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A slowly varying modes solution of Wentzel–Kramers–Brillouin type is derived for the
problem of sound propagation in a slowly varying two-dimensional duct with homentropic
inviscid sheared mean flow and acoustically lined walls of slowly varying impedance.
The modal shape function and axial wavenumber are described by the Pridmore-Brown
eigenvalue equation. The slowly varying modal amplitude is determined in the usual
way by an equation resulting from a solvability condition. For a general mean flow,
this equation can be solved in the form of an incomplete adiabatic invariant. Due to
conservation of specific mean vorticity along streamlines, two simplifications prove
possible for a linearly sheared mean flow: (i) an analytically exact approximation for
the mean flow, and (ii) a complete adiabatic invariant for the acoustics. For this last
configuration some example cases are evaluated numerically, where the Pridmore-Brown
eigenvalue problem is solved by a Galerkin projection combined with an efficient
nonlinear iteration.
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1. Introduction

Sound propagation in uniformly lined straight ducts with uniform mean flow is well
established by its analytically exact description in duct modes (Rienstra 2003b, 2016a;
Rienstra & Hirschberg 2004). In cross-wise non-uniform flow there are still modes,
although the (Pridmore-Brown) equation that describes them is in general not solvable
in terms of standard functions (Pridmore-Brown 1958; Vilenski & Rienstra 2007a,b;
Oppeneer et al. 2011; Brambley, Rienstra & Darau 2012; Oppeneer, Rienstra & Sijtsma
2016; Rienstra 2020). An exception is two-dimensional (2-D) linear shear flow and uniform
sound speed, for which it can be solved exactly by Weber’s parabolic cylinder functions
(Goldstein & Rice 1973).

These modal solutions provide insight, but the important effects due to the variation
of the duct geometry and the corresponding mean flow cannot be described exactly. At
least in slowly varying ducts a systematic approximate solution is possible. The inherently
smooth variation of a flow duct provides a small parameter ε (the slenderness of the duct
wall variation) that allows a multiple-scale approach for mean flow and slowly varying
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906 A23-2 S. W. Rienstra

modes of WKB (Wentzel–Kramers–Brillouin) type (Nayfeh & Telionis 1973; Nayfeh,
Kaiser & Telionis 1975; Rienstra 1999, 2000, 2003a; Cooper & Peake 2001; Peake &
Cooper 2001; Ovenden 2002, 2005; Ovenden & Rienstra 2004; Ovenden, Eversman &
Rienstra 2004; Brambley & Peake 2008; Lloyd & Peake 2013). In the WKB approach it is
assumed that the wave retains its shape. If the medium changes slowly enough (meaning
little change over one wavelength), the modal order, i.e. the index of the solution of the
dispersion relation that defines the mode, remains the same, and the mode does not jump to
another eigenstate. The wave function may gradually stretch or compress but the number of
nodes and anti-nodes will not change. Under suitable conditions this may be represented
mathematically by conserved quantities called adiabatic invariants (Garrett 1967). They
may be related to conserved energy, but not necessarily. If an adiabatic invariant can be
found (this may be far from trivial, or not possible at all) the WKB solution is almost as
transparent as its straight duct counterpart.

The procedure for slowly varying modes in mean flow is, broadly speaking, as follows.
First the mean flow is assumed (Bouthier 1972) to be slowly varying everywhere (no
entrance effects) so the mean flow equations are rewritten in the slow coordinate X = εx ,
rescaled and simplified to leading order in ε, the small parameter that measures the
slenderness of the duct variations. These equations are solved analytically if possible
(apart from an algebraic equation, this is usually the case for potential flow: Rienstra
1999; Peake & Cooper 2001; Rienstra 2003a; Brambley & Peake 2008), or otherwise
numerically (often for rotational flow; Cooper & Peake 2001; Lloyd & Peake 2013).
Then, for the acoustic equations a slowly varying mode is assumed of the form
N(X)ψ(X, y, z) exp

(−i
∫ x
κ(εz) dz

)
, where ψ is conveniently normalised. This particular

form, also known as the WKB ansatz, is reasonable because it would emerge from a
multiple-scale approach as well. The underlying suppression of secular terms is equivalent
to assuming this form. Its existence requires in WKB theory an equation (also known as
solvability condition) of the form

d
dX
(N2F) = N2G, (1.1)

where F and G are functions of X that depend on cross-sectional integrals of squares and
products of ψ,ψX, ψy and ψz. For the second-order linear equations of acoustic modes
in ducts, this is always possible (cf. Bouthier 1972). If a form can be found without the
presence of ψX, the relation between N and ψ is really a local property and we will call
this relation an ‘incomplete adiabatic invariant’, to acknowledge the fact that the solution
for N2 still includes an integration of G/F to X. If also G = 0, the solvability condition is
completely integrable and we will call the resulting integral N2F = constant a ‘complete
adiabatic invariant’, or just ‘adiabatic invariant’. In that case the scaling of ψ may be the
invariant itself. Note that we do not follow Cooper & Peake (2001) who called the full
equation (1.1), without restrictions on the occurrence of ψX, an adiabatic invariant.

The first solutions of the present type were given by Nayfeh and co-workers (modes in
annular flow ducts; Nayfeh et al. 1975). For a number of reasons no adiabatic invariant was
found. Firstly, integration of the solvability condition is unlikely because their mean flow
was an ad hoc model that does not systematically approximate the equations. Secondly,
to include a boundary layer they adopted a sheared flow for which as yet no adiabatic
invariants are known.

This is different for potential mean flows. For the solutions with irrotational flow
(Rienstra 1999; Peake & Cooper 2001; Rienstra 2003a; Brambley & Peake 2008),
generally a complete adiabatic invariant exists.
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Slowly varying modes in shear flow 906 A23-3

Following these, great steps were taken by Peake et al. for (systematic) rotational
mean flow in cylindrical ducts, with swirl (Cooper & Peake 2001) and without swirl
(Lloyd & Peake 2013). The complexity of the three-dimensional (3-D) geometry and mean
flows, however, prevents the finding (and possibly existence) of both a complete or even
incomplete adiabatic invariant and an analytically exact mean flow.

In the present paper we aim to extend Peake and colleagues’ theory for slowly varying
modes in non-uniform shear flow. We will show that it is possible to make progress by
considering a 2-D duct. For a general mean flow an incomplete adiabatic invariant can be
found, while for the particular case of a linearly sheared profile the mean flow equations
can be solved analytically exactly and for the acoustics a complete adiabatic invariant
exists.

The present work builds on, but at the same time improves and replaces, a previous
WKB analysis of the related problem with hard walls, published as a conference paper
(Rienstra 2016b). Apart from some minor notational differences (like Ω for Ω/C, Ψ for
M, κ for μ) and algebraic corrections, the main differences are the slowly varying lined
walls, the found complete and incomplete adiabatic invariants and the use of a numerical
solution of the central Pridmore-Brown equation, giving access to a very wide range of
parameters.

2. The problem

2.1. The equations
In the acoustic, i.e. isentropic realm of a perfect gas that we will consider, we have for
pressure p̃, velocity ṽ, density ρ̃, entropy s̃ and sound speed c̃:

dρ̃
dt

= −ρ̃∇ · ṽ, ρ̃
dṽ

dt
= −∇p̃,

ds̃
dt

= CV

p̃
dp̃
dt

− CP

ρ̃

dρ̃
dt

= 0, c̃2 = γ p̃
ρ̃
, γ = CP

CV
,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where γ , CP and CV are gas constants and d/dt = ∂t + v · ∇ denotes the convective
derivative; CV is the heat capacity at constant volume, CP is the heat capacity at constant
pressure and γ = CP/CV . Under isentropic conditions, entropy s̃ is constant along a
streamline. We will assume a bit more, namely, the constant s̃ = sref is the same for all
streamlines, which is homentropic flow. In that case we can integrate the entropy equation
to get

CV log p̃ − CP log ρ̃ = sref = CV log pref − CP log ρref (2.2)

or

p̃
pref

=
(
ρ̃

ρref

)γ
. (2.3)

When we have a stationary mean flow with unsteady time-harmonic perturbations of
frequency ω, given, in the usual complex notation, by

ṽ = V + Re(veiωt), p̃ = P + Re( peiωt), ρ̃ = D + Re(ρeiωt), (2.4a–c)
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906 A23-4 S. W. Rienstra

and linearise for small amplitude, we obtain for the mean flow

∇ · (DV ) = 0, D(V · ∇)V = −∇P,

P
pref

=
(

D
ρref

)γ
, C2 = γP

D
.

⎫⎪⎬
⎪⎭ (2.5)

The mean flow momentum equation can be integrated along streamlines to yield
(Batchelor 1967) a version of Bernoulli’s equation that the total specific enthalpy

1
2
|V |2 + C2

γ − 1
= constant along a streamline, (2.6)

not necessarily the same constant for all streamlines. Another quantity, conserved along
streamlines, that will be of interest is the specific vorticity Ξ/D, where Ξ = Vx − Uy .
Take the curl of the mean flow momentum equation and substitute the mass conservation
to get, by virtue of the pressure being barotropic (Batchelor 1967),

V · ∇
(
Ξ

D

)
= 0. (2.7)

Finally, the perturbations are described by the equations

iωρ + ∇ · (Vρ + vD) = 0,

D (iω + V · ∇) v + D (v · ∇)V + ρ(V · ∇)V = −∇p,

p = C2ρ.

⎫⎪⎬
⎪⎭ (2.8)

Myer’s time-averaged acoustic energy equations for inviscid and homentropic flow, with
Ξ and ξ the mean and perturbed flow vorticity, are given by (Myers 1991; Rienstra &
Hirschberg 2004)

∇〈I〉 = −〈D〉, (2.9a)

〈I〉 = 1
2 Re

[
(Dv + ρV )

(
p∗

D
+ V · v∗

)]
, (2.9b)

〈D〉 = − 1
2 Re[ξDV · (−v∗, u∗)+Ξρv∗ · (−V,U)]. (2.9c)

2.2. Non-dimensionalisation
Without further change of notation, we will assume throughout this paper that the problem
is made dimensionless: lengths on a typical duct height aref , velocities on a typical sound
speed cref , time on aref /cref , densities on a typical density ρref and pressures on γ pref =
ρref c2

ref . The dimensionless equations are the same as above, except

γP = DC2 = Dγ , (2.10)

while dimensionless frequency ω is also known as the Helmholtz number.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

68
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.687


Slowly varying modes in shear flow 906 A23-5

y = h(εx)

y = g(εx)

nh

ng

V

x

y

FIGURE 1. Sketch of geometry: two-dimensional slowly varying duct.

2.3. The geometry
The domain of interest, sketched in figure 1, is a 2-D duct V of slowly varying cross-section
g(X) ≤ y ≤ h(X), where 0 < h − g = O(1); X = εx is a so-called slow variable while ε
is small. At the duct top surface y = h and the bottom surface y = g, the gradients

∇( y − h) = ey − εex hX, ∇( y − g) = ey − εex gX, (2.11a,b)

are vectors normal to the surface, so the outward normals of the top and bottom surface
are given by

nh = ey − εex hX√
1 + ε2h2

X

= ey − εex hX + O(ε2),

ng = −ey − εex gX√
1 + ε2g2

X

= −ey + εex gX + O(ε2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

Evidently, ex and ey denote the unit vectors in the x and y directions, the indices h and g
refer to the top and bottom walls and the index X to a partial derivative to X. Except with
ey , the index y will be used to denote a partial derivative to y.

2.4. Boundary conditions
If we denote the mean flow by V = Uex + Vey , the impermeable duct wall yields the
mean flow boundary condition (V · n) = 0, or

V − εgXU = 0 at y = g (2.13a)

and
V − εhXU = 0 at y = h. (2.13b)

The mean flow mass flux, given by

∫ h

g
DU dy = F , (2.14)

is then independent of x , where F is (after non-dimensionalisation) a constant O(1). The
mean flow is assumed to be determined by the slowly varying geometry only.

The acoustic boundary condition of the slowly varying lined wall includes the refraction
through the vanishing boundary layer, and is a form of the so-called Ingard–Myers
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906 A23-6 S. W. Rienstra

condition (Ingard 1959; Myers 1980), given at y = h (i = h) and y = g (i = g) by

v · ni = (iω + V · ∇ − ni · (ni · ∇V ))
(

p
iωZi

)
. (2.15)

The impedances may vary slowly with position, so we can write Zi = Zi(X). It is important
to note that Zi is only defined along a wall, and only derivatives along wall streamlines have
meaning.

3. Mean flow

3.1. The general case
Since we assumed the mean flow to be determined by the slowly varying geometry only,
we write all flow variables as a function of (X, y; ε), and expand each in a regular
Poincaré expansion in powers of ε2 (the small parameter that appears in the equations).
From elementary order of magnitude considerations it follows that U = O(1), V = O(ε),
D = O(1), C = O(1) and P = O(1). So we have

U = U0 + O(ε2), V = εV0 + O(ε3),

D = D0 + O(ε2), P = P0 + O(ε2), C = C0 + O(ε2),

}
(3.1)

where each term in the expansion is independent of ε. For notational convenience we leave
out the 0 subscript, because higher orders will not be considered.

We substitute these expansions in the conservation equations and collect the terms of
like powers of ε. Then we get to leading order

(DU)X + (DV)y = 0,

D(UUX + VUy)+ PX = 0,

Py = 0,

⎫⎪⎬
⎪⎭ (3.2a)

with boundary conditions

V − gXU = 0 at y = g and V − hXU = 0 at y = h. (3.2b)

From P = P(X) is also D = D(X) and C = C(X), and so PX = C2DX = Dγ−1DX . From
the flux condition (2.14) we find

D(X) = F∫ h

g
U(X, y) dy

. (3.3)

Furthermore, the mass and momentum equations become

(DU)X + DVy = 0,

DUUX + DVUy + Dγ−1DX = 0,

}
(3.4)

of which the last equation can be written as

U
∂

∂X

(
1
2

U2 + Dγ−1

γ − 1

)
+ V

∂

∂y

(
1
2

U2 + Dγ−1

γ − 1

)
= 0. (3.5)
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Slowly varying modes in shear flow 906 A23-7

This again amounts to the approximated Bernoulli’s equation (2.6), saying that

1
2

U2 + Dγ−1

γ − 1
= constant along streamlines, (3.6)

for example, the wall streamlines at y = g and y = h.
By combining the mass equation and y-derivative of the momentum equation, we find

the approximated version of (2.7)

U
∂

∂X

(
Uy

D

)
+ V

∂

∂y

(
Uy

D

)
= 0, (3.7)

which means that the specific mean shear

Uy

D
= constant along streamlines. (3.8)

If we start at (say) X = X0 with a linearly sheared flow, i.e. Uy = σ0, then the conserved
constant λ = σ0/D(X0) is the same for all X and y, and Uy = λD everywhere.

The equation of mass conservation leads to

DV = gXDU|y=g −
∫ y

g
(DU)X dy′, (3.9)

which satisfies the boundary condition at y = g (by construction), and at y = h because

DV − hXDU = − d
dX

∫ h

g
DU dy = − d

dX
F = 0. (3.10)

For a potential mean flow the above conditions would be sufficient to define the flow
(Rienstra 2003a). For example, U can only be constant in y, and the other variables
follow by an algebraic equation to be solved at each position X. For the vortical mean
flow we have here, we need to define an initial velocity profile (U, εV) and integrate
numerically (iteratively) along streamlines while using (3.3), (3.6) and (3.9). This is not
straightforward. See for example Lloyd & Peake (2013) for the closely related cylindrical
version of this problem where use is made of the streamfunction.

3.2. Linearly sheared flow
A numerical evaluation of the mean flow is, however, not always necessary. Hinted at by
(3.8) and its following paragraph, it appears that for a velocity profile that is linear in y,
we can find a solution that avoids a numerical integration and much like the potential flow
solution requires no more than solving an algebraic equation. Even more, an accidental
property will, rather unexpectedly, give our acoustic solution for this case the bonus of a
complete adiabatic invariant.
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906 A23-8 S. W. Rienstra

The type of velocity profile we will consider is to leading order given by

U(X, y) = τ(X)+ σ(X)( y − g(X)), (3.11)

where σ and τ are to be determined from the conditions of fixed mass flux and varying
wall normal. Then

DV = gXDU − (Dτ)X( y − g)− 1
2(Dσ)X( y − g)2, (3.12)

and

DττX + Dγ−1DX + (DσX − DXσ)(τ ( y − g)+ 1
2σ( y − g)2) = 0. (3.13)

Equation (3.13) is valid for any X and y. Its y-dependence is only through the polynomial
τ( y − g)+ 1

2σ( y − g)2. This vanishes for y = g, but is otherwise non-zero (except for
the uninteresting case τ = σ = 0, and possibly a single point y = g − 2τ/σ ). Therefore
(3.13) requires

DττX + Dγ−1DX = 0, (3.14)

DσX − DXσ = 0, (3.15)

both of which can be integrated straightaway. So σ/D = constant, which agrees with (3.8).
Altogether, we find that for any physically allowable (e.g. no supersonic pockets) constants
λ and E, a mean flow exists given by

σ = λD (3.16)

and Bernoulli’s equation (3.6) along streamline y = g:

1
2
τ 2 + 1

γ − 1
Dγ−1 = E. (3.17)

Eliminate τ from∫ h

g
DU dy = D

∫ h

g
U dy = D(h − g)

(
τ + 1

2σ (h − g)
) = F (3.18)

to get

τ = F
D(h − g)

− 1
2
σ(h − g), (3.19)

by which Bernoulli’s equation (3.6) applies along streamline y = h, with constant E +
λF . Altogether, we have for given geometry h and g and mean flow constants λ, E and F ,
the following algebraic equation:

1
2

( F
D(h − g)

− 1
2
λD(h − g)

)2

+ 1
γ − 1

Dγ−1 = E, (3.20)

to be solved per X for D. Then we have τ , σ , U and C like above, from which V follows

V = gXU + U|y=h
C2 − τU

C2 − τU|y=h

hX − gX

h − g
( y − g). (3.21)

Note that there is apparently no slowly varying mean flow of linear shear with τ(X) ≡ 0.
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Slowly varying modes in shear flow 906 A23-9

4. Acoustic field

4.1. Slowly varying modes
With the mean flow variables expanded to leading order, and after eliminating ρ = p/C2,
we have the acoustic equations

iωp + Upx + DC2(ux + vy) = −ε
[

C2

(
U
C2

)
X

p + C2DXu + (Vp)y

]
+ O(ε2),

D (iωu + Uux)+ DUyv + px = −ε [−D−1DXp + D(UXu + Vuy)
]+ O(ε2),

D (iωv + Uvx)+ py = −εD(Vv)y + O(ε2),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(4.1a)

and the lined wall boundary condition at y = h(X) and y = g(X), respectively,

v − εhXu =
(

iω + U
∂

∂x
+ εV

∂

∂y
− εVy + εhXUy

)(
p

iωZh

)
+ O(ε2),

−(v − εgXu) =
(

iω + U
∂

∂x
+ εV

∂

∂y
− εVy + εgXUy

)(
p

iωZg

)
+ O(ε2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1b)

We seek slowly varying modes of the form

[p, u, v] = [
Ψ (X, y; ε),A(X, y; ε),B(X, y; ε)] exp

(
−i

∫ x

κ(εz; ε) dz
)
. (4.2)

Introduce

Ω = ω − κU
C

, Ωy = −κUy

C
, (4.3a,b)

and substitute (4.2) in (4.1) to obtain after some simplifications to O(ε2)

Ω2Ψ − κDΩCA − iDΩCBy = iεΩC

[(
UΨ
C2

)
X

+
(

VΨ
C2

)
y

+ (DA)X

]
+ O(ε2),

κDΩCA + iDΩyCB − κ2Ψ = iεκD
[(
Ψ

D

)
X

+ (UA)X + VAy

]
+ O(ε2),

i
DCB
Ω

+ Ψy

Ω2
= −ε D

Ω2
[UBX + (VB)y] + O(ε2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4a)

and boundary conditions

B − εhXA =
(

iΩC + εU
∂

∂X
+ εV

∂

∂y
− εVy + εhXUy

)(
Ψ

iωZh

)
+ O(ε2),

−(B − εgXA) =
(

iΩC + εU
∂

∂X
+ εV

∂

∂y
− εVy + εgXUy

)(
Ψ

iωZg

)
+ O(ε2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4.4b)
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906 A23-10 S. W. Rienstra

If we take the y-derivative of the third equation of (4.4a), multiply this byΩ2, and add the
result to the sum of the first two equations of (4.4a), we obtain

Ω2

(
Ψy

Ω2

)
y

+ (
Ω2 − κ2)Ψ = iεΩ2

[
C
Ω

(
UΨ
C2

+ DA
)

X

+ κD
Ω2

(
Ψ

D
+ UA

)
X

+ 1
ΩC

(VΨ )y + κDV
Ω2

Ay + iD
(

1
Ω2

[
UBX + (VB)y

])
y

]
+ O(ε2), (4.5)

while

A = κΨ

DΩC
− UyΨy

DΩ2C2
+ O(ε)

B = i
Ψy

DΩC
− ε

ΩC

[
U
(
Ψy

DΩC

)
X

+
(

VΨy

DΩC

)
y

]
+ O(ε2).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.6)

We expand to O(ε2)

A = A0 + εA1 + . . . , B = B0 + εB1 + . . . , Ψ = Ψ0 + εΨ1 + . . . , κ = κ0 + . . . .
(4.7a–d)

There is no need for a κ1-term, as exp
(−iε

∫ x
κ1 dz

)
depends on X only and can be

absorbed by Ψ , A and B. For notational convenience we retain κ in the formulas. To
leading-order, equation (4.5) reduces to the Pridmore-Brown eigenvalue equation

Ω2

(
Ψ0y

Ω2

)
y

+ (Ω2 − κ2)Ψ0 = 0, (4.8a)

with boundary conditions

Ψ0y = DΩ2C2

iωZh
Ψ0, Ψ0y = −DΩ2C2

iωZg
Ψ0, (4.8b)

where Ψ0 and κ are to be determined. Through g, h, U, C, Zg and Zh, Ψ0 and κ will vary
in X. Since the equation and boundary conditions are linear and homogeneous, Ψ0 is only
determined up to a slowly varying amplitude. In the following we will derive an adiabatic
invariant for Ψ0 to determine this slowly varying factor.

4.2. Final solution part 1: the general case
The next order of the expanded equation (4.5) is the inhomogeneous Pridmore-Brown
equation in Ψ1:

Ω2

(
Ψ1y

Ω2

)
y

+ (Ω2 − κ2)Ψ1 = iΩ2

[
C
Ω

((
κ + UΩ

C

)
Ψ0

ΩC
− UyΨ0y

Ω2C2

)
X

+ κ2VΨ0y

Ω3C

+κD
Ω2

(
ωΨ0

DΩC
− UUyΨ0y

DΩ2C2

)
X

+
(

VΨ0

ΩC
− DU
Ω2

(
Ψ0y

DΩC

)
X

− 1
Ω2C

(
VΨ0y

Ω

)
y

)
y

]
,

(4.9a)
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with boundary conditions (obtained by using the directional derivatives of (4.8b) along
wall streamlines)

i
(
Ψ1y − DΩ2C2

iωZh
Ψ1

)
= ZhDU

Ψ0

(
Ψ0Ψ0y

ZhDΩC

)
X

+ ZhDV
Ψ0

(
Ψ0Ψ0y

ZhDΩC

)
y

+ hXκΨ0,

i
(
Ψ1y + DΩ2C2

iωZg
Ψ1

)
= ZgDU

Ψ0

(
Ψ0Ψ0y

ZgDΩC

)
X

+ ZgDV
Ψ0

(
Ψ0Ψ0y

ZgDΩC

)
y

+ gXκΨ0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4.9b)

We do not aim to solve this equation, as it would again involve undetermined homogeneous
solutions. Instead, we derive a solvability condition onΨ0, required forΨ1 to exist. For this,
we combine equations (4.8a) and (4.9a) into

i
∫ h

g

1
DΩ2C2

([
equation (4.9a)

]
Ψ0 − [

equation (4.8a)
]
Ψ1
)

dy, (4.10)

then use the self-adjointness of the Pridmore-Brown equation to eliminate Ψ1 and apply
the boundary conditions (4.9b) to obtain[

ZU
Ω2C2

(
Ψ0Ψ0y

ZDΩC

)
X

+ ZV
Ω2C2

(
Ψ0Ψ0y

ZDΩC

)
y

+ VκΨ 2
0

UDΩ2C2

]h

g

= −
∫ h

g

Ψ0

DC2

[
C
Ω

((
κ + UΩ

C

)
Ψ0

ΩC
− UyΨ0y

Ω2C2

)
X

+ κ2V
Ω3C

Ψ0y

+ κD
Ω2

(
ωΨ0

DΩC
− UUyΨ0y

DΩ2C2

)
X

+
(

VΨ0

ΩC
− DU
Ω2

(
Ψ0y

DΩC

)
X

− 1
Ω2C

(
VΨ0y

Ω

)
y

)
y

]
dy.

(4.11)

By several partial integrations, using the defining differential equation and collecting
together the X-derivative of (κ + UΩ/C)Ψ 2

0 /DΩ
2C2 − ωUyΨ0Ψ0y/DΩ4C4, we obtain

after a considerable amount of algebra the equation[
ZΨ0y

DΩ2C2Ψ0

(
UΨ 2

0

ZΩC

)
X

+ ZΨ0y

DΩ2C2Ψ0

V
U

(
UΨ 2

0

ZΩC

)
y

]h

g

+ d
dX

∫ h

g

(
κ + UΩ

C

)
Ψ 2

0

DΩ2C2
− ωUyΨ0Ψ0y

DΩ4C4
dy =

∫ h

g

κUΨ0Ψ0y

Ω4C4

(
Uy

D

)
X

dy.

(4.12)

With boundary conditions (4.8b) this becomes

d
dX

[
1

iωZh

UΨ 2
0

ΩC

∣∣∣∣
h

+ 1
iωZg

UΨ 2
0

ΩC

∣∣∣∣
g

+
∫ h

g

(
κ + UΩ

C

)
Ψ 2

0

DΩ2C2
− ωUyΨ0Ψ0y

DΩ4C4
dy

]

=
∫ h

g

κUΨ0Ψ0y

Ω4C4

(
Uy

D

)
X

dy. (4.13a)

This form is interesting because of its congruence with the acoustic power (see below) in
the case of cut-on modes in linearly sheared flow and hard walls. An even more elegant
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form is found by applying the relation (A 1) of appendix A, with G = U/DΩC3, and
absorbing the boundary terms into the integral, to find

d
dX

[∫ h

g

1
DΩ3C3

(
ωκΨ 2

0 + UΨ 2
0y

)
dy

]
=
∫ h

g

κUΨ0Ψ0y

Ω4C4

(
Uy

D

)
X

dy. (4.13b)

If we normalise Ψ0 to Ψ̄0 in some smooth way and introduce the slowly varying amplitude
N such that Ψ0(X, y) = N(X)Ψ̄0(X, y), then the equation for N

d
dX

[N2F] = N2G, (4.14)

with

F(X) =
∫ h

g

1
DΩ3C3

(
ωκΨ̄ 2

0 + UΨ̄ 2
0y

)
dy, G(X) =

∫ h

g

κUΨ̄0Ψ̄0y

Ω4C4

(
Uy

D

)
X

dy,

(4.15a,b)

leads to a form of an incomplete adiabatic invariant

N2(X) = N2(0)
F(0)
F(X)

exp
(∫ X

0

G(z)
F(z)

dz
)
. (4.16)

This is similar to Peake & Cooper (2001), Cooper & Peake (2001), Lloyd & Peake (2013)
and Rienstra (2016b), although now F and G are independent of X-derivatives of Ψ̄0.

4.3. Final solution part 2: linearly sheared flow
If (Uy/D)X = 0, G(X) = 0 and (4.16) reduces to a complete adiabatic invariant. Since D
is independent of y, this is the case for a linearly sheared mean flow with the property that
Uy/D = a constant. As we found above in (3.16), this is not a restriction. It occurs for any
linearly sheared flow that is of slow variation! We have then for a constant Q0:

∫ h

g

1
DΩ3C3

(ωκΨ 2
0 + UΨ 2

0y) dy = Q0. (4.17)

We do not have to normalise Ψ0: the adiabatic invariant is the normalisation. The size
of Q0 is unimportant in a linear problem, although we can use it to scale the solution
conveniently. There is, however, a small reservation. For hard walls we can assume Ψ to be
real, in which case the sign of Q0 relates to the propagation direction and cannot be chosen
freely. This is due to the fact that for hard-wall real cut-on modes this invariant is, apart
from a factor ω/2, equal to the acoustic power passing a duct cross-section X = constant,
at least, up to the WKB accuracy. We find for the integral of the time-averaged energy flux
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〈I〉 in the x-direction (2.9b) (with hard walls, Uyy = 0, real Ψ and ignoring subscript 0)

P(X) =
∫ h

g

1
2

Re
[(

DA + UΨ
C2

)(
Ψ

D
+ UA

)∗]
dy + O(ε)

= 1
2

∫ h

g

(
κΨ

ΩC
− UyΨy

Ω2C2
+ UΨ

C2

)(
Ψ

D
+ κUΨ

DΩC
− UUyΨy

DΩ2C2

)
dy + O(ε)

= 1
2

∫ h

g

[(
κ + UΩ

C

)
ωΨ 2

DΩ2C2
− ω2UyΨΨy

DΩ4C4
+ Uy

2DC4

(
U2Ψ 2

y

Ω4

)
y

]
dy + O(ε)

= 1
2ωQ0 + O(ε). (4.18)

It is clear that, for ω > 0, Q0 must be chosen positive when the mode is right running,
and negative when it is left running. Another conclusion we may draw is that, as far as
the left-hand side of (4.13) describes the acoustic energy of the mode, it couples with the
mean flow, to WKB accuracy, only where the specific shear Uy/D changes in X.

The simplicity of (4.13) is elegant not only physically but also mathematically, because
no X-derivatives of Ψ and Ψy are required. The existence of an adiabatic invariant is a
remarkable result, and perhaps not entirely to be expected (Cooper & Peake 2001; Peake
& Cooper 2001; Lloyd & Peake 2013; Rienstra 2016b), because in general acoustic energy
is not conserved in vortical flow. Although for slowly varying real, hard-wall modes in
nearly parallel flow the time-averaged acoustic energy source 〈D〉 (2.9c) is O(ε):

〈D〉 = −1
2

Re
[

i
UUyy

DΩ3C3
Ψ 2

y + O(ε)
]

= 0 + O(ε), (4.19)

the acoustic power is not necessarily conserved to O(ε) because the volume integral of D
over a distance X = O(1) may be O(ε)O(1/ε) = O(1), finite.

This completes the leading-order solution of the slowly varying modes. From Ψ0 the
other amplitudes A0 and B0 follow with (4.6).

We end this analysis by checking the consistency of the resulting equation forΨ with the
corresponding results for the potential flow problem, as considered for three dimensions in
Rienstra (1999, 2003a). Without shear, i.e. Uy = 0, the mean flow is irrotational and can
be given by a potential; U and so Ω are then functions of X only. If also the sound field
is given by a potential Φ (no vortical perturbations like vorticity shed from sharp edges),
such that

A = −iκΦ + εΦX, B = Φy, Ψ = −iDΩCΦ − εD(UΦX + VΦy)+ O(ε2),

(4.20a–c)

and boundary conditions

Φy − DΩ2C2

iωZh
Φ = −iεhXκΦ − iε

Φ

[(
U
∂

∂X
+ V

∂

∂y

)(
DΩCΦ2

iωZh

)
+ (DU)X

ΩCΦ2

iωZh

]
,

Φy + DΩ2C2

iωZg
Φ = −iεgXκΦ + iε

Φ

[(
U
∂

∂X
+ V

∂

∂y

)(
DΩCΦ2

iωZg

)
+ (DU)X

ΩCΦ2

iωZg

]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.21)
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we find upon substitution into (4.5)

Φyy + (Ω2 − κ2)Φ = iε
DΦ

[
∂

∂X

((
κ + UΩ

C

)
DΦ2

)
+ ∂

∂y

(
VΩ
C

DΦ2

)]
+ O(ε2).

(4.22)

After expanding Φ = Φ0 + εΦ1 + O(ε2), this leads (cf. Rienstra 1999) by the usual
manipulations to the adiabatic invariant

d
dX

[
D2UΩC

iωZh
Φ2

0

∣∣∣∣
h

+ D2UΩC
iωZg

Φ2
0

∣∣∣∣
g

+
∫ h

g

(
κ + UΩ

C

)
DΦ2

0 dy

]

= d
dX

[∫ h

g

D
ΩC

(
ωκΦ2

0 + UΦ2
0y

)
dy

]
= 0, (4.23)

which agrees with (4.13a) and (4.13b), respectively, for Uy = 0 if we identify Φ0 =
iΨ0/DΩC.

5. Numerical evaluation of practical examples

5.1. Numerical solution of the Pridmore-Brown equation
The heart of a numerical evaluation of the above solution is the solution of the
Pridmore-Brown eigenvalue equation in y ((4.8a) and (4.8b)) along a grid of points
in x . At each x , we consider eigenfunction Ψ (X, y) as a function of y only, and keep
X fixed.

A number of methods have been reported in the literature, e.g. Chebyshev spectral
collocation methods acting on the vector of linearised Euler equations (Cooper &
Peake 2001; Lloyd & Peake 2013), shooting methods (Vilenski & Rienstra 2007b)
and collocation methods (Oppeneer et al. 2011) acting directly on the Pridmore-Brown
equation, each with their own benefits.

We will use here a method, published recently in Rienstra (2020), which is a
classic Galerkin approach based on a symmetric bilinear form. We rewrite (4.8a) with
boundary conditions iωζhΨ

′(h) = Ω2Ψ ′(h) and iωζgΨ
′(g) = −Ω2Ψ (g) in weak form,

which means that we search for eigenfunction Ψ and eigenvalue κ such that for every test
function w,

Ψw
iωζh

∣∣∣∣
h

+ Ψw
iωζg

∣∣∣∣
g

+
∫ h

g
− 1
Ω2
Ψ ′w′ +

(
1 − κ2

Ω2

)
Ψw dy = 0. (5.1)

The prime indicates a partial derivative with respect to y. We assume that Ω /= 0 for any
y along the integration interval, to avoid the relatively unimportant critical layer solutions,
not studied here; see Brambley et al. (2012). Here, Ψ will be suitably normalised and then
multiplied by a slowly varying amplitude N, determined as indicated above by (4.16) or
(4.17).
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If we assume that Ψ can be written as a sum over a function basis {φn} of Chebyshev
polynomials,

Ψ =
∞∑
μ=0

aμφμ, (5.2)

and we use the same basis for the test functions, i.e. w = φν , ν = 0, 1, . . ., then (5.1)
becomes equivalent with the matrix equation

M(κ)a = 0, a = (a0, a1, . . .)
T, (5.3)

for the doubly infinite symmetric matrix M with elements

Mμν(κ) = φμφν

iωζh

∣∣∣∣
h

+ φμφν

iωζg

∣∣∣∣
g

+
∫ h

g

{
− 1
Ω2
φ′
μφ

′
ν +

(
1 − κ2

Ω2

)
φμφν

}
dy. (5.4)

The κ-derivative M ′ can be expressed in a similar way. The integrals of M and M ′ are
evaluated by the Gauss–Legendre method, which is efficient and needs relatively few
points for a high accuracy.

The eigenvalue κ is determined by a quadratically converging Newton-like iteration.
Along the slowly varying duct, each previous X-position provides an excellent starting
value, making, in general, no more than one iteration necessary. Since we deal with one
mode, it is no loss of efficiency to find one eigenvalue at a time.

By using the same Gauss–Legendre points for integral (4.13) as for the elements of
M and M ′, we can normalise the found solutions as required. Here, we will take the
transmitted power at the left entrance of the duct equal to P = 1 for right-running
modes and at the right entrance equal to P = −1 for left-running modes. Note that the
normalisation is onΨ 2, rather thanΨ , and we have to select a sign forΨ at each x-position.
The correct sign is of course such that Ψ is continuous in x .

The integrals over κ and G/F may be constructed by incremental trapezoidal
integration.

5.2. A practical example
A typical and relevant example may be a linearly sheared mean flow. Although our results
are valid for any mean flow profile (provided the slowly varying mean flow satisfies (3.8)),
linear shear is most interesting in two respects. First, the adiabatic invariant is ‘complete’,
i.e. really a constant of the problem, and second, the mean flow may be given explicitly,
without an integration along the streamlines.

Although a linear profile of a flow with friction is eventually not realistic (a parabolic
profile for laminar flow or 1/7-power profiles for turbulent flow is more likely; Hinze
1972), it is not entirely unphysical. For example, a realisation of the model may be found
in the annular duct behind the fan of a modern, high-bypass turbofan engine, which
leads a small fraction of the flow into the core of the engine. Since this annular duct is
narrow compared to the diameter, a 2-D approximation is valid for axially propagating
modes. Moreover, its mean flow is the continuation of the strongly sheared boundary
layer along the inner hub of the engine’s inlet duct, thus making a linearly sheared profile
relevant.
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FIGURE 2. Mean flow in x, y-domain. (a) Mean flow U. (b) Mean flow V .

The configuration chosen is as follows. The right-running mean flow is described by the
problem parameters

λ = 0.5, γ = 1.4, Din = 1, τin = 0.2, F = 0.4496, E = 2.52, (5.5a–f )

and the duct geometry (with inlet at x = −3) by

h(x) = 1 − 1
8(1 + tanh x), g(x) = 0, −3 < x < 3, (5.6)

giving an estimated ε 	 0.1. See figure 2 for the U and V components. The decreasing
duct height results in an increase of U with a slight decrease of Uy = σ ; V is obviously at
its maximum near x = 0 at the upper wall.

For the acoustic part we consider a hard-wall and a soft-wall configuration, both with
ω = 15. The hard-wall case has in total 10 cut-on modes: p1, . . . , p5 right running and
p−1, . . . , p−5 left running. The modes p6 and p−6 start cut-on at x = −3 but become cut-off
near x = −0.055, where F(X) = 0, and the approximate solution breaks down. Since
beyond this point the modal energy vanishes, mode p6 has to reflect here into a multiple
of p−6. For this reason the point is called a turning point. In its neighbourhood a local
analysis is required (Rienstra 2000; Cooper & Peake 2001). Since we have not included
this here, we exclude the modes p6 and p−6. For the soft-wall case with Zh = Zg = 1 + 2i
we consider the right running p2 and left running p−2.

With matrix M chopped off to just 21 × 21 (21 Chebyshev terms) and for the integrals
using only 40 Gauss–Legendre points we obtain all eigenvalues correct in 11 digits, as can
be estimated by doubling these numbers a few times. We expect the same accuracy for
the eigenfunctions. The number of κ-iterations, using the result of the previous X-position
as starting value, is typically 1 (depending on the number of X-positions; here 2400). Per
X and 400 plot points in y, this takes altogether approximately 0.04 s (Matlab2018, Intel
Core i5-4670 CPU @ 3.4 GHz).

We see that the effects of the sheared mean flow properties are various; see figures 3
and 4 with snapshots of the pressure distribution in the hard-wall duct. For the lowest
modal orders, especially upstream running, the asymmetry of the flow is reflected in
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FIGURE 3. Pressure field snapshots (order 1, . . . , 5) for ω = 15 and P = 1 (right running).
(a) κ1 = 11.47, . . . , 9.33. (b) κ2 = 9.71, . . . , 8.27. (c) κ3 = 8.77, . . . , 6.63. (d) κ4 =
7.07, . . . , 3.34. (e) κ5 = 4.01, . . . ,−2.26.

asymmetric mode shapes. The right-running modes exist only near the lower wall y = 0
and are negligible at the other side. The upstream-running modes behave the same
upside down. This behaviour is due to the sign of Ω2 − κ2: for large enough ω, the
mode is oscillatory in y when Ω2 − κ2 is positive, and exponentially decaying otherwise
(Rienstra 2020). For the present, linear, mean flow profile the y-interval with oscillatory
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FIGURE 4. Pressure field snapshots (order −1, . . . ,−5) for ω = 15 and P = −1 (left
running). (a) κ−1 = −43.78, . . . ,−100.04. (b) κ−2 = −32.82, . . . ,−69.40. (c) κ−3 =
−26.55, . . . ,−52.84. (d) κ−4 = −22.13, . . . ,−41.69. (e) κ−5 = −19.27, . . . ,−34.44.

behaviour is either the full interval, or a part adjacent to the upper or lower duct
wall. The contours corresponding to Ω2 − κ2 = 0 are indicated in the figures by white
lines.

In figures 5 and 6 the mode shapes in y for various x are given in detail. Indeed modes
p1, p−1, p−2, p−3, are practically vanishing at the upper, respectively lower, wall. As a
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FIGURE 5. Right-running nth-order modal functions Ψn(X, y) for ω = 15, as a function of
y − g for varying X. Ψ6 becomes cut-off and is not included. (a) Ψ1. (b) Ψ2. (c) Ψ3. (d) Ψ4.
(e) Ψ5.

result, these modes will not change if the respective wall is lined. Any attenuation due
to lining will have to come from the opposite wall. The contours of Ω2 − κ2 = 0 in the
mode shapes figures are given by yellow lines.

The modal wavenumbers κn as a function of x are given in figure 7. The analogue of the
Doppler effect in uniform flow, of increasing wavenumbers for upstream-running modes
and decreasing wavenumbers on downstream-running modes, is clearly present.

Near x = 0.4, the value of κ5 changes sign, the physical relevance of which is visible
in figure 3(e), where the modal wavelength suddenly becomes large, and (this is clearer in
an animation) the phase velocity changes from positive to negative. The mode seems to
propagate to the right for x < 0.4 and to the left for x > 0.4. This, however, is an optical
illusion. The energy of the mode remains right-running everywhere.

As the selected impedance does not have much attenuation, the corresponding figures
for the lined wall case are comparable. The snap shots of the pressure distribution, figure 8,
show the expected Doppler compression upstream and stretching downstream, and the
decay to the right for the right-running mode p2 and to the left for the left-running mode
p−2. We see here and in figure 9 again that the field of p−2 practically vanishes near the
lower wall.

The attenuation is better displayed by the transmitted power 10 log10 |P| in dB,
shown in figure 10. For comparison, the contributions of the exponential, given by
20 log10(e) Im

∫ x
κ±2 dx ′, has been added as dashed lines. The difference between the

exponential and the power is very small (on the logarithmic scale), and the role of the
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FIGURE 6. Left-running nth-order modal functions Ψn(X, y) for ω = 15, as a function of y − g
for varying X. Ψ−6 becomes cut-off and is not included. (a) Ψ−1. (b) Ψ−2. (c) Ψ−3. (d) Ψ−4.
(e) Ψ−5.
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FIGURE 7. Axial wavenumbers κ1, . . . , κ−1 (from top to bottom) as a function of x .
κ6 and κ−6 become cut-off and merge together at x = −0.055.
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FIGURE 8. Pressure field snapshots (orders ±2) for ω = 15 and Z = 1 + 2i.
(a) κ2 = 9.56 − 0.84i, . . . , 7.99 − 0.13i. (b) κ−2 = −30.25 + 0.38i, . . . ,−61.22 + 0.53i.
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a function of y − g for varying X. (a) Re(Ψ2). (b) Im(Ψ2). (c) Re(Ψ−2). (d) Im(Ψ−2).
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FIGURE 10. Axial acoustic power 10 log10 |P| in dB of right-running mode 2 and left-running
mode −2 as a function of x .
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FIGURE 11. Complex axial wavenumbers κ±2 varying from x = −3 (�, green) to x = 3
(•, red).

modal shape function in the decay is small here. The lines are not straight because κ±2
vary with x ; see figure 11.

6. Conclusions

The theory of slowly varying modes of WKB type in lined ducts with mean flow is fairly
well established for irrotational (potential) mean flow, because the slowly varying mean
flow equations can be solved practically analytically and the modal amplitude equations
can be integrated completely to a conserved quantity called an adiabatic invariant. This
is not generally the case for rotational mean flows. The equations for the mean flow
as well as the modal amplitudes require numerical integration, which is a practical
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inconvenience, but more importantly, as far as we can tell, no simple adiabatic invariant is
available.

Since conserved quantities (even approximate) have a physical meaning that may
uncover deeper relations, it is of interest to study their occurrence and possible
configurations allowing for their existence. This was a main goal of the present study.

In the present type of slowly varying modal wave forms, an adiabatic invariant takes the
form of a vanishing (axial) X-derivative of a cross-sectional integral of a combination of
squares and products of the modal shape function Ψ and its cross-wise derivatives Ψy, Ψz.

In standard WKB analysis it is always possible to construct a vanishing cross-sectional
integral of products between Ψ,Ψy, Ψz and ΨX . Only rarely can the integral be split up
in a part with and a part without ΨX , such that the X-derivatives are rearranged and
taken outside the integral. If this is the case, the obtained expression may be called an
‘incomplete adiabatic invariant’ if it is still X dependent, or a ‘complete adiabatic invariant’
(or just ‘adiabatic invariant’) if it is a constant.

Although it is still an open question under what conditions invariants exist in general (for
example, in 3-D cylindrical configurations with shear flow), the present study showed that
the simplifications due to a 2-D duct provide conditions that allow remarkable progress
in several ways. For a general sheared mean flow, the mean flow and amplitude equations
cannot be solved without a numerical integration but the amplitudes satisfy an equation
that is almost an adiabatic invariant. If the specific mean vorticity remains constant in
the axial direction (rather than constant along streamlines, as it does in general), the
incomplete adiabatic invariant reduces to a complete one.

This is just what happens for the particular case of a linearly sheared mean flow.
Furthermore, not only is the specific mean vorticity constant, but the whole flow field
can be determined practically analytically (up to an algebraic equation).

In conclusion, there is a remarkable, but apparently uncorrelated coincidence for 2-D
modes in slowly varying linearly sheared flow: (i) the governing Pridmore-Brown equation
can be solved analytically; (ii) the mean flow equations can be solved (practically)
analytically; (iii) the modal amplitude equation can be integrated completely.

Unfortunately, the analytical solution (Goldstein & Rice 1973) of the Pridmore-Brown
equation, being the difference of exponentially large functions, did not prove to be very
useful here. The simplicity of the other two results, however, makes the linear shear flow
problem about as simple as the potential flow problem.

Finally we note that, apart from the existence problem of adiabatic invariants in general,
a problem that could be subject of future study is the cut-on–cut-off transition (or turning
point problem) of the present slowly varying modes.
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Appendix A

A useful relation for sufficiently smooth function G and solutions Ψ, κ of the
Pridmore-Brown eigenvalue equation (4.8a) is the integral

∫ h

g
Ψ 2G dy =

∫ h

g

[ G
Ω2
(κ2Ψ 2 + Ψ 2

y )+ Gy

Ω2
ΨΨy

]
dy −

[GΨΨy

Ω2

]h

g

. (A 1)
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We prove it by noting that from the defining equation we have

Ψ 2G = κ2

Ω2
Ψ 2G −

(
Ψy

Ω2

)
y

ΨG, (A 2)

and use partial integration. In particular, with G = U/(DΩC3), Gy = ωUy/(DΩ2C4)∫ h

g

(
κ + UΩ

C

)
Ψ 2

DΩ2C2
− ωUy

DΩ4C4
ΨΨy dy

=
∫ h

g

κ

DΩ2C2
Ψ 2 dy +

∫ h

g

U
DΩC3

Ψ 2 − ωUy

DΩ4C4
ΨΨy dy

=
∫ h

g

1
DΩ3C3

(ωκΨ 2 + UΨ 2
y ) dy −

[
U

DΩ3C3
ΨΨy

]h

g

. (A 3)
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