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Abstract

Consider a financial market in which an agent trades with utility-induced restrictions
on wealth. For a utility function which satisfies the condition of reasonable asymptotic
elasticity at −∞, we prove that the utility-based superreplication price of an unbounded
(but sufficiently integrable) contingent claim is equal to the supremum of its discounted
expectations under pricing measures with finite loss-entropy. For an agent whose utility
function is unbounded from above, the set of pricing measures with finite loss-entropy can
be slightly larger than the set of pricing measures with finite entropy. Indeed, the former
set is the closure of the latter under a suitable weak topology. Central to our proof is a
proof of the duality between the cone of utility-based superreplicable contingent claims
and the cone generated by pricing measures with finite loss-entropy.
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1. Introduction

Consider a financial market where the discounted prices of d risky assets are modelled over
a finite time interval [0, T ] by an R

d -valued semimartingale S = (St )0≤t≤T , on a filtered
probability space (�, F, (Ft )t∈[0,T ], P) satisfying the usual conditions of right continuity and
saturatedness. A portfolio on such a market can be represented by a pair (x, H), consisting of
an initial wealth x ∈ R and a predictable, S-integrable process H representing the holdings
of the d risky assets. It is assumed that, at any time, all remaining wealth is invested in the
numeraire. The discounted wealth process corresponding to the portfolio (x, H) is defined by
X

(x,H)
t := x + ∫ t

0 Hu dSu.
Two important theoretical concepts within the above framework for models of financial mar-

kets are those of ‘no arbitrage’and completeness. An arbitrage opportunity is defined as a trading
strategy H such that X

(0,H)
T ≥ 0, P-almost surely (P-a.s.) and such that P(X

(0,H)
T > 0) > 0. A

model is usually said to satisfy the condition of no arbitrage if there does not exist an admissible
trading strategy which is an arbitrage opportunity. The condition on H of admissibility is the
requirement that the wealth process X(0,H) is uniformly bounded below by a constant; ruling
out processes which are unbounded from below is one way to disallow the use of doubling
strategies.
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Utility-based superreplication prices 881

In the celebrated papers [3] and [5] the condition of no arbitrage was weakened to that of
no free lunch with vanishing risk (NFLVR), and it was shown that a model satisfies NFLVR
if and only if the set, Me

σ , of equivalent σ -martingale measures is nonempty.
A model satisfying NFLVR is then said to be complete if the set Me

σ is a singleton (i.e. if
Me

σ = {Q}). In a complete market model it is possible, with the use of an admissible trading
strategy, to replicate and thereby uniquely price all contingent claims in L1(Q) with payoffs
bounded from below (see [5, Theorem 5.16]). In contrast to this, if a market is incomplete,
there exist contingent claims with payoffs bounded from below which cannot be replicated
by admissible trading strategies. For such contingent claims there exists an open interval of
arbitrage-free prices, rather than a unique price.

Given a general contingent claim with payoff X, it is easy to see that an upper bound for the
interval of arbitrage-free prices is given by the superreplication price

π(X) := inf{x ∈ R : there exists an admissible H such that X ≤ X
(x,H)
T }.

As a special case of [5, Theorem 5.5], we know that, for a contingent claim with payoff X

bounded from below, the superreplication price is in fact the least upper bound for the interval
of arbitrage-free prices, in other words

π(X) = sup
Q∈Me

σ

EQ[X]. (1.1)

However, for contingent claims with payoffs unbounded from below, admissible trading strate-
gies are unsuitable for superreplication, and this dual representation of the superreplication
price does not always hold. Indeed, Biagini and Frittelli [1, Example 8] constructed a market
model and a contingent claim with payoff X unbounded from below such that

π(X) > sup
Q∈Me

σ

EQ[X]. (1.2)

The reason for the breakdown of (1.1) is that the cone

Kadm := {X(0,H)
T : H is admissible}

is not closed with respect to a weak topology induced by the set of pricing measures.
It is useful at this point to slightly extend the definition of a superreplication price to allow

terminal wealths from an arbitrary convex cone K ⊆ L0(P). Let

π(X; K) := inf{x ∈ R : X ≤ x + Y for some Y ∈ K}.
Of course, π(X) = π(X; Kadm). Note that if K is a solid cone in a subspace F of L0(P)

(i.e. X ∈ F and X ≤ Y ∈ K imply that X ∈ K) then

π(X; K) := inf{x ∈ R : X − x ∈ K}.
If K is not solid then we may of course replace K by the smallest solid cone containing K

without affecting the superreplication price.
Although the cone K is arbitrary, it will be fixed throughout the paper. Several candidates for

K may be appropriate including, among many other classes, admissible strategies (see above),
acceptable strategies (see, e.g. [4]), or permissible strategies (see, e.g. [9]).
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We are now able to formulate the following natural question with (1.2) in mind. Given an
arbitrary convex cone K of contingent claims, is it possible to find a minimal solid, closed
convex cone C ⊇ K , and a suitable set M of pricing measures, such that

π(X; C) = sup
Q∈M

EQ[X] (1.3)

for all (possibly) unbounded X which are integrable with respect to measures in M?
A positive answer to this question was given in [1]. In this paper the preferences of an

investor were incorporated in the construction of a weakly closed, enlarged cone C by means
of the convex conjugate of the investor’s utility function. The set M of measures consisted of
those absolutely continuous separating measures with finite entropy. A dual representation of
the form of (1.3) was obtained for utility functions which are bounded from above.

Inspired by [1], this result has since been extended in [8] to unbounded utility functions
with reasonable asymptotic elasticity at both −∞ and +∞, with subsequent alternative proofs
given in [2] and [7].

In this paper we show that the condition of reasonable asymptotic elasticity at +∞ is
unnecessary, and can be dropped, by formulating the superreplication result in terms of the
set of separating measures with finite loss-entropy (see Section 3).

2. Assumptions on U

The following assumption holds throughout the paper.

Assumption 2.1. We assume that the investor has a critical wealth a ∈ [−∞, ∞) and a utility
function U : (a, ∞) → R which is increasing, strictly concave, continuously differentiable,
and satisfies the Inada conditions,

lim
x↓a

U ′(x) = ∞ and lim
x↑∞ U ′(x) = 0.

Furthermore, if the domain of U is the whole real line (i.e. a = −∞) then we assume that U

has reasonable asymptotic elasticity at −∞, in the sense that

AE−∞(U) := lim inf
x→−∞

xU ′(x)

U(x)
> 1.

This condition was introduced and discussed in detail in [11].

The convex conjugate V of the utility function U is defined, for y > 0, by

V (y) = sup
x∈(a,∞)

{U(x) − xy}.

It is well known (see [10, Section 26]) that under the conditions of Assumption 2.1, V is strictly
convex, continuously differentiable, and satisfies

V ′(0) := lim
y↓0

V ′(y) = −∞ and V ′(∞) := lim
y↑∞ V ′(y) = −a. (2.1)

We should point out to the reader that the interesting case is when a = −∞. The following
lemma, which is a simple consequence of [11, Proposition 4.1(iii)], provides an equivalent
formulation of reasonable asymptotic elasticity at −∞.
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Lemma 2.1. Let U be a utility function defined on the whole real line. The following conditions
are equivalent:

(i) U has reasonable asymptotic elasticity at −∞;

(ii) there exists b > 0 such that V is positive and increasing on (b, ∞) and, for any α > 1,
there exists D > 0 such that V (αy) ≤ DV (y) for all y ∈ (b, ∞).

Proof. Condition (i) implies condition (ii). Since U has reasonable asymptotic elasticity
at −∞, a repeated application of [11, Proposition 4.1(iii)] implies that there exist constants
y0 > 0, λ > 1, and C > 0 such that V (λny) ≤ CnV (y) for y ≥ y0 and n ∈ N.

From (2.1) we see that V ′(∞) = ∞, so there exists a b0 > 0 such that V is positive and
increasing on (b0, ∞). Set b := max{y0, b0} > 0. Given any α > 1, there exists n ∈ N such
that α ≤ λn. For y ≥ b, we have V (αy) ≤ V (λny) ≤ CnV (y) = DV (y), where D := Cn.

Condition (ii) implies condition (i). This is an immediate consequence of the fact that
[11, Proposition 4.1(iii)] implies [11, Proposition 4.1(i)].

3. Finite loss-entropy measures

Recall that K ⊆ L0(P) is an arbitrary cone which has been fixed throughout the paper.
Relative to the cone K , we define the convex set of separating, or pricing measures by

M1 := {Q � P : X ∈ L1(Q) and EQ[X] ≤ 0 for all X ∈ K}.
In what follows, we refer frequently to the function V + := max{V, 0}. Note, however, that in
most places we can drop the ‘+’, since V is convex, and its graph can be bounded from below
by a straight line.

Definition 3.1. A measure Q � P is said to have finite loss-entropy if there exists a constant
b > 0 such that

EP

[
V +

(
dQ

dP

)
1{dQ/dP≥b}

]
< ∞. (3.1)

The set of pricing measures with finite loss-entropy is denoted by

M̂V := {Q ∈ M1 : Q has finite loss-entropy}.

Remark 3.1. (i) We use the notation ‘M̂V ’ to distinguish the set of finite loss-entropy measures
from the set MV of finite-entropy measures used in [1].

(ii) It is easy to see that if (3.1) holds for some constant b > 0 then it holds for all b > 0. In
other words, if Q ∈ M̂V then EP[V +(dQ/dP) 1{dQ/dP≥b}] < ∞ for all b > 0.

(iii) If the domain of U is a half-line then the ‘truncated’convex conjugate function V (y) 1{y≥b}
can be bounded above and below by linear functions. In such cases it immediately follows that
M̂V = M1, i.e. all measures have finite entropy.

Lemma 3.1. The set M̂V is convex.

Proof. For the case where U is defined on a half real line (i.e. a ∈ (−∞, ∞)) convexity is
trivial, since M̂V = M1. Nevertheless, we give a universal proof. Since the function V + is
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convex and nonnegative, given arbitrary constants 0 < y ≤ z and x, b > 0, we have

V +(y) 1[b,∞)(y) ≤ V +(b) 1[b,∞)(y) + V +(z) 1[b,∞)(y)

≤ V +(x) 1[b,∞)(x) + V +(z) 1[b,∞)(z) + V +(b). (3.2)

Take α ∈ [0, 1], Q1, Q2 ∈ M̂V , and define Qα := αQ1 + (1 − α)Q2. Let b > 0 be an
arbitrary constant. Applying (3.2), we have

EP

[
V +

(
dQα

dP

)
1{dQα/dP≥b}

]

≤ EP

[
V +

(
dQ1

dP

)
1{dQ1/dP≥b}

]
+ EP

[
V +

(
dQ2

dP

)
1{dQ2/dP≥b}

]
+ V +(b)

< ∞.

4. The superreplicable contingent claims

Let LU := ⋂
Q∈M̂V

L1(Q) denote the vector space of all M̂V -integrable contingent claims.
Note that owing to the definition of M1 it follows that the fixed cone K is a subset of LU .
Consider the solid convex cone

KU := {X ∈ LU : X ≤ X̃ for some X̃ ∈ K},
of all M̂V -integrable contingent claims that can be dominated by a terminal wealth in K .
Throughout we shall adopt the common practise of identifying probability measures Q � P with
their Radon–Nikodym derivative dQ/dP ∈ L1+(P). Following this convention, we let L+

V denote
the subspace of L1(P), formed by taking the linear span of the Radon–Nikodym derivatives of
all finite loss-entropy pricing measures. When endowed with the bilinear form

〈X, X+〉 = EP[XX+],
it is easy to show that the pair (LU , L+

V ) becomes a left dual system (see [7] and [8]). We now
define

CU := KU
σ(LU ,L+

V )
.

The set CU is the smallest solid, closed, convex cone in LU containing K , and is useful for a
duality theory. We use the subscript U to stress the weak dependence of this set upon U . In
Section 6 we give a characterisation of CU in terms of intersections of all L1(Q) closures of
KU . We call π(X; CU) the utility-based superreplication price of X.

5. Main results

Our main results are Theorems 5.1 and 5.2. In both theorems we assume that U satisfies
Assumption 2.1, and that M̂V �= ∅. Note that since only the asymptotic growth of V at +∞
is required to decide if a measure has finite loss-entropy, it turns out that the latter condition
is a delicate joint condition on the asymptotic behaviour of the utility function at −∞ and
the cone K . We also remark that the existence of an equivalent separating measure for K is
intimately connected to the absence of arbitrage within K; however, we require only the slightly
weaker existence of an absolutely continuous separating measure.
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Given a nonempty set A ⊆ LU , we let cone(A) denote the smallest convex cone containing
A, and we define its polar cone A� ⊆ L+

V by

A� := {X+ ∈ L+
V : 〈X, X+〉 ≤ 0 for all X ∈ A}.

For a nonempty set B ⊆ L+
V , we define in a similar way cone(B), and we define its polar cone

B� ⊆ LU by
B� := {X ∈ LU : 〈X, X+〉 ≤ 0 for all X+ ∈ B}.

The following simple result about polar cones follows immediately from [12, Theorem 0.8].

Lemma 5.1. Let A ⊆ LU be nonempty. Then A� ⊆ L+
V is a σ(L+

V , LU)-closed convex cone.
Moreover,

(cone(A))� = A
� = A� and A�� = cone(A),

where closures are taken in the σ(LU , L+
V ) topology.

Theorem 5.1. Suppose that U satisfies Assumption 2.1 and that M̂V �= ∅. Then

L+
V ∩ cone(M1) = cone(M̂V ) = K�

U = C�
U (5.1)

and
CU = (M̂V )�.

Proof. To obtain (5.1), we first show thatL+
V ∩M1 ⊆ M̂V . To this end, take any Q ∈ L+

V ∩M1.
Since Q is a probability measure, it follows, from the definition of L+

V , that Q = αQ0−(α−1)Q1
for some Q0, Q1 ∈ M̂V and some α ≥ 1. We now show that Q ∈ M̂V .

In the case where U is defined on the whole real line, let b > 0 be the constant from the
statement of Lemma 2.1. Owing to Lemma 2.1, we have

EP

[
V +

(
dQ

dP

)
1{dQ/dP≥αb}

]
≤ EP

[
V +

(
α

dQ0

dP

)
1{dQ0/dP≥b}

]

≤ D EP

[
V +

(
dQ0

dP

)
1{dQ0/dP≥b}

]
< ∞,

so Q ∈ M̂V . The case where U is defined on a half real line (i.e. a ∈ (−∞, ∞)) is trivial owing
to Remark 3.1(iii). Consequently,

L+
V ∩ cone(M1) ⊆ cone(L+

V ∩ M1) ⊆ cone(M̂V ).

Now take any X ∈ KU and any Q ∈ M̂V . There exists X̃ ∈ K ⊆ L1(Q) such that X ≤ X̃.
Hence, EQ[X] ≤ EQ[X̃] ≤ 0 and, therefore, cone(M̂V ) ⊆ K�

U .
Conversely, since −L∞+ (P) ∪ K ⊆ KU ,

K�
U ⊆ (−L∞+ (P))� ∩ K�

= {X+ ∈ L1(P) : EP[XX+] ≥ 0 for all X ∈ L∞+ (P)} ∩ K�

= L1+(P) ∩ K�

= {X+ ∈ L1+(P) : X+ ∈ L+
V and EP[XX+] ≤ 0 for all X ∈ K}

= L+
V ∩ cone(M1).
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Moreover, applying Lemma 5.1, we obtain

C�
U = (KU

σ(LU ,L+
V )

)� = K�
U ,

and (5.1) follows. A final application of Lemma 5.1 shows that

CU = KU
σ(LU ,L+

V ) = KU
�� = (cone(M̂V ))� = (M̂V )�.

Theorem 5.2. Suppose that U satisfies Assumption 2.1 and that M̂V �= ∅. Then, for any
X ∈ LU ,

π(X; CU) = sup
Q∈M̂V

EQ[X].

Proof. Owing to Theorem 5.1, CU = (M̂V )�. Since CU is solid in LU , we have

π(X; CU) = inf{x ∈ R : X − x ∈ CU }
= inf{x ∈ R : EQ[X − x] ≤ 0 for all Q ∈ M̂V }
= inf{x ∈ R : EQ[X] ≤ x for all Q ∈ M̂V }
= sup

Q∈M̂V

EQ[X].

Remark 5.1. Given that CU is a σ(LU , L+
V )-closed cone, it is specified by its polar set,

cone(M̂V ). This set depends only on the shape of V (y) for arbitrarily large y, which in turn
depends only on the values of U(x) for arbitrarily large negative x. Consequently, the cone CU

of allowable terminal wealths depends only on the preferences of the investor to asymptotically
large losses. This interesting observation also suggests the following open problem. Can the
set CU be parametrised by a real number which is defined in terms of the asymptotic behaviour
of U at −∞?

6. A representation of CU

Note that the set KU of Section 4 can be rewritten as

KU =
⋂

Q∈M̂V

(K − L1+(Q)). (6.1)

The next theorem gives two useful alternative representations of the weak closed cone CU ,
which provides further links with [1]. See Remark 6.1, below.

Theorem 6.1.

CU
(i)=

⋂
Q∈M̂V

KU
L1(Q) (ii)=

⋂
Q∈M̂V

K − L1+(Q)
L1(Q)

.

Proof. (i) To show one inclusion, let X ∈ ⋂
Q∈M̂V

KU
L1(Q)

. Then, for each Q ∈ M̂V , there
exists a sequence {XQ

n } ⊆ KU such that

XQ
n

L1(Q)−→ X as n → ∞.

Since KU ⊆ (M̂V )�, it follows that EQ[X] = limn→∞ EQ[XQ
n ] ≤ 0 for each Q ∈ M̂V .

Consequently, X ∈ (M̂V )� = CU .
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For the other inclusion, we proceed along the lines of the proof of the Kreps–Yan theorem

(see [6, Theorem 3.5.8]) and consider an arbitrary Z ∈ LU such that Z /∈ KU
L1(Q∗)

for
some Q∗ ∈ M̂V . By the Hahn–Banach hyperplane separation theorem there exists a continuous

linear functional on L1(Q∗) that separates Z from the closed cone KU
L1(Q∗)

. In other words,
there exists a � ∈ L∞(Q∗) such that

EQ∗ [�X] ≤ 0 < EQ∗ [�Z] for all X ∈ KU. (6.2)

By considering X = − 1{�<0} ∈ −L∞+ (P) ⊆ KU , we see that � ≥ 0 Q∗-a.s. and EQ∗ [�] > 0.
Thus, if we set �∗ = �/ EQ∗ [�] then Q0(A) := EQ∗ [�∗ 1A] defines a probability measure
on (�, F ), and (6.2) implies that Q0 ∈ M1 and EQ0 [Z] > 0. To finish the proof of the first
equality it suffices to prove that Q0 has finite loss-entropy, as then it follows, from (6.2), that
Q0 ∈ M̂V and Z /∈ (M̂V )� = CU .

In the case where U is defined on the whole real line, let b > 0 be the constant from the
statement of Lemma 2.1. Owing to Lemma 2.1 it follows that

EP

[
V +

(
dQ0

dP

)
1{dQ0/dP≥b‖�∗‖L∞(Q∗)}

]
= EP

[
V +

(
�∗ dQ∗

dP

)
1{�∗(dQ∗/dP)≥b‖�∗‖L∞(Q∗)}

]

≤ EP

[
V +

(
‖�∗‖L∞(Q∗)

dQ∗

dP

)
1{dQ∗/dP≥b}

]

≤ D EP

[
V +

(
dQ∗

dP

)
1{dQ∗/dP≥b}

]
< ∞.

The case where U is defined on a half real line (i.e. a ∈ (−∞, ∞)) is trivial owing to
Remark 3.1(iii).

(ii) To prove the second equality it suffices to show that

KU
L1(Q) = K − L1+(Q)

L1(Q)

for an arbitrary Q ∈ M̂V . Indeed, from (6.1) we have KU ⊆ K − L1+(Q) ⊆ L1(Q), so

KU
L1(Q) ⊆ K − L1+(Q)

L1(Q)
.

Moreover, sinceK ∪ (−L∞+ (Q)) ⊆ KU , we have K − L∞+ (Q) ⊆ KU . Since L∞(Q) is dense
in L1(Q), it follows that

K − L1+(Q)
L1(Q) = K − L∞+ (Q)

L1(Q)
L1(Q)

⊆ K − L∞+ (Q)
L1(Q)

L1(Q)

⊆ KU
L1(Q)

.

Remark 6.1. In [1] the set CU is defined by

CU :=
⋂

Q∈MV

(K − L1+(Q))
L1(Q)

.

Under our approach we do not need to explicitly construct CU ; we define it as the weak closure
of KU . The above result demonstrates, however, that this is essentially the same set—the only
difference being that the intersection is taken over all finite loss-entropy measures, as opposed
to all finite-entropy measures.

https://doi.org/10.1239/jap/1197908811 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908811


888 F. OERTEL AND M. OWEN

References

[1] Biagini, S. and Frittelli, M. (2004). On the super replication price of unbounded claims. Ann. Appl. Prob.
14, 1970–1991.

[2] Biagini, S. and Frittelli, M. (2005). Utility maximization in incomplete markets for unbounded processes.
Finance Stoch. 9, 493–517.

[3] Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing.
Math. Ann. 300, 463–520.

[4] Delbaen, F. and Schachermayer, W. (1997). The Banach space of workable contingent claims in arbitrage
theory. Ann. Inst. H. Poincaré Prob. Statist. 33, 113–144.

[5] Delbaen, F. and Schachermayer, W. (1998). The fundamental theorem of asset pricing for unbounded
stochastic processes. Math. Ann. 312, 215–250.

[6] Elliott, R. J. and Kopp, P. E. (2005). Mathematics of Financial Markets, 2nd edn. Springer, New York.
[7] Oertel, F. and Owen, M. P. (2005). Geometry of polar wedges and super-replication prices in incomplete

financial markets. Preprint, Department of Actuarial Mathematics and Statistics, Heriot-Watt University.
[8] Owen, M. P. (2003). On utility based super replication prices. Preprint, Department of Actuarial Mathematics

and Statistics, Heriot-Watt University.
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