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Abstract

We developed an agent-based model using a trial emulation approach to quantify effect
measure modification of spillover effects of pre-exposure prophylaxis (PrEP) for HIV
among men who have sex with men (MSM) in the Atlanta-Sandy Springs-Roswell metropol-
itan area, Georgia. PrEP may impact not only the individual prescribed, but also their partners
and beyond, known as spillover. We simulated a two-stage randomised trial with eligible
components (≥3 agents with ≥1 HIV+ agent) first randomised to intervention or control
(no PrEP). Within intervention components, agents were randomised to PrEP with coverage
of 70%, providing insight into a high PrEP coverage strategy. We evaluated effect modification
by component-level characteristics and estimated spillover effects on HIV incidence using an
extension of randomisation-based estimators. We observed an attenuation of the spillover
effect when agents were in components with a higher prevalence of either drug use or bridging
potential (if an agent acts as a mediator between ≥2 connected groups of agents). The
estimated spillover effects were larger in magnitude among components with either higher
HIV prevalence or greater density (number of existing partnerships compared to all possible
partnerships). Consideration of effect modification is important when evaluating the spillover
of PrEP among MSM.

Introduction

Men who have sex with men (MSM) remain a population at high risk for HIV infection in the
United States (US) and face barriers to optimal use of HIV prevention modalities, such as pre-
exposure prophylaxis (PrEP), particularly in the Southern US [1]. Many MSM are embedded
in sexual risk networks such that the intervention may not only impact the individual pre-
scribed PrEP, but also benefit their partners and beyond, which is known as spillover [2].
The magnitude and extent to which PrEP confers spillover benefits to persons not prescribed
themselves remains poorly understood.

Current PrEP prescribing guidelines from the Centers for Disease Control and Prevention
(CDC) focus primarily on individual HIV risk behaviours, missing features of the sexual net-
works and larger context [3, 4]. The package insert for brand-name PrEP medications does
include assessment of HIV prevalence in individual’s social networks and other factors that
increase vulnerability, including incarceration, exchanging sex for commodities and drug
use [5]. However, the impact of features of the sexual network on spillover effects of PrEP
remains largely unknown.

Causal inference using a potential outcomes framework [6] was proposed to estimate spill-
over effects in agent-based models [7], which are a type of individual-based microsimulation.
Due to the complexity of the exposures resulting in spillover and various assumptions about
the spillover mechanism, identification and estimation of causal effects is critical to ensuring
the validity of the estimated spillover effects [8]. Previous work employed an agent-based
model to emulate a two-stage randomised trial to quantify spillover effects of PrEP use
among MSM in Atlanta, Georgia (GA) [9]. That study demonstrated a spillover benefit of
PrEP in the sexual networks of MSM among persons not assigned to PrEP themselves;
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however, this prior study did not consider effect modification.
Effect modification of spillover effects is possible by component-
level characteristics in a sexual network, such as HIV and drug
use prevalence, which, if present, could be used to increase PrEP
uptake and better allocate resources, such as increasing prescriber
time with individuals whose treatment may benefit that individual
and their partners [10]. Components are defined as subsets of
agents (individuals) connected through sexual partnerships in a
sexual network, but not sharing partnerships with agents in other
components.

Nationally, African American (AA) MSM have an estimated
HIV prevalence (25%) more than double that of White (W)
MSM (8%) [11]. In Atlanta, GA, this difference was more pro-
nounced with an estimated prevalence of 43% among AAMSM,
compared to 13% among WMSM. Neither race-specific
assortativity in sexual partnering nor sexual behaviours can fully
explain these differences [12], highlighting that these disparities
are driven by more distal, structural factors (like poverty and incar-
ceration), rather than individual behaviours. Despite these dispar-
ities in HIV prevalence, PrEP uptake among AAMSM remains
limited [13, 14]. Furthermore, several studies have demonstrated
that the CDC criteria for prescribing PrEP poorly identified
AAMSM who eventually seroconverted [4, 15]. Evaluation of effect
modification offers information on what types of sexual networks
could benefit the most from an intervention with spillover benefit.

In this methodologically-focused study that conducts causal
inference with agent-based modelling, we evaluated effect
measure modification of spillover effects by component-level
characteristics, including HIV and drug use prevalence and net-
work features, specifically density [16] and bridging potential
[17], in the context of a simulated two-stage randomised trial.
Bridging potential is a measure of centrality of an individual
agent where they could act as a mediator between two or more
closely connected groups of agents. We adapted a previously cali-
brated model of PrEP uptake and HIV transmission among MSM
in the Atlanta metropolitan area to evaluate spillover effects of
PrEP on the outcome HIV incidence [9, 18, 19]. We aimed to
evaluate the magnitude and direction of possible spillover effects
of PrEP use across predefined levels of the component-level effect
modifiers to demonstrate the utility of causal inference method-
ology in agent-based modelling.

Methods

Model setting and simulated trial

We used the TITAN (Treatment of Infectious Transmissions
through Agent-based Network) model [20] to simulate an agent-
based model of PrEP uptake and HIV transmission among MSM
in the Atlanta metropolitan area that was calibrated using avail-
able published data [12, 18, 19, 21]. We employed Latin hyper-
cube sampling for model calibration [22]. Outputs from the
initial model setting were obtained and compared to observed
race-specific incidence rates from InvolveMENt [12, 23] (see
Supplementary Appendix 7). This agent-based model included
17 440 agents to represent the estimated number of WMSM
and AAMSM ages 18 to 39 years old living in the Atlanta-
Sandy Springs-Roswell region [21, 24]. We then employed this
calibrated model setting with demographics of this target popula-
tion in our study; however, our aim was to simulate a randomised
trial using this model, rather than recreate the HIV epidemic in
this setting.

The agent-based model simulated a population of agents
within a static sexual network; relationships and agents were
initiated at population creation, and no agents entered or exited
the model during the simulated trial for each run of the model
with monthly time steps. Agents were assigned demographics,
sexual behaviour characteristics, and HIV prevalence and treat-
ment at model initiation, and components in the sexual network
were identified based on sexual partnerships at model initialisa-
tion. Partner selection was a function of race and drug use class
[25], which resulted in the generation of assortative sexual net-
works. This model used a ‘bottom-up’ approach for generating
networks, where agents were assigned a number of partners,
types of partners, then partnerships were selected through an
iterative process [20]. At model initialisation for each model
run, agents were assigned a target number of sexual partners.
The total number of sexual partners per year was assumed to fol-
low a negative binomial distribution with median = 5 for AAMSM
and median = 7 for WMSM [12]. The number of sexual acts per
month within a partnership was assumed to follow a Poisson dis-
tribution, and each agent was assigned a total number of sexual
acts per monthly time step, based on a mean number of monthly
number of sexual acts identified at model initialisation [26]. For
each agent, a pool of potential partners was created from all
other agents seeking partners, and subsequently narrowed by sex-
ual position and the agent’s assorting probabilities. An agent
selected partners from this generated pool to achieve its target
number of partners.

The per-act probability of HIV transmission in a serodiscor-
dant sexual partnership was assumed to be constant for the dur-
ation for the two years and modified by the following factors:
number of acts; condom use; type of anal intercourse; PrEP use
and adherence (if HIV-negative and assigned); HIV infection status
(acute vs. chronic), antiretroviral therapy (ART) use and adherence
and viral suppression (if partner is HIV-positive). For serodiscor-
dant partnerships with condomless sex, there were non-zero per-act
probabilities of HIV transmission (per-act probability for condom-
less receptive anal intercourse was 1.38% and condomless insertive
was 0.11%) [27]. At each monthly time interval, information on
each agent and their component were recorded, including HIV sta-
tus, ART use and viral load (if HIV-positive) and number of sexual
acts.

We simulated a two-stage randomised design among MSM in
Atlanta evaluating spillover effects of PrEP on the outcome cumu-
lative HIV incidence by two years after randomisation [9, 18, 19].
Because we were interested in component-level effect measure
modification, we required the components in the simulated trial
to have at least three agents (at least one HIV+ agent) and indi-
vidual agents had to be HIV-negative to be assigned to PrEP.
These inclusion criteria ensured that the components included
individuals at risk for HIV infection and the network structure
of the component was complex enough to measure centrality.

In this simulated two-stage randomised design, enrolled
components were first randomised 1:1 to either a PrEP allocation
strategy (‘intervention’ components) or no PrEP allocation
(‘control’ components). Then, eligible agents in each intervention
component were randomised to PrEP according to a specific
coverage level defined by the assigned allocation strategy. We con-
sidered the scenario of 70% PrEP coverage (on average) in inter-
vention components to provide insight into strategies with high
PrEP coverage.

We assumed the same set of parameters for this study as for
the previously published work [21]. However, some key
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adaptations were made for this study [9]. We assumed static sexual
networks defined at baseline and fixed for the study duration in
each simulated trial. In this static sexual network, agents could
have any number of partnerships with one or more sexual acts
per monthly interval according to the initial model parameterisation
(see Supplementary Table S1). The full sexual sociometric network
was a set of smaller components, each agent belonged to only one
component, and there were no partnerships between agents in dif-
ferent components. We also assumed no drop out (i.e. 100% reten-
tion in PrEP over the two years). These assumptions were necessary
because the existing methods for evaluating spillover do not allow
for time-varying components in the sexual network.

We added a ‘drug use’ agent class, which was defined at model
initialisation and remained stable for the duration of the simu-
lated trial. The prevalence of drug use was defined based on a
review of relevant literature [28]. Drug use was defined as self-
reported use of cannabis, cocaine, amphetamines, methampheta-
mines, inhalant nitrites, heroin/opioids or benzodiazepines in the
past 12 months and influenced PrEP adherence, condomless sex
and assortativity. Specifically, agents who were defined as using
drugs had a 35% lower probability of adherence to PrEP [25]
and 20% higher probability of condomless sex [29]. We assumed
that 20% of drug-using agents mixed with other drug-using
agents.

Python software, version 2.7.12, along with the NumPy and
NetworkX packages, was used for coding, testing and performing
sensitivity analyses of this model. The analysis of model output
for this paper was generated using SAS software (version 9.4,
Cary, NC, USA). R software, version 3.5.1, along with ggplot2,
was used to produce figures. Additional information regarding
parameter values, key model assumptions, data sources and add-
itional references are included in the Supplementary Appendices
1–8 (Table S1).

Causal inference methods for spillover

Let M be a baseline (pre-randomisation) binary component-level
variable (1 = presence of a component-level factor, 0 = absence of
that factor). Let Y denote the agent-level outcome ascertained two
years after randomisation in the simulated trial. Given the two-
stage randomised design, we expect exchangeability to hold at
both the component and agent levels. We assume exchangeability
within levels of M; that is, Ya⊥A|M. This means that the interven-
tion components are comparable to control components, and
within intervention components, agents randomised to the inter-
vention are comparable to those randomised to the control, in
expectation conditional on M at baseline [30].

Although static during follow-up, the component sizes at
model initialisation varied in each simulated trial due to the part-
nering algorithm, so we extended estimators in [31] to evaluate
effect modification by component characteristics. We assume par-
tial interference; that is, an agent’s outcome is influenced only by
others in the same component, but no agents outside the compo-
nent. We also assume stratified interference, in which an agent’s
potential outcome is dependent only on their own intervention
assignment and the proportion of agents randomised to the inter-
vention in their component [2]. We make the usual additional
assumptions required for causal inference (i.e. exchangeability, con-
sistency and positivity) [30]. We assumed a Bernoulli allocation
strategy for intervention assignment within each component [2].

To evaluate effect modification by network features for the
intention-to-treat effects, we first averaged agent-level characteristics

for each component to determine the distribution across all compo-
nents, then used this distribution to define a binary variable for
each component. We are interested in quantifying a spillover effect,
defined as the difference in the risk of HIV infection of an agent
assigned to no PrEP under two different coverage levels of PrEP.
This parameter can weight each agent or each component equally
in the study population. We focused the presentation on the
component-weighted estimators and compared to the individual-
weighted estimators in the Supplementary Appendix 9 [30].

For the estimator, we computed the inverse probability weights
conditional on M, then we estimated the causal effect within each
level of the component-level variable. These weights are two-stage,
inverse probability weights and correspond to the probability of
intervention assignment at the component level and at the
agent level conditional on the component intervention assign-
ment. We employed both stabilised and unstabilised estimators
in the analysis [31]. These estimators are unbiased in a two-stage
randomised design with a single allocation strategy and a control
group (no agents were assigned to PrEP) [31]. The estimators of
the risk ratio of the spillover effect are defined analogously [31].
See Supplementary Appendix 12 for additional details on causal
inference methods for effect modification of spillover.

Network structure of components

The network features considered were the bridging potential and
density. A component’s density is defined as the proportion of
observed connections in a component among the maximum
number of possible connections in a component of the same
size [16]. A sexual network component that is both large and
dense is more likely to have agents who engage in sexual partner-
ships within the network component. This is particularly prob-
lematic when a pair of agents is HIV serodiscordant.

Bridging potential (also known as effective size) measures the
redundancy in an agent’s partnerships by examining the connec-
tions between their partners, providing a measure of centrality of
an agent where they could act as a mediator between two or more
closely connected groups of agents [17]. Bridging potential can be
used to identify critical agents for interrupting HIV transmission
chains in a network component. Agents with high bridging
potential can act as ‘gatekeepers’ in the network [16] and, in
the context of HIV, divide relatively isolated groups of other
agents. If these agents remain uninfected, for example, by adhering
to a PrEP regimen, they would limit or slow the spread of infection
in the population (Fig. 1). Intervening to deliver PrEP to
an HIV-negative agent with low bridging potential would only pro-
tect that agent against HIV acquisition; however, intervening to
deliver PrEP to an HIV-negative agent with high bridging potential
would protect that agent and the other HIV-negative agents in the
component [32]. See Supplementary Appendix 13 for additional
details on the network measures.

Outcome measures

The primary outcome measure was cumulative HIV incidence
over 24 months after randomisation, as measured by the number
of incident HIV infections among those HIV-negative at the start
of the trial (and reported as a proportion). We examined effect
modification on both the ratio and difference scale using stabi-
lised component-weighted estimators [31]. We estimated spillover
effects within levels of the following component-level effect modi-
fiers aggregated to the component level: HIV prevalence and drug
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use prevalence; and network characteristics: average density and
average bridging potential. For each of the four effect modifiers,
we defined binary variables based on the distribution of each vari-
able (e.g. M = 0 if ≤median vs. M = 1 if >median). These para-
meters were computed using nonparametric estimators for this
setting, averaging across 1000 simulations, along with 95% simu-
lation intervals (SIs) (i.e. middle 95% of simulated output) to
assess stochastic uncertainty [33].

Sensitivity analyses

We conducted a sensitivity analysis in which PrEP coverage in the
intervention components was set to 30% (on average), reflecting a
lower coverage PrEP strategy. Furthermore, spillover is more
meaningful if there are at least two HIV-negative agents in a com-
ponent, so we conducted a sensitivity analysis excluding compo-
nents with only one HIV-negative agent, which comprised
about 13% of all components on average across the simulation

runs. The model results may also depend on PrEP adherence
and discontinuation among the agents randomised to PrEP. We
performed one-way sensitivity analyses to assess the impact of
our model parameterisation for PrEP adherence and PrEP
discontinuation on model results for HIV cumulative incidence,
focusing on two-stage randomised trials with 70% coverage allo-
cation strategies in the intervention components. We quantified
the effect measure modification, as specified above, across
component-level factors. Specifically, we modified the proportion
who were optimally adherent to PrEP in a monthly interval (i.e. 4
or more doses per week) to be 80% among WMSM and 50%
among AAMSM [34]. We considered a scenario where 10% of
agents discontinued PrEP in each monthly interval during the
two-year follow-up [35].

Results

In the two-stage simulated trial, there were an average of 3947
agents per simulation and about 800 components per trial with
an average component size of 5 agents (standard deviation
(S.D.) = 3). Characteristics of components were balanced between
the intervention and control components (Table 1). On average,
HIV prevalence was approximately 34% in each component at
enrolment (95% simulation interval (SI) = 33%, 36%). About
45% of agents were AA (95% SI = 42%, 47%) and prevalence of
drug use was 35% in the components (95% SI = 34%, 37%), on
average. Average bridging potential was 1.51 (S.D. = 0.17); there-
fore, an agent in a network component typically has either a sin-
gle connection or lies between two other agents. Average density
was 0.49 (S.D. = 0.17), implying about half of the possible connec-
tions were made in the simulated network.

We evaluated the cumulative HIV incidence by 24 months of
follow-up overall in the simulated trial and by four effect modi-
fiers at the component level (Table 2). Overall, cumulative inci-
dence among those in control components was 10% (95% SI =
8%, 12%), compared to 9% among agents randomised to no
PrEP in the intervention components (95% SI = 6%, 12%) and
1% among agents randomised to PrEP in intervention compo-
nents (95% SI = 0.5%, 2%). Among components with HIV preva-
lence above the median, the HIV cumulative incidence was about

Table 1. Characteristics of components at the time of enrolment into the simulated two-stage randomised trial with 70% PrEP coverage in the intervention group in
an agent-based model representing MSM in the Atlanta metropolitan area, Georgia, 2015–2017

Component assignment

Characteristics Summary measure Intervention (n = 1977.0) Control (n = 1969.5)

Number of components 401.1 399.7

Average component size Mean (S.D.) 4.9 (3.2) 4.9 (3.1)

Median (IQR) 4 (2) 4 (2)

HIV prevalence 34.2% 34.3%

African American race 44.7% 44.8%

Any drug use 35.4% 35.4%

Bridging potential Mean (S.D.) 1.5 (0.2) 1.5 (0.2)

Median (IQR) 1.5 (0.3) 1.5 (0.3)

Density Mean (S.D.) 0.5 (0.2) 0.5 (0.2)

Median (IQR) 0.5 (0.3) 0.5 (0.3)

Note: Results above are from 1000 iterations of the agent-based model.

Fig. 1. HIV-negative agent on PrEP who has no bridging potential (left) vs. high bridg-
ing potential (right). Dashed lines represent sexual partnerships present in both com-
ponents, while solid lines represent sexual partnerships in the fully connected
component only (left). Adapted from [32].
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twice as high for all three groups compared to components with
prevalence below the median. A similar but more modest effect
modification was observed for density. For drug use and bridging
potential, the effect modification was reversed only among agents
not on PrEP in both intervention and control components and
also attenuated compared to HIV prevalence.

Table 3 displays the estimated spillover effects of PrEP on
cumulative incidence of HIV by 24 months on the ratio and

difference scale stratified by the four binary modifiers. For the
effect modifier drug use, the estimated spillover effects were
slightly larger in magnitude among components with a lower
prevalence of drug use compared to those with a higher preva-
lence. For bridging potential, the estimated spillover effects were
larger among components with lower average bridging potential,
compared to those with higher bridging potential.

The estimated spillover effects were larger in magnitude
among components with higher HIV prevalence compared to
lower prevalence. Similar patterns were observed for network
density although the effect modification was attenuated on the
difference scale. Figures 2 and 3 display the estimated spillover
effects across 1000 simulated trials on the difference and ratio
scale. Consistent with the results in Table 3, the spillover effects
among components with HIV prevalence above the median
were larger in magnitude on both the difference and ratio scale,
as compared to components with prevalence below the median.

For the sensitivity analysis of PrEP coverage, we simulated the
trial with a 30% coverage of PrEP in the intervention components.
The estimated spillover effects were typically larger in magnitude
with 70% coverage compared to 30% coverage (Supplementary
Appendix 9 and Tables S2–S6). For the sensitivity analysis that
excluded components with only one HIV-negative agent, the esti-
mated stabilised component-weighted effects on both the risk dif-
ference and ratio scales were somewhat attenuated towards the
null, except for HIV prevalence amongM = 0 and bridging poten-
tial among M = 1. However, the effect measure modification
observed in the main analysis largely remained but was also atte-
nuated (Supplementary Appendix 10, Tables S7–S9 and Figures
S1–S2). For the one-way sensitivity analyses, the estimated spill-
over effects were fairly robust to changes in both PrEP adherence
and PrEP discontinuation and the results from both of

Table 2. Cumulative incidence of HIV over two years of follow-up after two-stage randomisation stratified by four modifiers (≤median M = 0 vs. >median M = 1)
among HIV-negative agents within PrEP intervention (70% coverage) and control components with 95% simulation intervals (SI) in an agent-based model
representing MSM in the Atlanta metropolitan area, Georgia, 2015–2017 (n = 3947)

Intervention components Control components

Agents on PrEP Agents not on PrEP Agents not on PrEP

Effect modifiers
Total
agents

Incident HIV
infections

Cumulative
incidencea

Total
agents

Incident HIV
infections

Cumulative
incidencea

Total
agents

Incident HIV
infections

Cumulative
incidencea

Overall 909.8 10.4 0.01 389.7 35.4 0.09 1295.7 125.2 0.10

Drug use

Among M = 0 490.6 6.4 0.01 210.2 21.1 0.10 698.9 74.3 0.11

Among M = 1 419.2 4.0 0.01 179.5 14.4 0.08 596.8 51.0 0.09

HIV Prevalence

Among M = 0 700.1 6.0 0.01 300.1 21.6 0.07 998.0 77.5 0.08

Among M = 1 209.7 4.4 0.02 89.7 13.8 0.16 297.7 47.7 0.16

Bridging potential

Among M = 0 352.4 4.9 0.01 150.3 16.4 0.11 501.0 57.3 0.11

Among M = 1 557.4 5.5 0.01 239.4 19.0 0.08 794.7 67.9 0.09

Density

Among M = 0 719.3 7.5 0.01 308.1 25.8 0.08 1024.9 92.2 0.09

Among M = 1 190.5 2.9 0.02 81.5 9.6 0.12 270.9 33.0 0.12

aCumulative incidence presented as a proportion (number of HIV+/total number).

Table 3. Estimated spillover effects of PrEP on cumulative incidence of HIV over
two years of follow-up after two-stage randomisation stratified by four effect
modifiers (≤median M = 0 vs. >median M = 1) among HIV-negative agents
within PrEP intervention and control components with 95% simulation
intervals (SI) in an agent-based model representing MSM in the Atlanta
metropolitan area, Georgia, 2015–2017 (n = 3947)a

RD (95% SI) RR (95% SI)

M = 0

Drug use −0.08 (−0.14, −0.03) 0.47 (0.24, 0.78)

HIV prevalence −0.05 (−0.10, −0.01) 0.56 (0.26, 0.91)

Bridging potential −0.08 (−0.12, −0.03) 0.44 (0.23, 0.72)

Density −0.06 (−0.10, −0.01) 0.58 (0.30, 0.94)

M = 1

Drug use −0.07 (−0.14, 0.001) 0.53 (0.20, 1.01)

HIV prevalence −0.13 (−0.22, −0.04) 0.41 (0.18, 0.76)

Bridging potential −0.04 (−0.03, 0.02) 0.68 (0.31, 1.21)

Density −0.08 (−0.14, −0.02) 0.42 (0.17, 0.79)

RD, risk difference; RR, risk ratio.
aEstimates calculated using component-weighted stabilised estimators [31].
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these sensitivity analyses were comparable to the main analysis
(Supplementary Appendix 11, Tables S10–S21 and Figures S3–S6).

Discussion

To leverage causal inference in agent-based models, we simulated
a two-stage randomised trial to evaluate effect modification of
PrEP spillover effects among MSM in the Atlanta metropolitan
area, Georgia [18, 20]. Estimated spillover effects were slightly lar-
ger in magnitude among components with a lower prevalence of
drug use and larger among lower average bridging potential.

Interestingly, the spillover effects were larger in magnitude in
components with higher HIV prevalence and also greater network
density. In components with higher HIV prevalence, the esti-
mated spillover effect was a 13 fewer HIV infections per 100
agents, as compared to only 5 fewer HIV infections per 100 agents
among components with lower HIV prevalence.

When there are more HIV-infected agents in a component,
HIV-uninfected agents have an increased risk of HIV acquisition,
and thus benefit more by having partners who are on PrEP due to
the reduction in HIV transmission risk from their partners’ con-
current partners [36]. In fact, a component with no HIV-infected
individuals at enrolment and no sexual risk connections outside

Fig. 2. Estimated spillover risk difference of PrEP on cumu-
lative incidence of HIV by effect modifiers. M = 1 if prevalence
above median (vs. M = 0 at or below median) among
HIV-negative agents within PrEP intervention (70% coverage)
and control components in two-stage randomised designs
of a PrEP intervention with 70% coverage in an agent-based
model representing MSM in the Atlanta metropolitan area,
Georgia, 2015–2017. Lines within boxes, median values;
box borders, interquartile ranges (75th and 25th percen-
tiles); bars, 90th and 10th percentiles; points, outliers.
Shaded shape represented the distribution of estimates
and dashed lines represent the null value (n = 3947).

Fig. 3. Estimated spillover risk ratio of PrEP on cumulative
incidence of HIV by effect modifiers. M = 1 if prevalence
above median vs. M = 0 at or below median among
HIV-negative agents within PrEP intervention (70% coverage)
and control components in two-stage randomised designs
of a PrEP intervention with 70% coverage in an agent-based
model representing MSM in the Atlanta metropolitan area,
Georgia, 2015–2017. Lines within boxes, median values;
box borders, interquartile ranges (75th and 25th percen-
tiles); bars, 90th and 10th percentiles; points, outliers.
Shaded shape represented the distribution of estimates
and dashed lines represent the null value (n = 3947).
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the component has zero HIV risk, regardless of PrEP status, so
these were excluded from our study. Furthermore, the estimated
effects were stronger in denser components. When there are
more partnerships in a component, there are more opportunities
for PrEP to make a difference by preventing HIV seroconversion
of agents [37]. In this model, drug use decreased PrEP adherence
and condom use, as well as influenced the partnering algorithm.
A lower prevalence of drug use likely resulted in less sexual risk
behavior in a component possibly bolstering the spillover effect.

Particularly in the Southern US, uptake of PrEP services
remains concerningly low among AAMSM [14]. Recent efforts
in Atlanta, GA, to expand access to PrEP through the county
health department are notable; however, initiating and adhering
to PrEP remain a significant challenge for successful delivery
among AAMSM [35]. Disparities in PrEP uptake may weaken
the population-level impact on HIV incidence [19, 38]. Many eva-
luations of the efficacy and effectiveness of PrEP focus on an indi-
vidual effect without consideration of the sexual risk network.
With a better understanding of spillover effects and important
effect modifiers, the delivery of PrEP interventions could be tai-
lored to the most at-risk components, possibly mitigating dispar-
ities in PrEP uptake between WMSM and AAMSM. For example,
network-based interventions could involve persons living with
HIV referring their HIV-negative partners to PrEP. In fact, mod-
els such as the one employed here could be used to conduct pre-
liminary evaluations of network-based PrEP interventions to
inform subsequent delivery in the population [39].

This simulated trial approach has several limitations. To evalu-
ate effect measure modification of spillover effects, we designed
this study to include components both of meaningful size and
at-risk for HIV. To employ existing causal inference methods,
we assumed that the sexual network was static over time, which
could lead to HIV prevalence saturation sooner (or later) then a
setting with a dynamic sexual network. As such, this simulation
does not reflect the true underlying sexual networks among
MSM in the Atlanta metropolitan area and the simulated trial
is not intended to recreate the HIV epidemic in this setting.
This approach could also create less turnover in sexual partner-
ships for the duration of the study resulting in less overall HIV
transmission compared to a dynamic sexual network with more
frequent partnership changes. In future work, we plan to develop
an approach that allows for assessment of spillover with networks
updated over time and incorporate assortative mixing by age,
which may be more important in a dynamic sexual network.
We considered the entire sexual component to be an interference
(i.e. spillover) set, which means that the intervention status of one
agent in the component could possibly affect the outcomes of all
other agents in the component. If a component is large or not well
connected through sexual behaviors, this assumption may be
dubious. A more realistic interference set might include an agent’s
sexual partners and their partner’s partners and also allow for the
use of the calibrated population in the simulated trial. Future work
should includeanevaluationofdifferent interferencesets, forexample,
by considering an agent’s partners, known as nearest neighbours [40].

Careful consideration of effect modification of intervention
effects with possible spillover is useful to inform the development
of interventions that leverage network features. Although this
study provides methodological insights into the design of
two-stage randomised network trials with a sexual network
ascertained only at baseline assuming the network is static for
the duration of the study, allowing the network to be dynamic
may result in a misspecified model in the analysis. Important

extensions are required to understand real-worldHIV transmission
and to inform real-world PrEP allocation decisions, including
simulation of dynamic sexual networks, along with more extensive
calibration and validation studies. Persons not on PrEPmay benefit
from being in a network with higher PrEP coverage levels, and this
benefit may be larger when component-level risk factors are more
prevalent. Guidelines could encourage providers to ask about the
PrEP status of sexual partners and encourage individuals on PrEP
to recommend to others in their sexual network.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822001650.

Acknowledgements. Not applicable.

Author’s contributions. A. L. B. conducted a literature review, developed the
methodology, performed the statistical analysis and contributed to manuscript
writing. S. B. and C. J. P. developed and performed the agent-based and statis-
tical modelling and contributed to manuscript writing. W. C. G. provided sub-
stantive guidance on the methodology development and contributed to the
literature review and manuscript writing. E. J. M., M. E. H. and N. V. K. con-
tributed to the literature review, development of methodology and manuscript
writing. S. R. F. provided substantive guidance on the methodology development
and contributed to the literature review and manuscript writing. B. D. L. M. pro-
vided guidance on the development and implementation of the agent-based
models in this setting and contributed to the literature review and manuscript
writing.

Financial support. A. L. B., C. J. P., S. B., W. C. G., S. R. F., M. E. H., N. V. K.
and B. D. L. M. were supported by the Avenir Award Program for Research on
Substance Abuse and HIV/AIDS (DP2) from National Institute on Drug
Abuse of the National Institutes of Health Award Number (NIH)
DP2DA046856.. M. E. H. was also supported by the NIH grant
R01AI085073. S. F. was also supported by NIH grants DP1DA034989 and
P30DA011041. C. J. P., S. B., B. D. L. M. were also supported by
DP2DA040236. W. C. G. was also supported by NIH grants
R25MH083620. E. J. M. was supported by NIH grant R21HD098733. The con-
tent is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Conflict of interest. None.

Data availability statement. Model code used to generate this data can be
found at https://pph-collective.github.io/TITAN/. Complete reference for the
TITAN model is S. Bessey, Mary McGrath, Maximilian King, & Carolyn
Park. (2020, November 10). marshall-lab/TITAN: v1.2.4 (Version v1.2.4).
Zenodo. http://doi.org/10.5281/zenodo.4266540. Data sets and post-modelling
analysis code are available on Brown’s Digital Repository at https://doi.org/10.
26300/thhj-6v09.

References

1. Grant RM et al. (2014) Uptake of pre-exposure prophylaxis, sexual prac-
tices, and HIV incidence in men and transgender women who have sex
with men: a cohort study. The Lancet Infectious Diseases 14, 820–829.

2. Hudgens MG and Halloran ME (2008) Toward causal inference with
interference. Journal of the American Statistical Association 103, 832–842.

3. Centers for Disease Control US Public Health Service. Preexposure
Prophylaxis for the Prevention of HIV Infection in the United States –
2017 Update: A Clinical Practice Guideline Published March 2018 [cited
2021 May 21]. Available at https://www.cdc.gov/hiv/pdf/risk/prep/cdc-
hiv-prep-guidelines-2017.pdf.

4. Siegler AJ (2020) Preexposure prophylaxis indication criteria underiden-
tify black and latinx persons and require revision. American Journal of
Public Health 110, 267–268.

5. Gilead Sciences (2015) Truvada Package Insert. Foster City, CA: Gilead
Sciences.

Epidemiology and Infection 7

https://doi.org/10.1017/S0950268822001650 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268822001650
https://doi.org/10.1017/S0950268822001650
https://pph-collective.github.io/TITAN/
https://pph-collective.github.io/TITAN/
http://doi.org/10.5281/zenodo.4266540
http://doi.org/10.5281/zenodo.4266540
https://doi.org/10.26300/thhj-6v09
https://doi.org/10.26300/thhj-6v09
https://www.cdc.gov/hiv/pdf/risk/prep/cdc-hiv-prep-guidelines-2017.pdf
https://www.cdc.gov/hiv/pdf/risk/prep/cdc-hiv-prep-guidelines-2017.pdf
https://www.cdc.gov/hiv/pdf/risk/prep/cdc-hiv-prep-guidelines-2017.pdf
https://doi.org/10.1017/S0950268822001650


6. Rubin DB (1978) Bayesian-inference for causal effects – role of random-
ization. Annals of Statistics 6, 34–58.

7. Marshall BD and Galea S (2014) Formalizing the role of agent-based
modeling in causal inference and epidemiology. American Journal of
Epidemiology 181, 92–99.

8. Benjamin-Chung J et al. (2017) Spillover effects in epidemiology: para-
meters, study designs and methodological considerations. International
Journal of Epidemiology 47, 332–347.

9. Buchanan AL et al. (2021) Disseminated effects in agent-based models: a
potential outcomes framework and application to inform preexposure
prophylaxis coverage levels for HIV prevention. American Journal of
Epidemiology 190, 939–948.

10. VanderWeele TJ (2009) On the distinction between interaction and effect
modification. Epidemiology (Cambridge, Mass.) 20, 863–871.

11. Rosenberg ES et al. (2018) Rates of prevalent and new HIV diagnoses
by race and ethnicity among men who have sex with men, US states,
2013–2014. Annals of Epidemiology 28, 865–873.

12. Sullivan PS et al. (2015) Explaining racial disparities in HIV incidence in
black and white men who have sex with men in Atlanta, GA: a prospective
observational cohort study. Annals of Epidemiology 25, 445–454.

13. Goedel WC et al. (2016) HIV risk behaviors, perceptions, and testing and
preexposure prophylaxis (PrEP) awareness/use in Grindr-using men who
have sex with men in Atlanta, Georgia. Journal of the Association of Nurses
in AIDS Care 27, 133–142.

14. Elopre L et al. (2017) The right people, right places, and right practices:
disparities in PrEP access among African American men, women and
MSM in the deep south. Journal of Acquired Immune Deficiency
Syndromes 74, 56–59.

15. Lancki N et al. (2018) PrEP guidelines have low sensitivity for identifying
seroconverters in a sample of Young Black men who have sex with men in
Chicago. AIDS (London, England) 32, 383–392.

16. Newman M (2018) Networks. Oxford: Oxford University Press.
17. Burchard J and Cornwell B (2018) Structural holes and bridging in two-

mode networks. Social Networks 55, 11–20.
18. Marshall BD et al. (2018) Potential effectiveness of long-acting injectable

pre-exposure prophylaxis for HIV prevention in men who have sex with
men: a modelling study. The Lancet HIV 5, e498–e505.

19. Goedel WC et al. (2018) Effect of racial inequities in pre-exposure
prophylaxis use on racial disparities in HIV incidence among men who
have sex with men: a modeling study. Journal of Acquired Immune
Deficiency Syndromes 79, 323–329.

20. Bessey S et al. (2020, November 10) marshall-lab/TITAN: v1.2.4 (Version
v1.2.4).

21. Goedel WC et al. (2020) Projecting the impact of equity-based pre-
exposure prophylaxis implementation on racial disparities in HIV inci-
dence among men who have sex with men. AIDS (London, England) 34,
1509–1517.

22. McKay MD, Beckman RJ and Conover WJ (2000) A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics 42, 55–61.

23. Georgia Department of Public Health (2019). HIV surveillance sum-
mary – Georgia, 2017. Atlanta, GA: Georgia Department of Public

Health. Available at https://dph.georgia.gov/adult-core-hivaidssurveillance
(Accessed 17 April 2017).

24. Grey JA et al. (2016) Estimating the population sizes of men who have sex
with men in US states and counties using data from the American
Community Survey. JMIR Public Health and Surveillance 2, e14.

25. Grov C et al. (2018) Determining the roles that club drugs, marijuana, and
heavy drinking play in PrEP medication adherence among gay and bisex-
ual men: implications for treatment and research. AIDS Behavior 23,
1277–1286.

26. Wall KM, Stephenson R and Sullivan PS (2013) Frequency of sexual
activity with most recent male partner among young, Internet-using
men who have sex with men in the United States. Journal of
Homosexuality 60, 1520–1538.

27. Patel P et al. (2014) Estimating per-act HIV transmission risk: a system-
atic review. AIDS (London, England) 28, 1509–1519.

28. Hernández-Romieu AC et al. (2015) Heterogeneity of HIV prevalence
among the sexual networks of Black and White MSM in Atlanta: illumin-
ating a mechanism for increased HIV risk for young Black MSM. Sexually
Transmitted Diseases 42, 505–512.

29. Rendina HJ et al. (2015) Aggregate and event-level associations between
substance use and sexual behavior among gay and bisexual men: compar-
ing retrospective and prospective data. Drug and Alcohol Dependence 154,
199–207.

30. Ogburn EL and VanderWeele TJ (2014) Causal diagrams for interfer-
ence. Statistical Science 29, 559–578.

31. Basse G and Feller A (2018) Analyzing two-stage experiments in the
presence of interference. Journal of the American Statistical Association
113, 41–55.

32. Schafer MH, Upenieks L and DeMaria J (2021) Do older adults with HIV
have distinctive personal networks? Stigma, network activation, and the
role of disclosure in South Africa. AIDS and Behavior 25, 1560–1572.

33. Jenness SM et al. (2016) Impact of the Centers for Disease Control’s HIV
preexposure prophylaxis guidelines for men who have sex with men in the
United States. The Journal of Infectious Diseases 214, 1800–1807.

34. Chan PA et al. (2016) Retention in care outcomes for HIV pre-exposure
prophylaxis implementation programmes among men who have sex with
men in three US cities. Journal of the International AIDS Society 19, 20903.

35. Rolle C-P et al. (2019) Prep implementation and persistence in a County
health department setting in Atlanta, GA. AIDS and Behavior 23,
296–303.

36. Khan B et al. (2013) Network firewall dynamics and the subsaturation sta-
bilization of HIV. Discrete Dynamics in Nature and Society 2013, 720818.

37. Tieu H-V et al. (2015) Sexual networks and HIV risk among black men
who have sex with men in 6 US cities. PLoS One 10, e0134085.

38. Keen P and Bavinton BR (2020) Could disparities in PrEP uptake limit
the public health benefit? The Lancet Public Health 5, e467.

39. Morgan E et al. (2019) A network intervention to locate newly HIV
infected persons within MSM networks in Chicago. AIDS and Behavior
23, 15–20.

40. Forastiere L, Airoldi EM and Mealli F (2020) Identification and estima-
tion of treatment and interference effects in observational studies on net-
works. Journal of the American Statistical Association 116, 901–918.

8 Ashley L. Buchanan et al.

https://doi.org/10.1017/S0950268822001650 Published online by Cambridge University Press

https://dph.georgia.gov/adult-core-hivaidssurveillance
https://doi.org/10.1017/S0950268822001650

	Spillover benefit of pre-exposure prophylaxis for HIV prevention: evaluating the importance of effect modification using an agent-based model
	Introduction
	Methods
	Model setting and simulated trial
	Causal inference methods for spillover
	Network structure of components
	Outcome measures
	Sensitivity analyses

	Results
	Discussion
	Acknowledgements
	References


