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FACTORIZATION IN THE INVERTIBLE GROUP
OF A CŁ-ALGEBRA

MICHAEL J. LEEN

ABSTRACT. In this paper we consider the following problem: Given a unital CŁ-
algebra A and a collection of elements S in the identity component of the invertible
group of A, denoted inv0(A), characterize the group of finite products of elements of S.
The particular CŁ-algebras studied in this paper are either unital purely infinite simple
or of the form (A 
 K)+, where A is any CŁ-algebra and K is the compact operators
on an infinite dimensional separable Hilbert space. The types of elements used in the
factorizations are unipotents (1+ nilpotent), positive invertibles and symmetries (s2 ≥
1). First we determine the groups of finite products for each collection of elements in
(A
 K)+. Then we give upper bounds on the number of factors needed in these cases.
The main result, which uses results for (A
 K)+, is that for A unital purely infinite and
simple, inv0(A) is generated by each of these collections of elements.

0. Introduction. In this paper we consider the following problem: Given a unital
CŁ-algebra A and a collection of elements S in the identity component of the invertible
group of A, denoted inv0(A), or in U0(A) the identity component of the unitary group,
characterize the set of finite products of elements of S. The CŁ-algebras considered in
this paper are of the form (A 
 K)+, where K is the compact operators on an infinite
dimensional separable Hilbert space and A is any CŁ-algebra, and unital purely infinite
simple CŁ-algebras.

It is well known that for any unital Banach algebra inv0(A) is equal to the set of finite
products of exponentials of elements of A. For the CŁ-algebras mentioned above we will
characterize the groups of finite products generated by unipotents, positive invertibles,
selfadjoint invertibles, symmetries and *-symmetries. A unipotent element has the form
1 + a with a nilpotent. Symmetries are elements that satisfy s2 ≥ 1. A *-symmetry is a
selfadjoint unitary.

The survey article [12] contains many similar factorization problems in Mn, the nð n
matrices with entries in the complex numbers C, and L(H), the bounded operators on an
infinite dimensional separable Hilbert space H. (In [12] symmetries are called involutions
and *-symmetries are called symmetries.) For many elements it is easy to see that the
set of finite products will not equal inv0(A). For example, if x 2 Mn is a product of
unipotents, it must have determinant equal to 1; the determinant condition is sufficient
as well. However, in L(H) many elements besides exponentials generate inv

�
L(H)

�
, the

invertible group. Included in this list are unipotents, positive invertibles, and symmetries.
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Although factorization problems have been studied extensively in Mn and L(H), not
much else has been done until recently. In [6] de la Harpe and Skandalis consider factor-
ization by commutators of elements in both inv0(A) and U0(A), i.e., elements of the form
aba�1b�1 with a and b 2 inv0(A) and U0(A) respectively for (A
K)+, unital purely infi-
nite simple CŁ-algebra and simple AF-algebras. For A ≥ C(X)
Mn , where X is a compact
metric space, Phillips [10] characterized the group of finite products for the types of ele-
ments mentioned above as well as quasiunipotents (1+ quasinilpotent), accretives (a +aŁ

is positive invertible), and positive stable elements
�
sp(a) ² fï 2 C : Re(ï) Ù 0g

�
. (It

should be noted that this definition of accretive differs from definitions used elsewhere.
See the comments before and after Lemma 4.1 of [10].) It turns out (Theorem 4.5 (1) of
[10]) that for any CŁ-algebra A the accretive elements generate inv0(A) and the unitary
accretives generate U0(A). Since accretive elements are positive stable (Corollary 4.3 of
[10]), positive stable elements also generate inv0(A).

This paper is organized as follows. Section 1 contains the characterization of the
groups of finite products generated by unipotents, positive invertibles, and selfadjoint
invertibles in (A 
 K)+. Modulo an obvious scalar factor given by the unitization, we
show that each element of inv0(A
K)+ is a finite product of unipotents, positive invert-
ibles, or selfadjoint invertibles. We give a partial answer for symmetries: the group of
finite products is characterized in K+. Upper bounds on the length of the factorizations in
(A
K)+ are given in Section 2. In Section 3 we apply the results for (A
K)+ established
in Section 1 to factorization problems in a unital purely infinite simple CŁ-algebra A. We
show that all the sets of elements mentioned above are generators for inv0(A).

The results in this paper come from the author’s doctoral dissertation at the University
of Oregon under the direction of Professor N. Christopher Phillips. I would like to thank
Chris for his help and encouragement throughout the project. I am also grateful to the
referee for number of useful suggestions.

1. Stable CŁ-Algebras. A CŁ-algebra A is stable if A 
 K ¾≥ A. In this section we
will characterize the groups of finite products generated by unipotent elements, positive
invertibles, selfadjoint invertibles, symmetries and *-symmetries in (A 
 K)+. Let ô be
the canonical projection from the unitization of a CŁ-algebra onto C.

THEOREM 1.1. Let A be any CŁ-algebra. The set of finite products of unipotents in
(A 
 K)+ is equal to

n
x 2 inv0

�
(A 
 K)+

�
: ô(x) ≥ 1

o
.

An important technique in many proofs in this paper will be replacing an x in inv0(A)
by an element that commutes with a projection. The next two lemmas allow us to do this
in the proof of Theorem 1.1.

LEMMA 1.2. Let e and f be idempotents in a unital Banach algebra A such that
jje � f jj Ú 1.

(1) There are unipotents w and v such that ewv ≥ wvf .
(2) If I is an ideal in A and e�f 2 I, then the unipotents in (1) satisfy w�1, v�1 2 I.
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(3) If jje� f jj Ú ¢, then the unipotents in (1) satisfy

jjw � 1jj Ú ¢(¢ + jjejj)jjejj and jjv� 1jj Ú
¢(¢ + jjejj)jjejj

1� ¢2
.

PROOF. (1) Put w ≥ 1� (1� e)fe and v ≥ 1 + ef (1� e)
�
1� (e� f )2

�
�1

. Since e is

idempotent,
�
(e � 1)fe

�2
≥ 0. Thus w is unipotent. To see that v is unipotent, one need

only observe that both e and f commute with 1� (e� f )2.
To prove that ewv ≥ wvf it suffices to show that

ewv
�
1� (e� f )2

�
≥ wvf

�
1� (e� f )2

�
.

The left-hand side is ef . We get ef for right-hand side since f commutes with 1� (e� f )2.
(2) Using the definition of w and f 2 ≥ f , we have

w� 1 ≥ (e� f )fe.

Similarly, for v we have

v� 1 ≥ ef (f � e)
�
1� (e� f )2

�
�1

.

Since e� f 2 I it follows that w� 1 and v� 1 are in I.
(3) For w � 1, we have

jjw � 1jj � jje� f jj jjf jj jjejj Ú ¢(¢ + jjejj)jjejj,

and for v� 1, we have

jjv � 1jj � jje � f jj jjf jj jjejj jj
�
1� (e � f )2

�
�1
jj Ú

¢(¢ + jjejj)jjejj
1� ¢2

.

This completes the proof of the lemma.

LEMMA 1.3. Let A be a unital CŁ-algebra. Let x 2 A satisfy jjx � 1jj Ú 1
25 . If p is

a projection in A, then there are unipotents w and v in A such that wvxp ≥ pwvx and
jjwvx� 1jj Ú 1. Furthermore, if wvx is a product of unipotents, then so is x.

PROOF. Suppose jjx � 1jj Ú 1
25 . Let p be a projection in A. Then

jjxpx�1
� pjj � jjxp� pxjj jjx�1

jj � 2jjx� 1jj jjx�1
jj �

2jjx � 1jj
1� jjx � 1jj

Ú
1

12
.

Since xpx�1 and p are idempotents, by Lemma 1.2 (1) there are unipotents w and v such
that wvxpx�1 ≥ pwv, i.e. wvxp ≥ pwvx.

To show jjwvx� 1jj Ú 1, first notice that by Lemma 1.2 (3), with ¢ ≥ 1
12 , we have

jjw � 1jj Ú
1

10
and jjv� 1jj Ú

1
10

.

So

jjwvx�1jj � jjwvx�wvjj+ jjwv�1jj � jjwjj jjvjj jjx�1jj+ jjvjj jjw�1jj+ jjv�1jj Ú 1.

The last statement is obvious. This completes the proof.
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LEMMA 1.4. Let B be a CŁ-algebra, and let c 2 inv0(B+) with c� 1 2 B.

(1) Then
 

c 0
0 c�1

!
is a product of 3 unipotents in

�
M2(B)

�+
and the order of nilpo-

tency of each factor is 2.
(2) Let cn 2 B+, with cn � 1 2 B for all n ½ 1. Suppose jjcn � 1jj ! 0 as n !1. If

çn,i is a factor of
 

cn 0
0 c�1

n

!
given by (1), then

çn,i �

 
1 0
0 1

!! 0.

PROOF. (1) It is easy to check that each term in the following factorization is unipo-
tent in

�
M2(B)

�+
and that the order of nilpotency of each term is 2.

 
c 0
0 c�1

!
≥

 
1 c� 1
0 1

! 
2� c�1 c�1 � 1
1� c�1 c�1

! 
1 0

1� c 1

!
.

(2) If jjcn � 1jj Ú ¢, then

jjc�1
n � 1jj � jjc�1

n jj jjcn � 1jj �
jjcn � 1jj

1� jjcn � 1jj
Ú

¢

1 + ¢
.

The result follows by considering the factorization in the proof of (1). This completes
the proof of the lemma.

Now we proceed with the proof of Theorem 1.1.

PROOF (THEOREM 1.1). Suppose x 2 inv0

�
(A 
 K)+

�
and ô(x) ≥ 1. We need to

show that x is a product of unipotents. Choose p0 2 L(H) such that p0 ¾ 1 � p0 ¾ 1.
Then p ≥ 1
 p0 2 M(A
 K) and p ¾ 1� p ¾ 1.

Since inv0(A 
 K)+ is connected we may assume that jjx � 1jj Ú 1
25 . (If not, connect

x to 1 by a continuous path ã. If y1 and y2 are on ã where jjy1 � y2jj Ú
1

25 and y1 is
a product of unipotents, then so is y2.) By Lemma 1.3 there are unipotents v and w in
M(A 
 K) such that pwvx ≥ wvxp. It follows from Lemma 1.2 (2) that w and v are in
(A 
 K)+.

By Lemma 1.3, replacing x by wvx, we can assume x commutes with p and jjx�1jj Ú
1. Identify (A 
 K)+ with M2

�
p(A 
 K)p

�+
. Under this isomorphism

x 7!
 

y 0
0 z

!
≥

 
y 0
0 1

! 
1 0
0 z

!
.

We must factor both terms as products of unipotents. Since both p0 and 1 � p0 were
chosen to have infinite rank, the factorization of each term is similar. The details are
given only for the first term.

As 1 � p0 has infinite rank we can find projections q2, q3, . . . 2 L(H) such that 1 �
p0 ≥

P
1

k≥2 qk, qk ¾ p0 for all k, and the qk’s are pairwise orthogonal. Let p1 ≥ p
and pk ≥ 1 
 qk. Let wk be an isometry such that wkwŁ

k ≥ pk. Identify (A 
 K)+ with
(A 
 K 
 K)+ using the map û: (A
 K 
 K)+!A 
 K, defined by y
 eij 7! wiywŁ

j .

Combining this isomorphism with (A 
 K)+ ¾≥
h
M2

�
p(A
 K)p

�i+
we get

 
y 0
0 1

!
7�! diag(y, 1, 1, . . . ).
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Factor as follows (see the proof of Proposition 7.1 of [5])

diag(y, 1, 1, . . .) ≥ diag(y, y�
1
2 , y�

1
2 , y

1
4 , y

1
4 , y

1
4 , y

1
4 , y�

1
8 , . . .)

Ð diag(1, y
1
2 , y

1
2 , y�

1
4 , y�

1
4 , y�

1
4 , y�

1
4 , y

1
8 , . . .),(1)

where yš
1

2n occurs 2n times on the diagonal. Each term on the right-hand side of (1) can
be factored further; the first term as

diag(y
1
2 , y�

1
2 , 1, y

1
8 , y

1
8 , y

1
8 , y

1
8 , y�

1
8 , y�

1
8 , y�

1
8 , y�

1
8 , 1, 1, 1, 1, y

1
32 , . . .)

Ð diag(y
1
2 , 1, y�

1
2 , y

1
8 , y

1
8 , y

1
8 , y

1
8 , 1, 1, 1, 1, y�

1
8 , y�

1
8 , y�

1
8 , y�

1
8 , y

1
32 , . . .),(2)

and the second as

(3) diag(1, y
1
4 , y

1
4 , y�

1
4 , y�

1
4 , 1, 1, y

1
16, . . .) Ð diag(1, y

1
4 , y

1
4 , 1, 1, y�

1
4 , y�

1
4 , y

1
16 , . . .).

Notice that each term in (2) and (3) is in (A
K
K)+ since jjyš
1

2n �1jj ! 0 as n !1.
We factor the first term of (2), call it ã. The factorization of the other terms is similar.

Now ã has diagonal entries of the form diag(ãn,ã�1
n , 1), where

ãn ≥ diag(y
1

2Ð4n�1 , . . . , y
1

2Ð4n�1 ) 2 M4n�1 (A 
 K)+.

By Lemma 1.4 (1) diag(ãn,ã�1
n , 1) can be factored as a product of unipotents in

M3Ð4n�1 (A 
 K)+. Thus ã can be factored as a product of three unipotent infinite block
diagonal matrices. It follows from Lemma 1.4 (2) that each factor is in (A 
 K 
 K)+.
This completes the proof of the theorem.

THEOREM 1.5. Let A be any CŁ-algebra. The set of finite products of positive invert-
ibles in (A 
 K)+ is equal to

n
x 2 inv0

�
(A 
 K)+

�
: ô(x) 2 (0,1)

o
.

The proof of Theorem 1.5 uses matrix factorization techniques similar to those in the
proof of Theorem 1.1. The following lemmas allow us to factor certain types of matrices
as products of positive invertibles. The proofs of both lemmas make extensive use of
Proposition 1.4.5 of [7].

LEMMA 1.6. Let B be a unital CŁ-algebra, and let I be an ideal in B.

(1) If b 2 B, then
 

1 b
0 1

!
is a product of 3 positive invertible elements of M2(B).

(2) Suppose bn 2 B and jjbnjj ! 0. If çn,i is one of the three positive invertible

factors of
 

1 bn

0 1

!
given by (1), then jjçn,i �

 
1 0
0 1

!
jj ! 0.

(3) If b 2 I, then the three positive invertible factors of
 

1 b
0 1

!
given by (1) are in

M2(I)+ .

PROOF. (1) Let t0 ≥ bŁb. Then there exists s 2 B such that b ≥ s(t0)
1
4 . Put t ≥ (t0)

1
4 .

Then  
1 b
0 1

!
≥

 
1 0
0 (1 + t)�1

! 
1 s
0 1

! 
1 0
0 1 + t

! 
1 �s
0 1

!
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≥

 
1 0
0 (1 + t)�1

! " 
1 s
0 1

! 
1 0
0 1 + t

! 
1 s
0 1

!
Ł
# " 

1 �s
0 1

!
Ł
 

1 �s
0 1

!#
.

(2) Choose sn 2 B as in the proof of (1) such that bn ≥ sntn and jjsnjj � jjtnjj. If çn,i

is one of the factors of
 

1 bn

0 1

!
given by (1), then

çn,i �

 
1 0
0 1

! ! 0.

(3) Suppose b 2 I. Let s and t be as in the proof of (1). Then s 2 I. Hence the three

positive invertible elements in the factorization of
 

1 b
0 1

!
are in M2(I)+.

LEMMA 1.7. Let B be a nonunital CŁ-algebra.
(1) Suppose y 2 B+ with y � 1 2 B. Then diag(y, y�1, 1) and diag(y, 1, y�1) are

products of 24 positive invertible elements of M3(B)+.
(2) Suppose yn 2 B+ with yn�1 2 B, and jjyn�1jj ! 0. If çn,i is one of the positive in-

vertible factors of diag(yn, y�1
n , 1) or diag(yn, 1, y�1

n ), then jjçn,i�diag(1, 1, 1)jj !
0.

PROOF. (1) Let t ≥
�
(y�1 � 1)Ł(y�1 � 1)

� 1
4 . Then there is an s 2 B such that

y�1 ≥ 1 + st. Notice that 1 + ts is invertible with (1 + ts)�1 ≥ 1� t(1 + st)�1s ≥ 1� tys.
Factor diag(y, y�1, 1) as follows

0
B@

y 0 0
0 y�1 0
0 0 1

1
CA ≥

0
B@

y 0 0
0 1 0
0 0 1 + ts

1
CA
0
B@

1 0 0
0 y�1 0
0 0 (1 + ts)�1

1
CA .

The first term is factored as

(Ł)

0
B@

1 0 ys
0 1 0
0 0 1

1
CA
0
B@

1 0 0
0 1 0
�t 0 1

1
CA
0
B@

1 0 �s
0 1 0
0 0 1

1
CA
0
B@

1 0 0
0 1 0
ty 0 1

1
CA ,

and the second as

(ŁŁ)

0
B@

1 0 0
0 1 0
0 �ty 1

1
CA
0
B@

1 0 0
0 1 s
0 0 1

1
CA
0
B@

1 0 0
0 1 0
0 t 1

1
CA
0
B@

1 0 0
0 1 �ys
0 0 1

1
CA .

Since s and t are in B and B is an ideal in B+ each of the eight factors above is in M3(B)+.
Use Lemma 1.6 to write each of the eight factors as products of three positive invertible
elements of M3(B)+.

For diag(y, 1, y�1) the argument is similar.

0
B@

y 0 0
0 1 0
0 0 y�1

1
CA ≥

0
B@

y 0 0
0 1 + ts 0
0 0 1

1
CA
0
B@

1 0 0
0 (1 + ts)�1 0
0 0 y�1

1
CA .
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The first term is factored as0
B@

1 ys 0
0 1 0
0 0 1

1
CA
0
B@

1 0 0
�t 1 0
0 0 1

1
CA
0
B@

1 �s 0
0 1 0
0 0 1

1
CA
0
B@

1 0 0
ty 1 0
0 0 1

1
CA ,

and the second as0
B@

1 0 0
0 1 �ty
0 0 1

1
CA
0
B@

1 0 0
0 1 0
0 s 1

1
CA
0
B@

1 0 0
0 1 t
0 0 1

1
CA
0
B@

1 0 0
0 1 0
0 �ys 1

1
CA .

(2) We consider the case diag(yn, y�1
n , 1). The argument for diag(yn, 1, y�1

n ) is the
same. Let tn ≥ (y�1

n �1)(y�1
n �1)Ł. Choose sn so that y�1

n �1 ≥ sntn and jjsnjj � jjtnjj. If
jjyn�1jj ! 0, then the off diagonal terms of the eight unipotent factors of diag(yn, y�1

n , 1)
given by (Ł) and (ŁŁ) in the proof of (1) go to zero. So by Lemma 1.6 (2), if çn,i is a
positive invertible factor of diag(yn, y�1

n , 1), then jjçn,i � diag(1, 1, 1)jj ! 0. This proves
the lemma.

PROOF (THEOREM 1.5). It suffices to assume that ô(x) ≥ 1 and jjx�1jj Ú 1. Choose
a projection p 2 M(A 
 K) as in the proof of Theorem 1.1 such that p ¾ 1� p ¾ 1 and
jj(1�p)(x�1)(1�p)jj Ú 1. Then (1�p)x(1�p) is invertible in

h
(1�p)(A
K)(1�p)

i+
.

Identify (A 
 K)+ with
h
M2(p(A
 K)p)

i+
. Under this isomorphism

x 7!
 

a b
c d

!
≥

 
1 b1

0 1

! 
a1 0
0 d

! 
1 0
c1 1

!
,

where b1 ≥ bd�1, a1 ≥ a�bd�1c, and c1 ≥ d�1c. By Lemma 2.3 of [2], a1 is invertible,

and b1, c1, a1� 1, d� 1 2 p(A
K)p. Lemma 1.6 allows us to factor both
 

1 b1

0 1

!
and 

1 0
c1 1

!
as products of three positive invertible elements of

h
M2

�
p(A
 K)p

�i+
.

To factor
 

a1 0
0 d

!
we follow the proof of Theorem 1.1 and reduce the problem to

factoring ã and ãn . To factor ã ≥ diag(ã1,ã�1
1 , 1,ã2,ã�1

2 , 1, . . .) we must fit together
the factors of diag(ãn,ã�1

n , 1) for each n, given by Lemma 1.7 (1), to form an element
of (A 
 K 
 K)+. For example, the first unipotent factor given by (Ł) in the proof of
Lemma 1.7 (1) will be

diag

0
B@
0
B@

1 0 ã1s1

0 1 0
0 0 1

1
CA ,

0
B@

1 0 ã2s2

0 1 0
0 0 1

1
CA , . . .

1
CA ,

where ã�1
n � 1 ≥ tnsn as in the proof of Lemma 1.7 (2). Call this factor å. According to

the proof of Lemma 1.7 (2), if jjãn � 1jj ! 0, then jjtnjj ! 0 and jjsnjj ! 0. Therefore
å is in (A
 K 
 K)+.

By Lemma 1.6,å is a product of positive invertibles. Let bn ≥ ãnsn. Put wn ≥ (bnbŁn)
1
4 .

As in the proof of Lemma 1.6 (1), choose zn so that bn ≥ wnzn. The positive invertible
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factors of å have the following form:

diag

0
B@
0
B@

1 0 0
0 1 0
0 0 (1 + w1)�1

1
CA ,

0
B@

1 0 0
0 1 0
0 0 (1 + w2)�1

1
CA , . . .

1
CA ,

diag

0
B@
0
B@

1 0 z1

0 1 0
0 0 1

1
CA
0
B@

1 0 0
0 1 0
0 0 1 + w1

1
CA
0
B@

1 0 z1

0 1 0
0 0 1

1
CA
Ł

, . . .

1
CA

and

diag

0
B@
0
B@

1 0 �z1

0 1 0
0 0 1

1
CA
Ł
0
B@

1 0 �z1

0 1 0
0 0 1

1
CA ,

0
B@

1 0 �z2

0 1 0
0 0 1

1
CA
Ł
0
B@

1 0 �z2

0 1 0
0 0 1

1
CA , . . .

1
CA .

Since jjbnjj ! 0, each of these factors is in (A 
 K 
 K)+. So å is a product of positive
invertible elements of (A
 K 
 K)+. Similarly the other factors of diag(ãn,ã�1

n , 1) will
form elements of (A 
 K 
 K)+ which are products of positive invertibles.

COROLLARY 1.8. Let A be any CŁ-algebra. The set of finite products of selfadjoint
invertibles of (A 
 K)+ is equal to

n
x 2 inv0

�
(A 
 K)+

�
: ô(x) 2 (�1,1)

o
.

When one considers factorization problems in a particular CŁ-algebra one might won-
der if the different factorizations have similar behavior. For example, in Mn all of the sets
of finite products for elements considered in this paper are characterized by a determinant
condition and are closed in inv(Mn). Such is not the case for (A
 K)+.

EXAMPLE 1.9. In any CŁ-algebra A a symmetry s has the form s ≥ 2e�1, where e is
an idempotent. If s 2 K+, it is easy to see that either e or 1� e is in K. In K idempotents
are finite rank since they are the identity on their range. Let F denote the finite rank
operators. Suppose x 2 K+ is a product of symmetries. Since F is an ideal in K, x has
the form f š 1 with f finite rank. Now suppose that f is a finite rank operator. Choose a
basis so that f is in Mn. By Theorem 3.6 of [13], if det(f + 1n) ≥ š1 then f + 1n is a finite
product of symmetries in Mn. Put f + 1n ≥

Qk
i≥1 si, where si is a symmetry in Mn. Note

that si ý 1 is a symmetry in K+. It follows that the set of finite products of symmetries in
K+ is not closed in inv(K+).

A *-symmetry has the form 2p� 1 with p a projection. Argue as above to see that the
group of finite products of *-symmetries is not closed in U0(K+).

2. Upper Bounds for Factorizations. A companion problem to the factorization
results is to find an upper bound on the length of the factorization. This has been done in
several cases for exponentials. See the survey article [11]. For several types of elements,
including unipotents, positive invertibles and selfadjoint invertibles, Phillips showed in
[10] that there is no upper bound on the lengths of the factorizations in C(X)
M2, where
X is the Hilbert Cube [0, 1]N. The purpose of this chapter is to establish upper bounds for
the length of factorization by unipotents, positive invertibles, and selfadjoint invertibles
in stable CŁ-algebra. These bounds are not known to be best possible.
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In [6] (Theorem 7.4) de la Harpe and Skandalis gave this upper bound result for com-
mutators: if A is a stable CŁ-algebra and x 2 inv0(A+) with ô(x) ≥ 1, then x is the product
of at most 6 commutators of elements of inv0(A). Many ideas for this section were in-
spired by Lemma 7.3 and Theorem 7.4 of [6] and their proofs.

LEMMA 2.1. Let A be a nonunital CŁ-algebra, and let x1, x2, . . . , xn be invertible in
A+. If xnxn�1 Ð Ð Ð x1 ≥ 1, then x ≥ diag(x1, x2, . . . , xn, 1, . . . , 1) is a product of three terms

of the form
 

1 0
s 1

! 
1 t
0 1

!
in
h
M2n(A)

i+
.

PROOF. See the proof of Lemma 7.3 of [6]. In order to prove that x is a product of
three commutators they first show that x is a product of three such factors.

THEOREM 2.2. Let A be a stable CŁ-algebra. If x 2 inv0(A+) with ô(x) ≥ 1, then x
is the product of at most 10 unipotent elements of A+.

PROOF. We follow the proof of Theorem 7.4 of [6]. Let x 2 inv0(A+) with ô(x) ≥ 1.
There exists a projection p 2 M(A) such that p ¾ 1� p ¾ 1 and

jj(1 � p)(x � 1)(1 � p)jj Ú 1.

Therefore (1�p)x(1�p) is invertible in
h
(1�p)A(1�p)

i+
. Identify A+ with

h
M2(pAp)

i+
.

Under this isomorphism

(1) x 7!
 

a b
c d

!
≥

 
1 b1

0 1

! 
a1 0
0 d

! 
1 0
c1 1

!
,

where a1 ≥ a� bd�1c, b1 ≥ bd�1 and c1 ≥ d�1c. Note that a1 is invertible in (pAp)+ by
Lemma 2.3 of [2]. Choose s, t 2 pAp so that d ≥ 1 + st. Then

(2)
 

a1 0
0 d

!
≥

 
(1 + ts)�1 0

0 1 + st

! 
(1 + ts)a1 0

0 1

!
.

The first factor on the right-hand side of (2) is 
1 (1 + ts)�1t
0 1

! 
1 0
�s 1

! 
1 �t
0 1

! 
1 0

s(1 + ts)�1 1

!
.

Substituting in (1) we get

x ≥
 

1 b1

0 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
(1 + ts)a1 0

0 1

! 
1 0
c1 1

!
.

Now  
(1 + ts)a1 0

0 1

! 
1 0
c1 1

!
≥

 
1 0

c1

�
(1 + ts)a1

�
�1

1

! 
(1 + ts)a1 0

0 1

!
.

If we put x1 ≥ (1 + ts)a1, then

(3)
x ≥

 
1 Ł

0 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
1 0
Ł 1

! 
x1 0
0 1

!

≥

 
1 Ł

0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
x1 0
0 1

! .
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Next we want to show that
 

x1 0
0 1

!
is a product of unipotents. Since x1 is in

inv0(pAp)+ with x1 � 1 2 pAp and pAp is stable, Theorem 1.1 allows us to write
x1 ≥

Qn
i≥1 ai, where the ai are unipotent in (pAp)+ for i ≥ 1, . . . , n. Writing 1 � p as

the sum of 2n � 1 orthogonal projections all equivalent to p we now identify A+ withh
M2n(pAp)

i+
. Under the isomorphismsh

M2(pAp)
i+ ¾≥ A+ ¾≥

h
M2n(pAp)

i+
,

we get  
x1 0
0 1

!
7! diag(x1, 1, . . . , 1).

Now

(4) diag(x1, 1, . . . , 1) ≥ diag(a1, a2, . . . , an, 1n) diag
� nY

i≥2
ai, a�1

2 , . . . , a�1
n , 1n

�
.

Since each ai is unipotent, the first term of the right-hand side of (4) is unipotent.
By Lemma 2.1 the second factor in (4) is a product of three terms of the form 

1 0
s 1

! 
1 t
0 1

!
in
h
M2n(pAp)

i+
. This gives

 
x1 0
0 1

!
as the product of seven unipo-

tents and hence x as the product of 11.
To get the desired number 10, let y ≥ diag(a1, a2, . . . , an) and notice that in the fac-

torization of the second term of (4), given in the previous paragraph, the first factor has

the form
 

1 0
s 1

!
. Put w ≥ sy�1; then

 
y 0
0 1

! 
1 0
s 1

!
≥

 
1 0
w 1

! 
y 0
0 1

!
.

Finally notice that the fourth factor in (3) has the form
 

1 0
z 1

!
in
h
M2(pAp)

i+
. We claim

that in the identification with
h
M2n(pAp)

i+
this term becomes a lower triangular matrix

with 1’s on the diagonal, call it ã. To verify the claim, consider the isomorphismsh
M2(pAp)

i+ ¾≥ A+ ¾≥
h
M2n(pAp)

i+
.

Put p1 ≥ p and 1 � p ≥
P2n

i≥2 pi. Let vk be a partial isometry such that vŁkvk ≥ p1 and
vkvŁk ≥ pk. Let v be the partial isometry such that vŁv ≥ p and vvŁ ≥ 1 � p. Using the
vk’s, the isomorphisms above give 

1 0
z 1

!
7! (1 + vz) 7!

�
vŁi (1 + vz)vj

�2n

i,j≥1
.

Now z 2 pAp, vk ≥ vkvŁkvk and the pk’s are orthogonal. So, if i ≥ 1 or j Â≥ 1, then

vŁi vzvj ≥ vi(1 � p)vzpvj ≥ vipi(1� p)vzppkvk ≥ 0.

Therefore
�
vŁi (1 + vz)vj

�2n

i,j≥1
≥ 1n + (vŁi vzv1)2n

i≥1, and ã has the form as claimed. But then

ã

 
1 0
w 1

!
is also lower triangular with diagonal 1’s, hence unipotent. This rearrange-

ment gives x as the product of ten unipotents.
By modifying the above proof slightly we can get upper bounds for the factorization

by positive invertibles and self adjoint invertibles in a stable CŁ-algebra A.
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THEOREM 2.3. Let A be a stable CŁ-algebra. If x 2 inv0(A+) and ô(x) Ù 0, then x is
the product of at most 31 positive invertible elements.

PROOF. Suppose x 2 inv0(A+). Since x ≥ a + ï1 ≥ (ï�1a + 1)ï1, where a 2 A and
ï 2 C, and ï1 is positive and invertible we can assume that x ≥ a + 1.

Arguing as in the previous proof

(1) x ≥
 

1 Ł

0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
x1 0
0 1

!

in
h
M2(pAp)

i+
, where x1 2 inv0(pAp)+. Write x1 ≥

Qn
i≥1 ai, where ai is positive invertible

for each i. Passing to
h
M2n(pAp)

i+
, and putting z ≥ diag(x1, 1, . . . , 1), we get

(2) z ≥ diag(a1, a2, . . . , an, 1n)diag
� nY

i≥2
ai, a�1

2 , . . . , a�1
n , 1n

�
.

Since each ai is positive invertible, the first factor is positive and invertible. Put y ≥

diag(a1, a2, . . . , an). Applying Lemma 2.1 to the second term of (2) yields

z ≥
 

y 0
0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

! 
1 0
Ł 1

! 
1 Ł

0 1

!

in
h
M2n(pAp)

i+
. Combining (1) and (2), x is the product of 10 terms of the form

 
1 Ł

0 1

!

or
 

1 0
Ł 1

!
and one positive invertible. By Lemma 1.6 (1) each term of the form

 
1 Ł

0 1

!

or
 

1 0
Ł 1

!
is a product of three positive invertible elements. Therefore x is the product

of 31 positive invertible elements.

COROLLARY 2.4. Let A be a stable CŁ-algebra. If x 2 inv0(A+) and ô(x) 2 (�1,1)
then x is the product of at most 31 selfadjoint invertible elements.

3. Purely Infinite CŁ-Algebras. In this chapter we apply the factorization results
established in section 1 for stable CŁ-algebras to factorization problems in the invertible
group of a unital purely infinite simple CŁ-algebra. A CŁ-algebra A is purely infinite if
for all x ½ 0 the hereditary subalgebra xAx contains an infinite projection.

It turns out that the set of finite products of any of the classes of elements considered
above (commutators, unipotents, positive invertibles, selfadjoint invertibles, and sym-
metries), as well as others, is all of inv0(A). These results are due in part to the the fact
that a purely infinite simple CŁ-algebra A contains a (*-isomorphic) copy of A
K as the
following lemma (Lemma 2.3 of [5]) shows.

LEMMA 3.1. Let p be a projection in a unital CŁ-algebra A with p ¾ 1 and feijg a
system of matrix units for K. There is a homomorphism û: (1�p)A(1�p)
K ! A such
that û(x 
 e11) ≥ x, for x 2 (1 � p)A(1� p).

A fact that will be used often in the proofs in this chapter is Proposition 2.2 of [3]: A
unital purely infinite simple CŁ-algebra A contains two orthogonal projections p and q
such that p ¾ q ¾ 1 in A.
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THEOREM 3.2. Let A be a unital purely infinite simple CŁ-algebra. Then inv0(A) is
the set of finite products of unipotent elements of A.

PROOF. Suppose x 2 inv0(A). Choose orthogonal projections p and q in A such that
p ¾ q ¾ 1. As in the proof of Theorem 1.1, we may assume that jjx � 1jj Ú 1

25 . Then
by Lemma 1.3 we may assume that xp ≥ px and jjx � 1jj Ú 1. With respect to the
decomposition 1 ≥ pý (1� p) write

x ≥
 

pxp 0
0 1� p

! 
p 0
0 (1� p)x(1� p)

!

Call the first factor on the right-hand side x1 and the second x2. Each must be factored as
a product of unipotents.

We have x1� 1 2 pAp. Use Lemma 3.1 to choose a homomorphism û:
�
(1� q)A(1�

q)
K
�+
! A. Since p � 1�q we haveû

�
(x�1)
e11

�
≥ x�1. Now

�
(x�1)
e11

�
+1 2

inv0

�
(A 
 K)+

�
and by Theorem 1.1 it is a product of unipotents in (A 
 K)+. Thus x is

a product of unipotents in A.
For the second factor, since x2 � 1 2 (1� p)A(1� p) we can replace (1� q)A(1� q)

by (1 � p)A(1� p) in the above argument.

THEOREM 3.3. Let A be a unital purely infinite simple CŁ-algebra. Then inv0(A) is
the set of finite products of positive invertible elements of A.

Given a projection p in A and x 2 inv0(A), the next lemma will allow us to employ
our usual tactic of replacing x by an element that commutes p.

LEMMA 3.4. If p and q are projections in a unital CŁ-algebra A with jjp � qjj Ú 1,
then there are positive invertible elements a1, a2, a3, a4, a5, a6 2 A so that

p
� 6Y

n≥1
an

�
≥

� 6Y
n≥1

an

�
q.

PROOF. Replacing e by p and f by q, let w and v be the unipotents defined in
Lemma 1.2 (1). We claim that

(1) v ≥
�
v�1(vŁ)�1

��
vŁ(p + 1)v

�
(1�

1
2

p)

and

(2) w ≥ (1�
1
2

p)(wwŁ)
�
(wŁ)�1(p + 1)w�1

�
.

Since the right hand side of both (1) and (2) is a product of three positive invertibles,
one need only check the claimed equalities. Recall from the proof of Lemma 1.2 (1) that

v ≥ 1 + pq(1� p)
�
1� (p� q)2

�
�1

and w ≥ 1� (1� p)qp, and that pq(1� p) commutes

with
�
1 � (p � q)2

�
�1

, which gives vp ≥ p. The calculations are straightforward using
these facts.
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PROOF (THEOREM 3.3). Suppose x 2 inv0(A). Let u be the unitary part of the polar
decomposition of x. It suffices to show that u is a product of positive invertibles. Choose
orthogonal projections p and q in A such that p ¾ q ¾ 1. It suffices to assume that
jju � 1jj Ú 1

2 and so jjupuŁ � pjj Ú 1. Since upuŁ is a projection apply Lemma 3.4 to
find positive invertible elements a1, a2, a3, a4, a5, a6 2 A so that

p
� 6Y

n≥1
an

�
u ≥

� 6Y
n≥1

an

�
up.

By the proof of Lemma 3.4,
Q6

n≥1 an ≥ wv, where w and v are as in Lemma 1.3. Therefore
if jju� 1jj Ú 1

25 , then by Lemma 1.3

jj

� 6Y
n≥1

an

�
u� 1jj ≥ jjwvu� 1jj Ú 1.

Replacing u by (
Q6

n≥1 an)u, we may assume up ≥ pu and jju�1jj Ú 1. (However, u might
no longer be unitary.) Proceed now as in the proof of Theorem 3.2 and use Theorem 1.5
to factor u as a product of positive invertibles.

So far in this chapter our proofs have relied on the factorization results for (A
 K)+.
Recall that in Chapter 1 it was shown that factorization by symmetries in K+ does not
turn out as nicely as the factorization by commutators, unipotents or positive invertibles.
However, in unital purely infinite simple CŁ-algebras the difficulties present in the (A

K)+ case can be overcome.

THEOREM 3.5. Let A be a unital purely infinite simple CŁ-algebra. The set of finite
products of symmetries in A is inv0(A).

PROOF. Suppose a 2 inv0(A). Let p be a nontrivial projection in A. Choose v 2 A
such that vŁv ≥ p and vvŁ Ú p and put p1 ≥ p� vvŁ.

First we show that without loss of generality we can assume a commutes with p1. By
Lemma 4.2 (1) of [8] there is an ¢ such that for any idempotent e 2 A if jjp1 � ejj Ú ¢

then there is a symmetry s 2 A so that p1 ≥ ses. It suffices to assume jja � 1jj Ú ¢

2+¢ .
Then jjp1 � ap1a�1jj Ú ¢ and, since ap1a�1 is an idempotent, there exists a symmetry s
such that p1sa ≥ sap1. Replacing a by sa, we may assume ap1 ≥ p1a.

Write a in matrix form with respect to the decomposition 1 ≥ p1 ý (1 � p1),

a ≥
 

p1ap1 0
0 (1 � p1)a(1� p1)

!
.

Let x ≥ p1ap1 and d ≥ (1� p1)a(1 � p1).

Now we show that it suffices to assume a ≥

 
x 0
0 1� p1

!
and x 2 inv0(p1Ap1).

Choose a projection q0 2 A such that 1 � p1 ¾ q0 � p1. Let h be a partial isome-
try such that hŁh ≥ 1 � p1 and hhŁ ≥ q0. We have (q0 + 1 � p1)A(q0 + 1 � p1) ¾≥

M2

�
(1� p1)A(1� p1)

�
. We can factor

 
d 0
0 d�1

!
2 M2

�
(1� p1)A(1� p1)

�
as a product

of symmetries as follows  
d 0
0 d�1

!
≥

 
0 d

d�1 0

! 
0 1
1 0

!
.
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Under the isomorphism

 
d 0
0 d�1

!
7!

 
d0 0
0 d�1

!
2 (q0 + 1� p1)A(q0 + 1� p1),

where d0 ≥ hdhŁ. Let z0 ≥

 
d0 0
0 d�1

!
and z ≥ p1 � q0 + z0. Then z is a product of

symmetries in A.
Now

az ≥
 

x 0
0 d

! 
p1 � q0 + d0 0

0 d�1

!
≥

 
x0 0
0 1

!
,

and a, z 2 inv0(A). So az 2 inv0(A). Since K1(A) ¾≥ inv(A)Ûinv0(A) (Theorem 1.9 of [4]),

x0 is in inv0(p1Ap1). Therefore, replacing a by az, we may assume that a ≥
 

x 0
0 1� p1

!

and x 2 inv0(p1Ap1).
Choose a projection q in A so that p ¾ q Ú 1� p and then choose a projection r in A

so that q ¾ r Ú 1� p� q. Let v1 and v2 be partial isometries which satisfy

vŁ1v1 ≥ p, v1vŁ1 ≥ q, vŁ2v2 ≥ q, and vŁ2v2 ≥ r.

Let v3 ≥ vŁ1vŁ2. Then vŁ3v3 ≥ r and v3vŁ3 ≥ p.
Let w ≥ v1 + v2 + vv3. In order to build the first of three copies of p1Ap1 
 K in

(p + q + r)A(p + q + r) we define an infinite collection of projections using w and p1. Let
pk ≥ wpk�1wŁ, for k ½ 2, and wk ≥ wk�1p1. Then wkwŁ

k ≥ pk and wŁ

kwk ≥ p1, and
the pk’s are orthogonal equivalent projections which satisfy p3n�2 Ú p, p3n�1 Ú q and
p3n Ú r, for n ½ 1.

Define ü: p1Ap1 
 K ! (p + q + r)A(p + q + r) by y 
 eij 7! wiywŁ

j . Extend ü to
(p1Ap1 
 K)+ by 1 7! p + q + r.

Next we produce two other copies of p1Ap1 
 K in (p + q + r)A(p + q + r). For each
n choose orthogonal equivalent projections fe(j)

3n�2 : j ≥ 1, . . . , 4n�1g such that p3n�2 ¾

e(j)
3n�2 and

p3n�2 ≥
4n�1X
j≥1

e(j)
3n�2.

Then put e(j)
3n�1 ≥ w

�
e(j)

3n�2

�
wŁ and e(j)

3n ≥ w
�
e(j)

3n�1

�
wŁ, for each n and j, and order the e(j)

i ’s

as follows: e(1)
1 , e(1)

2 , e(1)
3 , e(1)

4 , . . . , e(4)
4 , e(1)

5 , . . .. Use the partial isometries which implement
the equivalences p3n�2 ¾ e(j)

3n�2 and p3n�2 ¾ p1 to define partial isometries r(j)
3n�2 so that

r(j)
3n�2(r(j)

3n�2)Ł ≥ p1 and (r(j)
3n�2)Łr(j)

3n�2 ≥ e(j)
3n�2, and put r(j)

3n�1 ≥ r(j)
3n�2wŁ and r(j)

3n ≥

r(j)
3n�1wŁ. Then use the r(j)

i ’s to define û1: (p1Ap1 
 K)+ ! (p + q + r)A(p + q + r).
Similarly choose orthogonal equivalent projections ff (j)

i g such that p1 ≥ f (1)
1 and

p3n�1 ≥
2Ð4(n�1)X

j≥1
f (j)
3n�1,
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for n ½ 1. Then put f (j)
3n ≥ w

�
f (j)
3n�1

�
wŁ and f (j)

3n+1 ≥ w
�
f (j)
3n

�
wŁ, for any n and j. Order the

f (j)
i ’s as follows:

f (1)
1 , f (1)

2 , f (2)
2 , f (1)

3 , f (2)
3 , f (1)

4 , f (2)
4 , f (1)

5 , . . . , f (8)
5 , f (1)

6 , . . . .

Using the partial isometries which implement f (j)
i ¾ f (1)

i ≥ p1, defineû2: (p1Ap1
K)+ !

(p + q + r)A(p + q + r).
Now we turn to the factorization of a. Let r0 ≥ 1� (p + q + r). By the definition of ûi

we have
ûi

�
diag(x, 1, 1, . . .)

�
≥ ûi

�
diag(x� p1, 0, 0, . . .) + 1

�
≥ x� p1 + p + q + r

≥ a� r0,

for i ≥ 1, 2. If a � r0 is a product of symmetries in (p + q + r)A(p + q + r), then a is a
product of symmetries in A.

Recall from the proof of Theorem 1.1 that

diag(x, 1, 1, . . .) ≥ diag(x
1
2 , x�

1
2 , 1, x

1
8 , x

1
8 , x

1
8 , x

1
8 , x�

1
8 , . . .)

Ð diag(x
1
2 , 1, x�

1
2 , x

1
8 , x

1
8 , x

1
8 , x

1
8 , 1, 1, 1, 1, x�

1
8 , . . .)

Ð diag(1, x
1
4 , x

1
4 , x�

1
4 , x�

1
4 , 1, 1, x

1
16 , . . .)

Ð diag(1, x
1
4 , x

1
4 , 1, 1, x�

1
4 , x�

1
4 , x

1
16 , . . .).

Call the factors b1, b2, b3, and b4 respectively. We must factor each bi as a product of
symmetries. For the factorizations of b3 and b4 replace û1 by û2 in the following ar-
gument. The factorization for b2 is similar to that of b1. We check the details only for
b1.

The set of bounded sequences of the product
Q
1

n≥1 M3

�
M4n�1 (p1Ap1)

�
is a CŁ-algebra

when given the norm jjanjj ≥ supnjjanjj. If we let xn be the diagonal 4n�1 ð 4n�1 matrix

with all diagonal entries equal to x
1

2Ð4n�1 , then

b1 ≥
�
diag(x1, x�1

1 , 1), diag(x2, x�1
2 , 1), . . . , diag(xn, x�1

n , 1), . . .
�
,

is in
Q
1

n≥1 M3

�
M4n�1 (p1Ap1)

�
since jjxn � 1jj ! 0, as k !1.

Put qj ≥ wŁ

3n�2

�
e(j)

3n�2

�
w3n�2. Then qj ¾ p1 for all j and

P4n�1

j≥1 qj ≥ p1. So we can
define an isomorphism between M4n�1 (p1Ap1) and p1Ap1. Let Φn be the extension of this
isomorphism to the 3ð 3 matrices over these algebras and define

Φ ≥
1Y

n≥1
Φn :

1Y
n≥1

M3

�
M4n�1 (p1Ap1)

�
!

1Y
n≥1

M3(p1Ap1).

Since Φn is an isomorphism and jjxn � 1jj ! 0, as k !1 it follows that

jjΦn

�
diag(xn, x�1

n , 1)� 1jj ! 0.

https://doi.org/10.4153/CJM-1997-058-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-058-7


THE INVERTIBLE GROUP OF A CŁ-ALGEBRA 1203

Put diag(cn, c�1
n , 1) ≥ Φn

�
diag(xn, x�1

n , 1)
�
. Then

c ≥ diag(c1, c�1
1 , 1, c2, c�1

2 , 1, c3, . . .)

is in (p1Ap1 
 K)+, and ü(c) is in (p + q + r)A(p + q + r).
By the definitions of ü and û1,

ü(c) ≥
� 1X

k≥1
w3k�2(ck � p1)wŁ

3k�2 + w3k�1(c�1
k � p1)wŁ

3k�1

�
+ (p + q + r)

and

û1(b1) ≥
1X

n≥1

�4n�1X
j≥1

r(j)
3n�2(x

1
2Ð4n�1 � p1)r(j)Ł

3n�2 + r(j)
3n�1(x

�1
2Ð4n�1 � p1)r(j)Ł

3n�1

�
+ (p + q + r).

Using these definitions one can check that ü(c) ≥ û1(b) and so it suffices to show that
ü(c) is a product of symmetries in (p + q + r)A(p + q + r).

For k ≥ 1, 2 or 3, let uk ≥ wk�1p. Then

uŁkuk ≥ p(wŁ)k�1wk�1p ≥ p and ukuŁk ≥ wk�1pp(wŁ)k�1
≥

8><
>:

p, if k ≥ 1
q, if k ≥ 2
r, if k ≥ 3

,

and we have an isomorphism (p + q + r)A(p + q + r) ! M3(pAp) defined by

x 7! (uŁi xuj)3
i,j≥1.

The image of ü(c) under this isomorphism has the form diag(ã,ã�1, p) in M3(pAp).
To see this first note that if y 2 pAp then y 7! diag(y, 0, 0). If z 2 qAq then z 7!

diag(0, uŁ2zu2, 0). Now for every k ½ 1,

w3k�2(ck � p1)wŁ

3k�2 2 pAp and w3k�1(c�1
k � p1)wŁ

3k�1 2 qAq.

Also uŁ2w3k�2 ≥ pwŁw3k�3p1 ≥ pw3k�2p1 ≥ w3k�1. So under the isomorphism ü(c) maps
to

0
BBB@

�P
1

k≥1 w3k�2(ck � p1)wŁ

3k�2

�
+ p 0 0

0
�P

1

k≥1 w3k�2(c�1
k � p1)wŁ

3k�2

�
+ p 0

0 0 p

1
CCCA .

Call this matrix å. Let

ã ≥

� 1X
k≥1

w3k�2(ck � p1)wŁ

3k�2

�
+ p.

Then

ã
�1
≥

� 1X
k≥1

w3k�2(c�1
k � p1)wŁ

3k�2

�
+p.
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So

å ≥

0
B@
ã 0 0
0 ã�1 0
0 0 p

1
CA ≥

0
B@

0 ã 0
ã�1 0 0

0 0 p

1
CA
0
B@

0 p 0
p 0 0
0 0 p

1
CA .

Each term on the right hand side is a symmetry in M3(p1Ap1). So a � r0 is a product
of symmetries in (p + q + r)A(p + q + r). Thus a is a product of symmetries in A. This
completes the proof of the theorem.

Before summarizing the unital case let us say a few words about the nonunital case.
The next theorem, due to Zhang, allows us to apply the results of Section 2 to A if A is a
nonunital õ-unital purely infinite simple CŁ-algebra.

PROPOSITION 3.6. (THEOREM 1.2(I) OF [14]). If A is a õ-unital purely infinite simple
CŁ-algebra then either A is unital or A is stable.

We return now to the unital case. The next two theorems summarize the known results
for generators of inv0(A) and U0(A).

THEOREM 3.7. Let A be a unital purely infinite simple CŁ-algebra. The following
sets are generators for inv0(A).

(1) Exponentials.
(2) Unipotents.
(3) Quasiunipotents.
(4) Positive invertibles.
(5) Selfadjoint invertibles.
(6) Symmetries.
(7) Commutators of elements of inv0(A).
(8) Accretive elements.
(9) Positive stable elements.

PROOF. (1) This is well known and true even if A is a Banach algebra. See Propo-
sition 3.4.3 of [1].

(2) and (3) Theorem 1.1.
(4) and (5) Theorem 1.2.
(6) and (7) Theorems 2.1 and 7.4 of [6].
(8) and (9) Theorem 4.5 (1) of [10].

THEOREM 3.8. Let A be a unital purely infinite simple CŁ-algebra. The following
sets are generators for U0(A).

(1) Exponentials of skew adjoint elements.
(2) Commutators of elements of U0(A).
(3) *-symmetries.
(4) Accretive unitaries.

PROOF. (1) This is true for any CŁ-algebra. See Proposition 3.4.5 of [1].
(2) Proposition 7.7 of [5].
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(3) Use the proof of Theorem 2.1. Replace Lemma 2.3 by Lemma 1.3 (1) of [8]. If
a 2 U0(A) then 0

B@
0 ã 0
ã�1 0 0

0 0 p

1
CA

is a *-symmetry as ã is now unitary.
(4) Theorem 4.5 (1) of [10].
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