UNIFORM DISTRIBUTION OF SEQUENCES IN RINGS OF INTEGRAL QUATERNIONS

by L. KUIPERS and JAU-SHYONG SHIUE

(Received 15 May, 1980; revised 30 October, 1980)

1. Introduction. Let \mathbb{Z} and $\mathbb{Z}[i]$ have their usual meaning. Let Y_0 denote the noncommutative ring of integral quaternions, that is the set of all elements a + bi + cj + dk with $a, b, c, d \in \mathbb{Z}$ and where i, j and k together with the number 1 are the four units of the system of quaternions.

Let $\mathcal{N}(\mu) = a^2 + b^2 + c^2 + d^2$ be the norm of the element $\mu = a + bi + cj + dk \in Y_0$. The nontrivial ideals in Y_0 are exactly the principal ideals (μ) generated by elements $\mu \in Y_0$ with $\mathcal{N}(\mu) \ge 2$.

Analogous to the definition of uniformly distributed sequences in \mathbb{Z} due to Niven [4] (see also Kuipers and Niederreiter [1, Chapter 5]) and that in $\mathbb{Z}[i]$ due to Kuipers, Niederreiter and Shiue [2] we consider sequences of integral quaternions and ask how they are distributed modulo an arbitrary nontrivial left ideal in Y_0 . We introduce the following definition.

DEFINITION 1. Let (μ_n) (n = 1, 2, ...) be a sequence of integral quaternions. Let $\beta, \mu \in Y_0$ with $\mathcal{N}(\mu) \ge 2$. For a positive integer N, let $A(\beta, \mu, N)$ denote the number of n $(1 \le n \le N)$ such that $\mu_n \equiv \beta \pmod{\mu}$. The sequence (μ_n) is said to be uniformly distributed modulo μ (abbreviated u.d. mod μ) in Y_0 if

$$\lim_{N \to \infty} A(\beta, \mu, N)/N = (\mathcal{N}(\mu))^{-2}, \dots$$
(1)

for all $\beta \in Y_0$. (The choice of β may be restricted to all elements of a complete residue system modulo μ (abbreviated c.r.s. mod μ)). The sequence (μ_n) is said to be *u.d.* in Y_0 if it is u.d. mod μ for all $\mu \in Y_0$ with $\mathcal{N}(\mu) \ge 2$.

When investigating specific sequences it is useful to have available an explicit description of a c.r.s. mod μ .

Let $H(\gamma)$ denote a c.r.s. mod γ ($\gamma \in \mathbb{Z}[i]$) in $\mathbb{Z}[i]$. If $\mu = a + bi + cj + dk \in Y_0$, then we denote the g.c.d. (or one of its associates) of the elements a + bi and $c - di \in \mathbb{Z}[i]$ by $\delta = (a + bi, c - di)$. The g.c.d. of the integers a, b, c, $d \in \mathbb{Z}$ is denoted by g = (a, b, c, d). The conjugate of $\mu = a + bi + cj + dk \in Y_0$ is denoted by $\mu^* = a - bi - cj - dk$. We have

$$\mu\mu^* = \mu^*\mu = a^2 + b^2 + c^2 + d^2 = \mathcal{N}(\mu)$$

The following description of a c.r.s. modulo q was given by Shiue and Hwang [5].

THEOREM 1. A c.r.s. mod q, where $q = a + bi + cj + dk \in Y_0$ $(q \neq 0)$ is given by the set

$$G(q) = \{r_0 + r_1i + r_2j + r_3k \mid r_0 + r_1i \in H(\delta), r_2 + r_3i \in H(\mathcal{N}(q)\delta^{-1})\}.$$

Here $\delta = (a + bi, c - di)$.

Glasgow Math. J. 23 (1982) 21-29.

COROLLARY. A c.r.s. mod q, where q = a + bi + cj + dk $(q \neq 0)$, is given by the set

$$G(q) = \{r_0 + r_1 i + r_2 j + r_3 k \mid 0 \le r_0 < \mathcal{N}(\delta)g^{-1}, 0 \le r_1 < g, \\ 0 \le r_2 < \mathcal{N}(q)\mathcal{N}(\delta)^{-1}g, 0 \le r_3 < \mathcal{N}(q)g^{-1}\}.$$

The cardinality of G(q) is $\mathcal{N}(q)^2$.

2. Uniform distribution modulo an ideal. The elements of a c.r.s. modulo a nontrivial (left) ideal form an additive group. With regard to this group we have the following result.

THEOREM 2. For $\mu = a + bi + cj + dk \in Y_0$ with $\mu \neq 0$, g = (a, b, c, d), $\delta = (a + bi, c - di)$, the characters of the group $Y_0/(\mu)$ are given by

$$\chi(x+yi+zj+uk) = \exp\{(r_0(ax+by+cz+du)+r_1(-bx+ay+dz-cu) + r_2(-cx-dy+az+bu)+r_3(-dx+cy-bz+au))/\mathcal{N}(\mu)\},\$$

where $0 \le r_0 < \mathcal{N}(\delta)g^{-1}$, $0 \le r_1 < g$, $0 \le r_2 < \mathcal{N}(\mu)\mathcal{N}(\delta)^{-1}g$, $0 \le r_3 < \mathcal{N}(\mu)g^{-1}$, and where exp t stands for $e^{2\pi i t}$ for real t.

Proof. First, these expressions are really characters of $Y_0/(\mu)$, for assume that $x + yi + zj + uk \equiv x_0 + y_0i + z_0j + u_0k \pmod{\mu}$. Then we have $\chi(x + yi + zj + uk) = \chi(x_0 + y_0i + z_0j + u_0k)$ if and only

 $r_0(ax+by+cz+du)+\ldots+r_3(-dx+cy-bz+au)$

$$\equiv r_0(ax_0+by_0+cz_0+du_0)+\ldots+r_3(-dx_0+cy_0-bz_0+au_0) \pmod{\mathcal{N}(\mu)},$$

a congruence which can be written in the form:

$$r_0\{a(x-x_0)+b(y-y_0)+c(z-z_0)+d(u-u_0)\}+\ldots +r_3\{-d(x-x_0)+c(y-y_0)-b(z-z_0)+a(u-u_0)\}\equiv 0 \pmod{\mathcal{N}(\mu)}.$$

Now we have for some A, B, C, $D \in \mathbb{Z}$ the relation

$$(x - x_0) + (y - y_0)i + (z - z_0)j + (u - u_0)k = (a + bi + cj + dk)(A + Bi + Cj + Dk),$$

which implies the system

$$x - x_0 = aA - bB - cC - dD,$$
 $y - y_0 = aB + bA + cD - dC,$
 $z - z_0 = aC - bD + cA + dB,$ $u - u_0 = aD + bC - cB + dA,$

and therefore we have

$$\begin{aligned} a(x-x_0) + b(y-y_0) + c(z-z_0) + d(u-u_0) &= A \mathcal{N}(\mu), \\ -b(x-x_0) + a(y-y_0) + d(z-z_0) - c(u-u_0) &= B \mathcal{N}(\mu), \\ -c(x-x_0) - d(y-y_0) + a(z-z_0) + b(u-u_0) &= C \mathcal{N}(\mu), \\ -d(x-x_0) + c(y-y_0) - b(z-z_0) + a(u-u_0) &= D \mathcal{N}(\mu), \end{aligned}$$

and thus the above congruence is satisfied.

Second, for $\xi, \eta \in Y_0$, one has $\chi(\xi + \eta) = \chi(\xi)\chi(\eta)$.

Third, the abelian group $Y_0/(\mu)$ has $\mathcal{N}(\mu)^2$ characters, so that it suffices to show that the $\mathcal{N}(\mu)^2$ characters χ given above are distinct.

Suppose that

$$r_0(ax+by+cz+du)+\ldots+r_3(-dx+cy-bz+au)$$

$$\equiv s_0(ax+by+cz+du)+\ldots+s_3(-dx+cy-bz+au) \pmod{\mathcal{N}(\mu)}$$

for all $x + yi + zj + uk \in Y_0$, and where r_0 , r_1 , r_2 , r_3 , s_0 , s_1 , s_2 , s_3 satisfy the abovementioned inequalities.

Now we substitute x = -b/g, y = a/g, z = d/g, u = -c/g. Then we have

$$ax + by + cz + du = 0$$
, $-cx - dy + az + bu = 0$, $-dx + cy - bz + au = 0$

and the last mentioned congruence reduces to $(r_1 - s_1)\mathcal{N}(\mu)/g \equiv 0 \pmod{\mathcal{N}(\mu)}$, and since $|r_1 - s_1| < g$ we must have $r_1 = s_1$. Hence according to our assumption we have for all $x + yi + zj + uk \in Y_0$ the congruence

$$r_{0}(ax + by + cz + du) + r_{2}(-cx - dy + az + bu) + r_{3}(-dx + cy - bz + au)$$

$$\equiv s_{0}(ax + by + cz + du) + s_{2}(-cx - dy + az + bu) + s_{3}(-dx + cy - bz + au) \pmod{\mathcal{N}(\mu)}.$$

Now there are infinitely many numbers x, y, z, $u \in \mathbb{Z}$ such that

$$ax + by + cz + du = g\mathcal{N}(\mu)/\mathcal{N}(\delta), \quad -cx - dy + az + bu = 0, \quad -dx + cy - bz + au = 0.$$

Upon substitution we obtain

$$(r_0 - s_0)\mathcal{N}(\mu)g/\mathcal{N}(\delta) \equiv 0 \pmod{\mathcal{N}(\mu)},$$

which is possible only if $r_0 = s_0$ since $|r_0 - s_0| < \mathcal{N}(\delta)/g$. Hence the congruence we are investigating reduces to

$$(r_2 - s_2)(-cx - dy + az + bu) + (r_3 - s_3)(-dx + cy - bz + au) \equiv 0 \pmod{\mathcal{N}(\mu)},$$

valid for all $x + yi + zj + uk \in Y_0$. Now there are infinitely many integers x, y, z, $u \in \mathbb{Z}$ such that

$$-cx - dy + az + bu = \mathcal{N}(\delta)/g, \qquad -dx + cy - bz + au = 0.$$

Then upon substitution one obtains the congruence

 $(r_2 - s_2)\mathcal{N}(\delta)/g \equiv 0 \pmod{\mathcal{N}(\mu)}.$

Since $|r_2 - s_2| < \mathcal{N}(\mu)g/\mathcal{N}(\delta)$, we must have $r_2 = s_2$.

Finally assume that

$$r_3(-dx+cy-bz+au) \equiv s_3(-dx+cy-bz+au) \pmod{\mathcal{N}(\mu)}$$

for all $x + yi + zj + uk \in Y_0$. Now choose $\xi, \eta, \phi, \psi \in \mathbb{Z}$ such that $g = -d\xi + c\eta - b\phi + a\psi$. Then we obtain

$$(r_3 - s_3)(-d\xi + c\eta - b\phi + a\psi) \equiv 0 \pmod{\mathcal{N}(\mu)},$$

or

$$(r_3-s_3)g\equiv 0 \pmod{\mathcal{N}(\mu)}.$$

But since $|r_3 - s_3| < \mathcal{N}(\mu)/g$ we have $r_3 = s_3$.

COROLLARY. The characters of $Y_0/(\mu)$ are given by $\chi_{\theta}(\xi) = \exp \operatorname{Re}(\xi \theta^*/\mu)$, where

$$\xi = x + yi + zj + uk, \qquad \theta = r_0 + r_1i + r_2j + r_3k \quad (\theta \in G(\mu)).$$

THEOREM 3. (Weyl criterion). The sequence (x_n) $(n = 1, 2, ..., x_n \in Y_0)$ is u.d. mod μ if and only if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\exp\operatorname{Re}(x_n\theta^*/\mu)=0$$

for all $\theta \in G(\mu)$.

Proof. By viewing $Y_0/(\mu)$ as a compact abelian group with the discrete topology the assertion follows immediately from the Weyl criterion on such groups (see [1, Chapter 4]) and from the above corollary.

THEOREM 4. Let $\mu \in Y_0$ with $\mathcal{N}(\mu) \ge 2$. Assume $\lambda \mid \mu$ where $\lambda \in Y_0$ with $\mathcal{N}(\lambda) \ge 2$. Then a sequence in Y_0 is u.d. mod λ whenever it is u.d. mod μ .

Proof. For any $\nu \in Y_0$ we have $A(\nu, \lambda, N) = \sum_{\omega + (\mu) \in S} A(\omega, \mu, N)$ where S is the set of all distinct $\omega + (\mu)$ such that $\omega \equiv \nu \pmod{\lambda}$. The cardinality of S is equal to the cardinality of $(\lambda)/(\mu)$. From the group isomorphism theorem we know that

$$Y_0/(\lambda) \cong (Y_0/(\mu))/((\lambda)/(\mu)),$$

and hence $\mathcal{N}(\lambda)^2 = \mathcal{N}(\mu)^2/\text{card}(\lambda)/(\mu)$, or

card
$$S = \operatorname{card}(\lambda)/(\mu) = \mathcal{N}(\mu)^2/\mathcal{N}(\lambda)^2$$
.

Hence

$$\lim_{N \to \infty} A(\nu, \lambda, N)/N = \lim_{N \to \infty} \sum_{\omega + (\mu) \in S} (A(\omega, \mu, N)/N)$$
$$= \sum_{\omega + (\mu) \in S} \lim_{N \to \infty} (A(\omega, \mu, N)/N)$$
$$= \operatorname{card} S \cdot \mathcal{N}(\mu)^{-2}$$
$$= \mathcal{N}(\lambda)^{-2}.$$

THEOREM 5. Let μ_1, μ_2, \ldots be a finite or denumerable collection of integral quaternions with $\mathcal{N}(\mu_n) \ge 2$ $(n = 1, 2, \ldots)$. Then there exists a sequence in Y_0 which is u.d. mod μ_n for all n, but which is not u.d. mod λ for $\lambda \in Y_0$, $\mathcal{N}(\lambda) \ge 2$ with $\mu_n \notin (\lambda)$ for all n.

Proof. We apply the following theorem of Zame [6]: Let G be a locally compact abelian group with countable base, and let $\varphi \neq \emptyset$ and \mathcal{T} be countable collections of closed subgroups of G such that (i) finite intersections of members of $\varphi \cup \mathcal{T}$ are of compact index, (ii) for each $S \in \varphi$ and $T \in \mathcal{T}$ we have $S \notin T$, (iii) for each $T \in \mathcal{T}$ there exists a character χ_T of G such that χ_T is trivial on T but is nontrivial on each $S \in \varphi$. Then there is a sequence (g_n) (n = 1, 2, ...) in G such that (g_n) is u.d. mod S for all $S \in \varphi$, but not u.d. mod T for $T \in \mathcal{T}$.

Now let $G = Y_0$ with the discrete topology, and let φ consist of the left ideals (μ_1),

 $(\mu_2), \ldots$ whereas \mathcal{T} consists of all nonzero left ideals $(\lambda), \mathcal{N}(\lambda) \ge 2$ with $\mu_n \notin (\lambda)$ for all *n*. Then conditions (i) and (ii) are easily checked. (Note that every nonzero left ideal in Y_0 has finite, thus compact index.) As to condition (iii), let $(\lambda) \in \mathcal{T}$ be given, and choose $\theta = 1$ in the character formula for $Y_0/(\lambda)$. Then we get a character χ with $\chi(\xi) = \exp \operatorname{Re}(\xi/\lambda)$ for $\xi \in Y_0$. This character is trivial on (λ) . For any *n* we have

$$\mu_n/\lambda = a_n + b_n i + c_n j + d_n k \notin Y_0,$$

and the following statements hold:

if $a_n \notin \mathbb{Z}$ then $\chi(\mu_n) = \exp \operatorname{Re}(\mu_n \lambda^{-1}) = \exp a_n \neq 1;$ if $b_n \notin \mathbb{Z}$ then $\chi(i\mu_n) = \exp \operatorname{Re}(i\mu_n \lambda^{-1}) = \exp(-b_n) \neq 1;$ if $c_n \notin \mathbb{Z}$ then $\chi(j\mu_n) = \exp \operatorname{Re}(j\mu_n \lambda^{-1}) = \exp(-c_n) \neq 1;$ if $d_n \notin \mathbb{Z}$ then $\chi(k\mu_n) = \exp \operatorname{Re}(k\mu_n \lambda^{-1}) = \exp(-d_n) \neq 1.$

In all cases χ is nontrivial on (μ_n) . Thus χ satisfies the conditions in (iii) and the theorem follows immediately.

LEMMA 1. Let $\mu = a + bi + cj + dk \in Y_0$, $\mu \neq 0$, g = (a, b, c, d), $h \in \mathbb{Z}$. Then $\mu \mid h$ if and only if $(\mathcal{N}(\mu)/g) \mid h$.

Proof. Write $a = ga_1, \ldots, d = gd_1$. Assume $(\mathcal{N}(\mu)/g) \mid h$, or (a+bi+cj+dk). $(a_1-b_1i-c_1j-d_1k) \mid h$. Then $\mu \mid h$. Conversely let $\mu \mid h$. Then for some C, D, E, $F \in \mathbb{Z}$ we have

$$h = (a+bi+cj+dk) \cdot (C+Di+Ej+Fk) = aC-bD-cE-dF$$
$$+(aD+bC+cF-dE)i + (aE-bF+cC+dD)j + (aF+bE-cD+dC)k$$

Hence

$$\begin{cases} bC + aD - dE = -cF, \\ cC + dD + aE = bF, \\ dC - cD + bE = -aF, \end{cases} \quad \text{and} \quad \det \begin{bmatrix} b & a & -d \\ c & d & a \\ d & -c & b \end{bmatrix} = d\mathcal{N}(\mu).$$

We obtain

dC = -Fa, dD = Fb, dE = Fc.

Since h = aC - bD - cE - dF, we have $dh = -\mathcal{N}(\mu)F$. Now there are three more similar relations. Since g = (a, b, c, d) there are integers ξ , η , ζ , $\varepsilon \in \mathbb{Z}$ such that $g = \xi a + \eta b + \zeta c + \varepsilon d$. By addition we find that $(\mathcal{N}(\mu)/g) \mid h$.

THEOREM 6. Let $\mu = a + bi + cj + dk$, $\mathcal{N}(\mu) \ge 2$. Let (h_n) (n = 1, 2, ...) be a sequence in \mathbb{Z} , and let $\alpha \in Y_0$. Then the sequence $(h_n \alpha)$ (n = 1, 2, ...) is not u.d. mod μ .

Proof. Let $(h_n \alpha)$ by u.d. mod μ . Then the residue classes of $(h_n \alpha) \mod \mu$ must run through all elements of $Y_0/(\mu)$. In particular, the residue class of $\alpha \mod \mu$ generates $Y_0/(\mu)$, so that $Y_0/(\mu)$ is cyclic. By Lemma 1, we have $\beta \mathcal{N}(\mu)/g \equiv 0 \pmod{\mu}$ for all $\beta \in Y_0$, and so the order of any residue class mod μ in $Y_0/(\mu)$ is at most $\mathcal{N}(\mu)/g$. Since $Y_0/(\mu)$ is cyclic of order $\mathcal{N}(\mu)^2$ we obtain a contradiction.

LEMMA 2. Let $\mu = a + bi + cj + dk \in Y_0$, g = (a, b, c, d). Let $C + Di \in \mathbb{Z}[i]$. Then $(\mathcal{N}(\mu)/g) | C + Di$ implies $\mu | C + Di$. If moreover $(a_1 - b_1i, c_1 - d_1i) = 1$, where $a = ga_1, \ldots, d = gd_1$, then $\mu | C + Di$ implies $(\mathcal{N}(\mu)/g) | C + Di$.

Proof. The first implication to be shown is evident since

$$\mathcal{N}(\boldsymbol{\mu})/g = \boldsymbol{\mu}(a_1 - b_1 i - c_1 j - d_1 k).$$

Now assume $\mu \mid C + Di$. Hence for some X, Y, Z, $U \in \mathbb{Z}$ we have

$$C + Di = (a + bi + cj + dk)(X + Yi + Zj + Uk)$$

= {a + bi + j(c - di)} . {X + Yi + j(Z - Ui)}
= (a + bi)(X + Yi) - (c + di)(Z - Ui) + j{(c - di)(X + Yi) + (a - bi)(Z - Ui)}.

Hence

$$(c_1 - d_1 i)(X + Yi) + (a_1 - b_1 i)(Z - Ui) = 0.$$

Let $a_1 - b_1 i$ and $c_1 - d_1 i$ be relatively prime. Then $a_1 - b_1 i | X + Yi$. Hence for some $s, t \in \mathbb{Z}$ we have $X + Yi = (a_1 - b_1 i)(s + ti)$. This implies that $Z - Ui = -(c_1 - d_1 i)(s + ti)$. Substitution yields now that

$$C + Di = (a + bi)(a_1 - b_1i)(s + ti) + (c + di)(c_1 - d_1i)(s + ti)$$

= $\mathcal{N}(\mu)(s + ti)/g$

or $(\mathcal{N}(\mu)/g) | C + Di$.

THEOREM 7. Let $\mu = a + bi + cj + dk \in Y_0$ with $\mathcal{N}(\mu) \ge 2$, and let $(c - di, \mathcal{N}(\mu)) = 1$ in $\mathbb{Z}[i]$. Let $p, q \in \mathbb{Z}$ be chosen such that in $\mathbb{Z}[i]$ $(c - di)(p + qi) \equiv 1 \pmod{\mathcal{N}(\mu)}$. Then the sequence $(x_n + y_n i + z_n j + u_n k)$ (n = 1, 2, ...) is u.d. mod μ in Y_0 if and only if the sequence (χ_n) , with

$$\chi_n = x_n + y_n i - (p + qi)(a + bi)(z_n - u_n i)$$

is u.d. mod $\mathcal{N}(\mu)$ in $\mathbb{Z}[i]$.

Proof. Since $(c - di, \mathcal{N}(\mu)) = 1$, we have g = (a, b, c, d) = 1, and also (c - di, a - bi) = 1. Hence we may apply Lemma 2. Assume that the sequence (χ_n) is u.d. mod $\mathcal{N}(\mu)$ in $\mathbb{Z}[i]$; then (χ_n) is also u.d. mod μ in Y_0 . For according to Lemma 2 we have the equivalence of the congruences $X \equiv Y \pmod{\mathcal{N}(\mu)}$ and $X \equiv Y \pmod{\mu}$, where X and Y are in $\mathbb{Z}[i]$. Now we make use of the congruences

$$(c-di)(p+qi) \equiv 1 \pmod{\mathcal{N}(\mu)} \text{ (our assumption)},$$
$$(c-di)(p+qi) \equiv 1 \pmod{\mu} \text{ (Lemma 2)},$$
$$-(a+bi) \equiv j(c-di) \pmod{\mu},$$

and obtain

$$-(a+bi)(p+qi) \equiv j \pmod{\mu}.$$

So the conclusion that

$$(x_n + y_n i + j(z_n - u_n i)) = (x_n + y_n i + z_n j + u_n k)$$

is u.d. mod μ is true. The converse can be shown similarly.

REMARK. The following statement is closely related to Theorem 7 and can be shown along the same lines. Let $\mu = a + bi + cj + dk \in Y_0$, $\mathcal{N}(\mu) \ge 2$. Assume $\delta = (a + bi, c - di) = 1$ in $\mathbb{Z}[i]$. Choose $\gamma \in \mathbb{Z}[i]$ such that

$$\gamma(c-di) \equiv 1 \pmod{\mathcal{N}(\mu)}$$

in $\mathbb{Z}[i]$. Then for $\alpha_n, \beta_n \in \mathbb{Z}[i]$ the sequence $(\alpha_n + \beta_n j)$ (n = 1, 2, ...) is u.d. mod μ if and only if the sequence $(\alpha_n - \beta_n \gamma^*(a + bi))$ is u.d. mod $\mathcal{N}(\mu)$ in $\mathbb{Z}[i]$.

3. Uniform distribution in Y_0 . We recall the following definition: The sequence $((x_n, y_n, z_n, u_n))$ is u.d. in \mathbb{Z}^4 if it is u.d. modulo all subgroups of \mathbb{Z}^4 of finite index.

THEOREM 8. The sequence $(x_n + y_n i + z_n j + u_n k) \in Y_0$ (n = 1, 2, ...) is u.d. in Y_0 if and only if the sequence $((x_n, y_n, z_n, u_n))$ of lattice points is u.d. in \mathbb{Z}^4 .

Proof. Let $\psi: Y_0 \to \mathbb{Z}^4$ be the group isomorphism given by

$$\psi(x+yi+zj+uk) = (x, y, z, u)$$

for $x + yi + zj + uk \in Y_0$. The isomorphism ψ maps the nontrivial ideals of Y_0 into subgroups of \mathbb{Z}^4 of finite index. Now let the sequence $((x_n, y_n, z_n, u_n))$ be u.d. in \mathbb{Z}^4 . In particular, the sequence $((x_n, y_n, z_n, u_n))$ is then u.d. modulo all subgroups of \mathbb{Z}^4 corresponding to the nontrivial ideals of Y_0 under the isomorphism ψ , and therefore the sequence $(x_n + y_n i + z_n j + u_n k)$ is u.d. in Y_0 .

To show the converse it suffices to prove that every subgroup of \mathbb{Z}^4 of finite index contains a subgroup corresponding to a nonzero ideal in Y_0 under the isomorphism ψ . So let H be an arbitrary subgroup of \mathbb{Z}^4 of finite index. Let h be the exponent of the factor group \mathbb{Z}^4/H , that is the smallest positive integer h for which $h(a, b, c, d) \in H$ for all $(a, b, c, d) \in \mathbb{Z}^4$. Then we have

$$h(a, b, c, d) = (ha, hb, hc, hd) \in H$$

for all $(a, b, c, d) \in \mathbb{Z}^4$, so that

$$H \supset h\mathbb{Z} \oplus h\mathbb{Z} \oplus h\mathbb{Z} \oplus h\mathbb{Z}.$$

Since the subgroup $h\mathbb{Z} \oplus h\mathbb{Z} \oplus h\mathbb{Z} \oplus h\mathbb{Z}$ corresponds to the principal ideal (h) of Y_0 under the isomorphism ψ , the proof is complete.

THEOREM 9. Let (x_n) be a sequence in Y_0 with

$$x_n = a_n + b_n i + c_n j + d_n k$$
 (n = 1, 2, ...).

Then (x_n) is u.d. in Y_0 if and only if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(r_1 a_n + r_2 b_n + r_3 c_n + r_4 d_n) = 0$$

for all $r_1, r_2, r_3, r_4 \in \mathbb{Q}$, not all four being integers.

Proof. This follows from Theorem 8 and the Weyl criterion for u.d. in \mathbb{Z}^4 given by Niederreiter [3].

THEOREM 10. The sequence (α_n) in Y_0 is u.d. in Y_0 if and only if for any $\xi = a + bi + cj + dk \in Y_0$ with (a, b, c, d) = 1 in \mathbb{Z} , the sequence $(\operatorname{Re}(\alpha_n \xi))$ is u.d. in \mathbb{Z} .

Proof. Necessity. If $\alpha_n = x_n + y_n i + z_n j + u_n k$, we have

$$\operatorname{Re}(\alpha_n\xi) = ax_n - by_n - cz_n - du_n$$

Assume that the sequence (α_n) is u.d. in Y_0 . Then we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(r_1 x_n + r_2 y_n + r_3 z_n + r_4 u_n) = 0$$

for all $r_1, r_2, r_3, r_4 \in \mathbb{Q}$, not all four of them in \mathbb{Z} . Choose $r_1 = ah/m, r_2 = -bh/m, r_3 = -ch/m, r_4 = -dh/m$ $(m \in \mathbb{Z}, m \ge 2, h = 1, 2, ..., m - 1.)$ So

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\exp((ax_n-by_n-cz_n-du_n)h/m)=0.$$

Hence the sequence $(ax_n - by_n - cz_n - du_n)$ is u.d. in \mathbb{Z} .

Sufficiency. Let r_1, r_2, r_3, r_4 be four rational numbers, not all in \mathbb{Z} . We write $r_1 = R_1/S_1, r_2 = R_2/S_2, r_3 = R_3/S_3, R_4 = R_4/S_4$, where $R_1, \ldots, R_4, S_1, \ldots, S_4 \in \mathbb{Z}, S_1, \ldots, S_4 \ge 1$, $(R_1, S_1) = 1, \ldots, (R_4, S_4) = 1$. Let $S = [S_1, S_2, S_3, S_4]$. Then $r_1 = T_1/S, \ldots, r_4 = T_4/S$. Hence

$$r_1x_n + r_2y_n + r_3z_n + r_4u_n = (T_1x_n + T_2y_n + T_3z_n + T_4u_n)/S.$$

Let $T_1 \equiv V_1 \pmod{S}, \dots, T_4 \equiv V_4 \pmod{S} \ (0 \leq V_1, \dots, V_4 \leq S - 1)$. Let $h = (V_1, V_2, V_3, V_4)$ and write $V_i = hU_i$. Then $1 \leq h \leq S - 1$ and

$$\exp(r_1x_n+\ldots+r_4u_n)=\exp((V_1x_n+\ldots+V_4u_n)/S)$$

and moreover

$$V_1 x_n + \ldots + V_4 u_n = \operatorname{Re}(x_n + y_n i + z_n j + u_n k)(U_1 - U_2 i - U_3 j - U_4 k)$$

= Re(\alpha_n \xi | \mu)

with $\mu = 1$, $\xi = U_1 - U_2 i - U_3 j - U_4 k$. According to our assumption we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\exp(\operatorname{Re}(\alpha_n\xi)/S)=0$$

https://doi.org/10.1017/S0017089500004754 Published online by Cambridge University Press

and so

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(r_1 x_n + r_2 y_n + r_3 z_n + r_4 u_n) = 0.$$

EXAMPLE. Let $\theta_1, \theta_2, \theta_3, \theta_4$ be real numbers such that $1, \theta_1, \theta_2, \theta_3, \theta_4$ are linearly independent over the rationals. Set $\alpha_n = [n\theta_1], \beta_n = [n\theta_2], \gamma_n = [n\theta_3], \delta_n = [n\theta_4]$. According to Niederreiter [3] the sequence $((\alpha_n, \beta_n, \gamma_n, \delta_n))$ is u.d. in \mathbb{Z}^4 , and hence the sequence $(\alpha_n + \beta_n i + \gamma_n j + \delta_n k)$ is u.d. in Y_0 .

We wish to thank the referee for suggested improvements.

REFERENCES

1. L. Kuipers and H. Niederreiter, Uniform distribution of sequences (Wiley-Interscience, New York, 1974).

2. L. Kuipers, H. Niederreiter, and J.-S. Shiue, Uniform distribution of sequences in the ring of Gaussian integers, Bull. Inst. Math. Acad. Sinica 3 (1975), 311-325.

3. H. Niederreiter, On a class of sequences of lattice points, J. Number Theory 4 (1972), 477-502.

4. I. Niven, Uniform distribution of sequences of integers, Trans. Amer. Math. Soc. 98 (1961), 52-61.

5. J.-S. Shiue and C.-P. Hwang, A note on a complete residue system in the ring of integral quaternions, Soochow J. Math. Natur. Sci. 5 (1979), 193-196.

6. A. Zame, On a problem of Narkiewicz concerning uniform distributions of sequences of integers, Colloq. Math. 24 (1972), 271-273.

DEPARTMENT OF MATHEMATICS SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, ILLINOIS 62901 U.S.A. DEPARTMENT OF MATHEMATICAL SCIENCES NATIONAL CHENGCHI UNIVERSITY TAIPEI, TAIWAN R.O.C.