $\mu=a+b i+c j+d k \in Y_{0}, \mu \neq 0, g=(a, b, c, d), h \in \mathbb{Z}$. Then $\mu \mid h$ if and only if $(\mathcal{N}(\mu) / g) \mid h$.

Proof. Write $a=g a_{1}, \ldots, d=g d_{1}$. Assume $(\mathcal{N}(\mu) / g) \mid h$, or $\quad(a+b i+c j+d k)$. $\left(a_{1}-b_{1} i-c_{1} j-d_{1} k\right) \mid h$. Then $\mu \mid h$. Conversely let $\mu \mid h$. Then for some $C, D, E, F \in \mathbb{Z}$ we have

$$
\begin{aligned}
h= & (a+b i+c j+d k) \cdot(C+D i+E j+F k)=a C-b D-c E-d F \\
& +(a D+b C+c F-d E) i+(a E-b F+c C+d D) j+(a F+b E-c D+d C) k .
\end{aligned}
$$

Hence

$$
\left\{\begin{array}{l}
b C+a D-d E=-c F, \\
c C+d D+a E=b F, \\
d C-c D+b E=-a F,
\end{array} \quad \text { and } \quad \operatorname{det}\left[\begin{array}{rrr}
b & a & -d \\
c & d & a \\
d & -c & b
\end{array}\right]=d \mathcal{N}(\mu)\right.
$$

We obtain

$$
d C=-F a, \quad d D=F b, \quad d E=F c .
$$

Since $h=a C-b D-c E-d F$, we have $d h=-\mathcal{N}(\mu) F$. Now there are three more similar relations. Since $g=(a, b, c, d)$ there are integers $\xi, \eta, \zeta, \varepsilon \in \mathbb{Z}$ such that $g=$ $\xi a+\eta b+\zeta c+\varepsilon d$. By addition we find that $(\mathcal{N}(\mu) / g) \mid h$.

Theorem 6. Let $\mu=a+b i+c j+d k, \mathcal{N}(\mu) \geqslant 2$. Let $\left(h_{n}\right)(n=1,2, \ldots)$ be a sequence in \mathbb{Z}, and let $\alpha \in Y_{0}$. Then the sequence $\left(h_{n} \alpha\right)(n=1,2, \ldots)$ is not u.d. $\bmod \mu$.

Proof. Let $\left(h_{n} \alpha\right)$ by u.d. $\bmod \mu$. Then the residue classes of $\left(h_{n} \alpha\right) \bmod \mu$ must run through all elements of $Y_{0} /(\mu)$. In particular, the residue class of $\alpha \bmod \mu$ generates $Y_{0} /(\mu)$, so that $Y_{0} /(\mu)$ is cyclic. By Lemma 1 , we have $\beta \mathcal{N}(\mu) / g \equiv 0(\bmod \mu)$ for all $\beta \in Y_{0}$, and so the order of any residue class $\bmod \mu$ in $Y_{0} /(\mu)$ is at most $\mathcal{N}(\mu) / g$. Since $Y_{0} /(\mu)$ is cyclic of order $\mathcal{N}(\mu)^{2}$ we obtain a contradiction.

Lemma 2. Let $\mu=a+b i+c j+d k \in Y_{0}, \quad g=(a, b, c, d)$. Let $C+D i \in \mathbb{Z}[i]$. Then $(\mathcal{N}(\mu) / g) \mid C+$ Di implies $\mu \mid C+$ Di. If moreover $\left(a_{1}-b_{1} i, c_{1}-d_{1} i\right)=1$, where $a=g a_{1}, \ldots$, $d=g d_{1}$, then $\mu \mid C+D i$ implies $(\mathcal{N}(\mu) / g) \mid C+D i$.

Proof. The first implication to be shown is evident since

$$
\mathcal{N}(\mu) / g=\mu\left(a_{1}-b_{1} i-c_{1} j-d_{1} k\right)
$$

Now assume $\mu \mid C+D i$. Hence for some $X, Y, Z, U \in \mathbb{Z}$ we have

$$
\begin{aligned}
C+D i & =(a+b i+c j+d k)(X+Y i+Z j+U k) \\
& =\{a+b i+j(c-d i)\} .\{X+Y i+j(Z-U i)\} \\
& =(a+b i)(X+Y i)-(c+d i)(Z-U i)+j\{(c-d i)(X+Y i)+(a-b i)(Z-U i)\} .
\end{aligned}
$$

Hence

$$
\left(c_{1}-d_{1} i\right)(X+Y i)+\left(a_{1}-b_{1} i\right)(Z-U i)=0
$$

Let $a_{1}-b_{1} i$ and $c_{1}-d_{1} i$ be relatively prime. Then $a_{1}-b_{1} i \mid X+Y i$. Hence for some $s, t \in \mathbb{Z}$ we have $X+Y i=\left(a_{1}-b_{1} i\right)(s+t i)$. This implies that $Z-U i=-\left(c_{1}-d_{1} i\right)(s+t i)$. Substitution yields now that

$$
\begin{aligned}
C+D i & =(a+b i)\left(a_{1}-b_{1} i\right)(s+t i)+(c+d i)\left(c_{1}-d_{1} i\right)(s+t i) \\
& =\mathcal{N}(\mu)(s+t i) / g
\end{aligned}
$$

or $(\mathcal{N}(\mu) / g) \mid C+D i$.
Theorem 7. Let $\mu=a+b i+c j+d k \in Y_{0}$ with $\mathcal{N}(\mu) \geqslant 2$, and let $(c-d i, \mathcal{N}(\mu))=1$ in $\mathbb{Z}[i]$. Let $p, q \in \mathbb{Z}$ be chosen such that in $\mathbb{Z}[i](c-d i)(p+q i) \equiv 1(\bmod \mathcal{N}(\mu))$. Then the sequence $\left(x_{n}+y_{n} i+z_{n} j+u_{n} k\right)(n=1,2, \ldots)$ is $u . d . \bmod \mu$ in Y_{0} if and only if the sequence $\left(\chi_{n}\right)$, with

$$
\chi_{n}=x_{n}+y_{n} i-(p+q i)(a+b i)\left(z_{n}-u_{n} i\right)
$$

is u.d. $\bmod \mathcal{N}(\mu)$ in $\mathbb{Z}[i]$.
Proof. Since $(c-d i, \mathcal{N}(\mu))=1$, we have $g=(a, b, c, d)=1$, and also $(c-d i, a-b i)=1$. Hence we may apply Lemma 2. Assume that the sequence $\left(\chi_{n}\right)$ is u.d. $\bmod \mathcal{N}(\mu)$ in $\mathbb{Z}[i] ;$ then $\left(\chi_{n}\right)$ is also u.d. $\bmod \mu$ in Y_{0}. For according to Lemma 2 we have the equivalence of the congruences $X \equiv Y(\bmod \mathcal{N}(\mu))$ and $X \equiv Y(\bmod \mu)$, where X and Y are in $\mathbb{Z}[i]$. Now we make use of the congruences

$$
\begin{aligned}
(c-d i)(p+q i) & \equiv 1(\bmod \mathcal{N}(\mu))(\text { our assumption }) \\
(c-d i)(p+q i) & \equiv 1(\bmod \mu)(\text { Lemma } 2) \\
-(a+b i) & \equiv j(c-d i)(\bmod \mu)
\end{aligned}
$$

and obtain

$$
-(a+b i)(p+q i) \equiv j(\bmod \mu)
$$

So the conclusion that

$$
\left(x_{n}+y_{n} i+j\left(z_{n}-u_{n} i\right)\right)=\left(x_{n}+y_{n} i+z_{n} j+u_{n} k\right)
$$

is u.d. $\bmod \mu$ is true. The converse can be shown similarly.
Remark. The following statement is closely related to Theorem 7 and can be shown along the same lines. Let $\mu=a+b i+c j+d k \in Y_{0}, \mathcal{N}(\mu) \geqslant 2$. Assume $\delta=(a+b i, c-d i)=1$ in $\mathbb{Z}[i]$. Choose $\gamma \in \mathbb{Z}[i]$ such that

$$
\gamma(c-d i) \equiv 1(\bmod \mathcal{N}(\mu))
$$

in $\mathbb{Z}[i]$. Then for $\alpha_{n}, \beta_{n} \in \mathbb{Z}[i]$ the sequence $\left(\alpha_{n}+\beta_{n} j\right)(n=1,2, \ldots)$ is u.d. $\bmod \mu$ if and only if the sequence $\left(\alpha_{n}-\beta_{n} \gamma^{*}(a+b i)\right)$ is $u . d . \bmod \mathcal{N}(\mu)$ in $\mathbb{Z}[i]$.
3. Uniform distribution in Y_{0}. We recall the following definition: The sequence $\left(\left(x_{n}, y_{n}, z_{n}, u_{n}\right)\right)$ is $u . d$. in \mathbb{Z}^{4} if it is u.d. modulo all subgroups of \mathbb{Z}^{4} of finite index.

Theorem 8. The sequence $\left(x_{n}+y_{n} i+z_{n} j+u_{n} k\right) \in Y_{0}(n=1,2, \ldots)$ is u.d. in Y_{0} if and only if the sequence $\left(\left(x_{n}, y_{n}, z_{n}, u_{n}\right)\right)$ of lattice points is u.d. in \mathbb{Z}^{4}.

Proof. Let $\psi: Y_{0} \rightarrow \mathbb{Z}^{4}$ be the group isomorphism given by

$$
\psi(x+y i+z j+u k)=(x, y, z, u)
$$

for $x+y i+z j+u k \in Y_{0}$. The isomorphism ψ maps the nontrivial ideals of Y_{0} into subgroups of \mathbb{Z}^{4} of finite index. Now let the sequence $\left(\left(x_{n}, y_{n}, z_{n}, u_{n}\right)\right)$ be u.d. in \mathbb{Z}^{4}. In particular, the sequence $\left(\left(x_{n}, y_{n}, z_{n}, u_{n}\right)\right)$ is then u.d. modulo all subgroups of \mathbb{Z}^{4} corresponding to the nontrivial ideals of Y_{0} under the isomorphism ψ, and therefore the sequence $\left(x_{n}+y_{n} i+z_{n} j+u_{n} k\right)$ is u.d. in Y_{0}.

To show the converse it suffices to prove that every subgroup of \mathbb{Z}^{4} of finite index contains a subgroup corresponding to a nonzero ideal in Y_{0} under the isomorphism ψ. So let H be an arbitrary subgroup of \mathbb{Z}^{4} of finite index. Let h be the exponent of the factor group \mathbb{Z}^{4} / H, that is the smallest positive integer h for which $h(a, b, c, d) \in H$ for all $(a, b, c, d) \in \mathbb{Z}^{4}$. Then we have

$$
h(a, b, c, d)=(h a, h b, h c, h d) \in H
$$

for all $(a, b, c, d) \in \mathbb{Z}^{4}$, so that

$$
H \supset h \mathbb{Z} \oplus h \mathbb{Z} \oplus h \mathbb{Z} \oplus h \mathbb{Z} .
$$

Since the subgroup $h \mathbb{Z} \oplus h \mathbb{Z} \oplus h \mathbb{Z} \oplus h \mathbb{Z}$ corresponds to the principal ideal (h) of Y_{0} under the isomorphism ψ, the proof is complete.

Theorem 9. Let $\left(x_{n}\right)$ be a sequence in Y_{0} with

$$
x_{n}=a_{n}+b_{n} i+c_{n} j+d_{n} k \quad(n=1,2, \ldots) .
$$

Then $\left(x_{n}\right)$ is u.d. in Y_{0} if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \exp \left(r_{1} a_{n}+r_{2} b_{n}+r_{3} c_{n}+r_{4} d_{n}\right)=0
$$

for all $r_{1}, r_{2}, r_{3}, r_{4} \in \mathbb{Q}$, not all four being integers.
Proof. This follows from Theorem 8 and the Weyl criterion for u.d. in \mathbb{Z}^{4} given by Niederreiter [3].

Theorem 10. The sequence $\left(\alpha_{n}\right)$ in Y_{0} is u.d. in Y_{0} if and only if for any $\xi=$ $a+b i+c j+d k \in Y_{0}$ with $(a, b, c, d)=1$ in \mathbb{Z}, the sequence $\left(\operatorname{Re}\left(\alpha_{n} \xi\right)\right)$ is u.d. in \mathbb{Z}.

Proof. Necessity. If $\alpha_{n}=x_{n}+y_{n} i+z_{n} j+u_{n} k$, we have

$$
\operatorname{Re}\left(\alpha_{n} \xi\right)=a x_{n}-b y_{n}-c z_{n}-d u_{n}
$$

Assume that the sequence $\left(\alpha_{n}\right)$ is u.d. in Y_{0}. Then we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \exp \left(r_{1} x_{n}+r_{2} y_{n}+r_{3} z_{n}+r_{4} u_{n}\right)=0
$$

for all $r_{1}, r_{2}, r_{3}, r_{4} \in \mathbb{Q}$, not all four of them in \mathbb{Z}. Choose $r_{1}=a h / m, r_{2}=-b h / m, r_{3}=-c h / m$, $r_{4}=-d h / m(m \in \mathbb{Z}, m \geqslant 2, h=1,2, \ldots, m-1$.) So

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \exp \left(\left(a x_{n}-b y_{n}-c z_{n}-d u_{n}\right) h / m\right)=0
$$

Hence the sequence ($a x_{n}-b y_{n}-c z_{n}-d u_{n}$) is u.d. in \mathbb{Z}.
Sufficiency. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be four rational numbers, not all in \mathbb{Z}. We write $r_{1}=$ $R_{1} / S_{1}, r_{2}=R_{2} / S_{2}, r_{3}=R_{3} / S_{3}, R_{4}=R_{4} / S_{4}$, where $R_{1}, \ldots, R_{4}, S_{1}, \ldots, S_{4} \in \mathbb{Z}, S_{1}, \ldots, S_{4} \geqslant$ $1,\left(R_{1}, S_{1}\right)=1, \ldots,\left(R_{4}, S_{4}\right)=1$. Let $S=\left[S_{1}, S_{2}, S_{3}, S_{4}\right]$. Then $r_{1}=T_{1} / S, \ldots, r_{4}=T_{4} / S$. Hence

$$
r_{1} x_{n}+r_{2} y_{n}+r_{3} z_{n}+r_{4} u_{n}=\left(T_{1} x_{n}+T_{2} y_{n}+T_{3} z_{n}+T_{4} u_{n}\right) / S
$$

Let $T_{1} \equiv V_{1}(\bmod S), \ldots, T_{4} \equiv V_{4}(\bmod S)\left(0 \leqslant V_{1}, \ldots, V_{4} \leqslant S-1\right)$ Let $h=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ and write $V_{i}=h U_{i}$. Then $1 \leqslant h \leqslant S-1$ and

$$
\exp \left(r_{1} x_{n}+\ldots+r_{4} u_{n}\right)=\exp \left(\left(V_{1} x_{n}+\ldots+V_{4} u_{n}\right) / S\right)
$$

and moreover

$$
\begin{aligned}
V_{1} x_{n}+\ldots+V_{4} u_{n} & =\operatorname{Re}\left(x_{n}+y_{n} i+z_{n} j+u_{n} k\right)\left(U_{1}-U_{2} i-U_{3} j-U_{4} k\right) \\
& =\operatorname{Re}\left(\alpha_{n} \xi \mid \mu\right)
\end{aligned}
$$

with $\mu=1, \xi=U_{1}-U_{2} i-U_{3} j-U_{4} k$. According to our assumption we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \exp \left(\operatorname{Re}\left(\alpha_{n} \xi\right) / S\right)=0
$$

and so

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \exp \left(r_{1} x_{n}+r_{2} y_{n}+r_{3} z_{n}+r_{4} u_{n}\right)=0
$$

Example. Let $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ be real numbers such that $1, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are linearly independent over the rationals. Set $\alpha_{n}=\left[n \theta_{1}\right], \beta_{n}=\left[n \theta_{2}\right], \gamma_{n}=\left[n \theta_{3}\right], \delta_{n}=\left[n \theta_{4}\right]$. According to Niederreiter [3] the sequence $\left(\left(\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}\right)\right)$ is u.d. in \mathbb{Z}^{4}, and hence the sequence $\left(\alpha_{n}+\beta_{n} i+\gamma_{n} j+\delta_{n} k\right)$ is u.d. in Y_{0}.

We wish to thank the referee for suggested improvements.

REFERENCES

1. L. Kuipers and H. Niederreiter, Uniform distribution of sequences (Wiley-Interscience, New York, 1974).
2. L. Kuipers, H. Niederreiter, and J.-S. Shiue, Uniform distribution of sequences in the ring of Gaussian integers, Bull. Inst. Math. Acad. Sinica 3 (1975), 311-325.
3. H. Niederreiter, On a class of sequences of lattice points, J. Number Theory 4 (1972), 477-502.
4. I. Niven, Uniform distribution of sequences of integers, Trans. Amer. Math. Soc. 98 (1961), 52-61.
5. J.-S. Shiue and C.-P. Hwang, A note on a complete residue system in the ring of integral quaternions, Soochow J. Math. Natur. Sci. 5 (1979), 193-196.
6. A. Zame, On a problem of Narkiewicz concerning uniform distributions of sequences of integers, Colloq. Math. 24 (1972), 271-273.

Department of Mathematics
Southern Illinois University
Carbondale, Illinois 62901
U.S.A.

Department of Mathematical Sciences
National Chengchi University
Taipei, Taiwan
R.O.C.

