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Abstract
This narrative review provides mechanistic insight into the biological link between smoking and/or chronic excess alcohol consumption, and
increased risk of developing sarcopenia. Although the combination of excessive alcohol consumption and smoking is often associated with
ectopic adipose deposition, this review is focused on the context of a reduced caloric intake (leading to energy deficit) that also may ensue
due to either lifestyle habit. Smoking is a primary cause of periodontitis and chronic obstructive pulmonary disease that both induce swallowing
difficulties, inhibit taste and mastication, and are associated with increased risk of muscle atrophy and mitochondrial dysfunction. Smoking may
contribute to physical inactivity, energy deficit via reduced caloric intake, and increased systemic inflammation, all of which are factors known to
suppress muscle protein synthesis rates. Moreover, chronic excess alcohol consumption may result in gut microbiota dysbiosis and autophagy-
induced hyperammonemia, initiating the up-regulation of muscle protein breakdown and down-regulation of muscle protein synthesis via acti-
vation of myostatin, AMPK and REDD1, and deactivation of IGF-1. Future research is warranted to explore the link between oral healthcare
management and personalised nutrition counselling in light of potential detrimental consequences of chronic smoking on musculoskeletal
health outcomes in older adults. Experimental studies should investigate the impact of smoking and chronic excess alcohol consumption
on the gut–brain axis, and explore biomarkers of smoking-induced oral disease progression. The implementation of behavioural change inter-
ventions and health policies regarding smoking and alcohol intake habits may mitigate the clinical and financial burden of sarcopenia on the
healthcare system.
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Introduction

Smoking and chronic excessive alcohol consumption are life-
style choices that represent major risk factors for comorbidities
in older adults, including heart (fatty liver) disease, cirrhosis, alco-
holic hepatitis, chronic obstructive pulmonary disease (COPD), and
various forms of cancer(1). According to latest statistics, 28 % and
14 % of adult men and women in the UK, respectively, consume
more than the recommended 14 units of alcohol per week, with
38 % between the ages of 55 and 64 years(2). Moreover, 14·4 %
of adults are classified as smokers and, combined with excessive
alcohol consumption, this demographic accounts for >800 000
of hospital admissions per year(3). Importantly, a higher prevalence
of excessive alcohol consumption has been reported in smokers
than non-smokers, thus imposing a double burden on public
health(1).

The worldwide population over the age of 65 years is rapidly
increasing, with figures projected to exceed 2·1 billion by 2050.
Age-related morbidities involving the musculoskeletal system

are increasingly common, and include type 2 diabetes, cancer
cachexia and osteoporosis. These morbidities may be perpetu-
ated by sarcopenia, which describes the age-related decline in
skeletal muscle mass and function, andwhich serves as a precur-
sor for a decrease in independence, frailty and overall mortality
during older age(4). Sarcopenia may begin as early as the fifth de-
cade of life. It is estimated that more than 50 million people
worldwide are sarcopenic, and this figure is expected to rise to
200 million by 2050(5). This trajectory clearly presents an alarming
clinical and financial challenge to the healthcare sector(5). To this
end, there is considerable interest in understanding effective life-
style interventions to promotemusculoskeletal health in our ageing
population(6); however, the impact of smoking and/or chronic
excessive alcohol consumption on the development of sarcopenia
has received relatively limited attention.

The potential link between chronic excessive alcohol con-
sumption and/or systemic smoking and sarcopenia risk is clearly
multi-factorial, context-specific and not fully understood.
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Systemic tobacco smoking and alcohol consumption may
contribute to ectopic fat accumulation in skeletal muscle(7)

and the development of non-alcoholic fatty liver disease, often
manifesting in a state of obesity. Accordingly, skeletal muscle
fat infiltration (myosteatosis) may increase lipotoxicity and the
subsequent release of excess reactive oxygen species (ROS)
and low-grade inflammation (i.e. increased interleukin-6 (IL-6)
and tumour necrosis factor (TNF)-α secretion), leading to a dis-
ruption in glucose homeostasis(8). Myosteatosis also may inter-
fere with energy metabolism by contributing to skeletal muscle
insulin resistance and gut microbiota dysbiosis via intramuscular
fat deposition(9). Moreover, in terms of muscle protein metabo-
lism, systemic inflammation and oxidative stress are associated
with muscle fibre atrophy via the impaired stimulation of muscle
protein synthesis (MPS) and accelerated rates of muscle protein
breakdown (MPB)(10). In addition, and perhaps paradoxically to
the increased risk of ectopic adipose deposition when smoking
and excess alcohol intake is combined, both lifestyle choices
may indirectly lead to a reduced caloric intake, undernutrition
and an energy deficit(11), all of which exhibit detrimental impli-
cations for muscle protein metabolism and have the potential to
increase risk of sarcopenia(12). Thus, given that smoking and
chronic excess alcohol consumption are lifestyle choices that
continue over many years or decades, understanding the
impact of both lifestyle habits on muscle protein metabolism
is important for maintaining musculoskeletal health across the
lifespan.

Multiple physiological mechanisms are understood to under-
pin sarcopenia, including hypogonadism, altered oral and
gastrointestinal health, increased pro-inflammatory cytokines,
motor unit impairments and skeletal muscle insulin resistance
leading to mitochondrial dysfunction(4). In addition, muscle ana-
bolic resistance, which describes the age-related impairment in
the stimulation of MPS in response to anabolic stimuli (i.e. amino
acid provision and exercise/physical activity), alongside the
age-related suppression of appetite and reduced energy
expenditure(4) all contribute to sarcopenia risk. A key factor that
contributes to the development of any catabolic condition is a
chronic state of energy deficit(12). Dietary guidelines for the man-
agement of sarcopenia typically target specific macronutrient
intakes to support the remodelling of skeletal muscle proteins(13),
alongside the emerging roles of dietary fibre(14), omega-3 fatty
acids(15) and specific individual amino acids (i.e. leucine)(16) in regu-
lating muscle protein metabolism(17). More recent interest has
focused on the impact of lifestyle factors on sarcopenia risk, with
studies measuring changes in muscle protein metabolism in
response to physical inactivity(18–20), muscle disuse/immobilisa-
tion(21,22) and low protein consumption(23) in older adults. Given
the high prevalence rates of smoking and chronic alcohol intake
patterns in middle/older adult populations, understanding the
metabolic impact of these lifestyle habits (both individually
and when combined) on muscle protein metabolism offers an
important consideration to combat risk of sarcopenia. While we
acknowledge that smoking and chronic excess alcohol consump-
tion are often associated with ectopic adipose deposition(24,25), the
primary aim of this narrative review is to critically evaluate the
mechanistic link between smoking and chronic excess alcohol con-
sumption and sarcopenia risk in the specific context of a reduced

caloric intake (leading to energy deficit) that also may ensue due to
either lifestyle habit. We highlight the direct and indirect biological
pathways that underpin the link between smoking and/or chronic
excessive alcohol consumption and muscle protein metabolism in
this population.

Smoking, undernutrition and sarcopenia

At the metabolic level, a key contributor of skeletal muscle
catabolism leading to muscle atrophy is a chronic period of neg-
ative energy balance(12). This metabolic state predisposes a
catabolic environment with the loss of both fat and lean tissue
mass(26–28). A negative energy balance has been shown to sup-
press the activation of insulin-like growth factor 1 (IGF-1) and
the mechanistic target of rapamycin complex 1 (mTORC1) cas-
cade, leading to impaired rates of MPS and increased transcrip-
tion of muscle atrophy-related genes, including myostatin and
ubiquitin–proteasome system (UPS) that up-regulate MPB(12).
The stimulation of MPS is an energetically expensive process,
and thus, maintenance of muscle mass during an energy deficit
is metabolically challenging(12). Previous studies have revealed
associations between smoking and lower body mass index
(BMI). Moreover, pre-clinical weight loss studies have demon-
strated reductions in BMI to be associated with increased smok-
ing duration(29–32). Hence, a clinical link appears to exist between
smoking status, undernutrition and subsequent risk of sarcopenia.

The causal mechanisms that underpin the impact of smoking
on appetite, energy balance and muscle protein metabolism are
detailed in Fig. 1. The anorexic effects of smoking primarily
relate to the nicotine content of cigarettes(33). Previous studies
demonstrate that food intake is modulated by β2-, β3-, β4-, α3-,
α4-, α5-, α6- and α7-nicotinic acetylcholine receptor (nAChR)
subtypes(34–38), which act primarily in the arcuate nucleus of
the ventral hypothalamus and are responsible for the control
of feeding patterns and energy expenditure(39,40). A change
in energy balance with smoking occurs via neurons and
appetite-related hormones in the central and peripheral
nervous system that are stimulated by nAChR receptor
subtypes. Specifically, nicotine administration stimulates pro-
opiomelanocortin and cocaine- and amphetamine-regulated
transcript(41,42), but down-regulates feeding-promoting neuropep-
tide Y and Agouti-related protein(43,44). In addition, decreased food
cravings during smoking are associated with lower acetylated
ghrelin and enhanced leptin levels as regulatory hormones of
energy balance(45–49). Ghrelin receptors are expressed in the
nucleus accumbens and the ventral tegmental area leading to dop-
amine release,which exhibits rewardproperties(50,51). It follows that
nAChR receptors decrease the food rewarding properties associ-
ated with activation of mesolimbic dopamine neurons, leading to
a decreased appetite of sweet and calorically dense foods(52–57).
Although dopamine receptors are stimulated via nicotine adminis-
tration, studies have demonstrated a reduced nicotine-induced
reward in obese individuals, suggesting a greater potential of
appetite-suppressive effects on food palatability in leaner
individuals(58,59). Given the addictive properties of nicotine and dif-
ficulties associated with long-term smoking abstinence, smoking
has the potential to facilitate a chronic period of energy
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deficit(60). Therefore, a reduced appetite due to smoking may
lead to a negative energy balance, corresponding to a muscle
catabolic response and an increased risk of muscle atrophy.

Smoking also has been associated with a decrease in
Bifidobacterium levels and short-chain fatty acids in the gut
microbiota, suggesting that smoking may modify microbial
composition(61). Bifidobacterium and short-chain fatty acids
are considered beneficial for metabolic health by improving
microbiome diversity, insulin sensitivity and the expression
of pro-inflammatory cytokines, which are essential for optimal
skeletal muscle function(14,62–65). Accordingly, the interactions
between nicotine administration and the gut–brain axis are
important in regulating appetite, given that smoking may sup-
press energy intake and contribute to an energy deficit and
subsequent skeletal muscle loss. Also noteworthy is the
notion that the gut–brain axis is a complex mechanism that
is regulated by multiple factors such as genetics, psychologi-
cal, social and environmental state, nicotine metabolism, and
the gut microbiota. This observation indicates a complex and
multifaceted relationship between smoking and suppressed
food consumption(66,67). Moving forward, future human stud-
ies are warranted to investigate the relationship between
smoking and gastrointestinal hormone regulation to quantify
the impact of smoking on muscle protein metabolism and the
regulation of muscle mass with advancing age.

Smoking, oral health and muscle loss

The deterioration of oral health and consequential dental impli-
cations are restrictive for food choice and mastication, leading to
reduced dietary intakes from meat, fruits and vegetables. These
commonly consumed food sources are major sources of high-
quality protein, vitamins, minerals and dietary fibre(68–72).
Smoking is associated with poor oral health, which may lead
to decreased oral function (e.g. swallowing problems, loss of
taste) and compromised food intake, both of which may contrib-
ute to an increased incidence of sarcopenia and frailty(73–77).
Smoking also may contribute to periodontitis, which manifests
as a progressive deterioration of the teeth periodontium leading
to chewing difficulties(78). In vivo human studies indicate the
relationship between poor oral health and periodontitis(78,79)

may lead to increases in mitochondrially derived ROS(80) and
lipopolysaccharide (LPS) levels caused by Porphyromonas gin-
givalis bacterial infection(81,82) and has been associated with a
substantive decline in handgrip strength(83). Accordingly, the
cumulative response of periodontitis may be exacerbated with
age, enhancing the development of sarcopenia through malnu-
trition, increased oxidative stress and inflammatory cytokine
activation involved in the impaired stimulation of MPS(84–90).
In summary, oral health complications associated with smoking
may indirectly accelerate the incidence of sarcopenia, highlight-
ing the necessity tomaintain oral hygiene during chronic periods
of smoking(91). Moving forward, a multidisciplinary approach,
including dental professionals, dietitians, nutritionists and geria-
tricians, may provide optimal oral health care management (i.e.
prosthodontic rehabilitation) and personalised dietary counsel-
ling, combined with follow-up treatments(91,92). Longitudinal
studies are required to characterise biomarkers of the progres-
sion of periodontitis and understand the risk factors associated
with this condition(93).

Smoking, chronic obstructive pulmonary disease and
muscle wasting

Smoking is considered the primary cause of COPD, which is
characterised by restricted airflow and pulmonary complica-
tions(94). The prevalence of COPD is associated with an
increased risk of sarcopenia via systemic inflammation, lower
BMI, osteoporosis, cachexia and skeletal muscle weakness(95–100).
Interestingly, COPD may result in limited exercise capacity
through enhancedmuscle fatigue andmay exacerbate leanmass
and bone mineral density losses with advancing age(101–103).
Accordingly, previous studies have reported a decline in quadri-
ceps muscle mass and isokinetic muscle function in COPD
patients compared with healthy age-matched controls(104–107).
This observation is consistent with previous research that
observed reductions in type I and IIA muscle fibres, impaired
mitochondrial function and skeletal muscle oxidative capacity
in COPD patients, leading to age-related decrements of muscle
mass and strength(108–111). However, it is worth noting that smok-
ing per se may not be the causal factor in muscle fibre atrophy
and insteadmay serve to contribute to muscle disuse and its sub-
sequent consequences(112).

Fig. 1. Proposedmechanisms underpinning the impact of smoking and nicotine
administration on appetite and undernutrition. CART, cocaine- and amphet-
amine-regulated transcript; IGF-1, insulin-like growth factor 1; MPB, muscle pro-
tein breakdown; MPS, muscle protein synthesis; mTORC1, mammalian target
of rapamycin complex 1; nAChRs, nicotinic acetylcholine receptors; NPY,
neuropeptide Y; POMC, pro-opiomelanocortin; UPS, ubiquitin-proteasome sys-
tem. Solid arrows denote a direct impact; broken arrows denote an indirect
impact; indicates increase; indicates decrease.
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Studies also suggest an association between COPD and hypo-
gonadism, which may be attributed to physical inactivity, weight
reduction and systemic inflammation(113,114). The gradual weight
loss that is experienced in COPD patients may lead to an
increased catabolic response of respiratorymuscles and elevated
levels of inflammatory cytokines, which exacerbates changes in
body composition(115–117). Although COPD is a potential con-
tributor of sarcopenia, tobacco smokingmay independently lead
to impaired rates of MPS, increased oxidative stress, myostatin
expression and cytokine production in skeletal muscle(118–120).
Consistent with this notion, a series of studies demonstrate an
up-regulation of the UPS of MPB, as reflected by increased gene
expression of skeletal muscle growth inhibitors such as muscle
atrophy F-Box (MAFbx/atrogin-1), muscle RING finger-1
(MuRF1) andmyostatin through the deactivation of the Akt path-
way in smokers versus non-smokers(119,121,122). Accordingly, it
has been proposed that increased oxidative stress from alde-
hydes, carbon monoxide, ROS and reactive nitrogen species cir-
culate to the skeletal muscle and activate the p38 and ERK
mitogen-activated protein kinase (MAPK), and the nuclear factor
κB (NF-κB) signalling pathway(123–125). This overexpression of
MAPK may up-regulate the muscle-specific E3 ubiquitin ligases
and lead to a greater inflammatory response and up-regulation of
MPB in smokers, thus accelerating risk of sarcopenia(126–128).

Chronic alcohol consumption and skeletal muscle
dysfunction

Akin to tobacco smoking, evidence exists that excessive alcohol
consumption exacerbates sarcopenia risk via direct and indirect
mechanisms related to impaired skeletal muscle protein metabo-
lism(129–131), as depicted in Fig. 2.

The association between excessive alcohol consumption and
gut microbiota dysbiosis is supported by studies that reveal
hepatic and intestinal inflammation in humans(132–135). In particu-
lar, reduced Bacteroidetes and Lactobacillus, and increased
Proteobacteria, Fusobacteria and Bacilli species are common
in chronic alcoholics versus healthy patients(133,135). Conversely,
positive outcomes in themicrobiome also have been highlighted
by moderate red wine consumption, potentially due to its poly-
phenol content and prebiotic benefits(136,137). Alcohol-induced
microbial dysbiosis has the potential to cause or progress
liver diseases and facilitate further disruptions in liver metabo-
lism(138–140). Hepatic damage that results from altered microbial
composition, increased intestinal permeability and circulating
endotoxins (e.g. LPS) may progressively lead to subsequent
systemic inflammation and insulin resistance, which are
common in sarcopenic populations(141–145). Increased circu-
lating LPS levels may lead to greater pro-inflammatory cyto-
kine secretion, inducing muscle atrophy and mitochondrial
dysfunction, which is prevalent in muscle-wasting condi-
tions(146). It follows that skeletal muscle dysfunction may be
mediated by a combination of cellular senescence, the
up-regulation of UPS, unfolding of MPB regulators, and
FoXO1/3 signalling pathways(147).

It has been proposed that a variety of catabolic mechanisms
are impacted by chronic exposure to ethanol and contribute to
skeletal muscle atrophy(148). Increased ethanol intake (>40 g/d;
7–14 drinks per week in women–men, respectively) may cause
impaired ureagenesis and hepatocyte injury, stimulating high
ammonia concentrations(149–155). This observation may result
in hyperammonemia, which dysregulates skeletal muscle
proteostasis(156–158). The increase in skeletal muscle ammonia
uptake is suggested to up-regulate autophagy and impair MPS,
thus increasing sarcopenia risk(159,160). Using a rodent model,
excess administration of ethanol suppressed protein synthesis
rates at the whole-body (−41 %) and skeletal muscle (−75 %)
level(161), and resulted in the up-regulation of muscle-specific
E3 ligases, atrogin-1 and MuRF1, leading to muscle proteoly-
sis(162). Furthermore, alcohol consumption following concur-
rent exercise may impair cellular homeostasis and trigger
intramyocellular apoptosis, and subsequently inhibit post-
exercise rates of MPS(163). Similarly, there is evidence that
alcohol consumption inhibits MPS and up-regulates UPS
and AMP-activated protein kinase (AMPK) phosphorylation
during exercise recovery(164–168) and following muscle injury
and immobilisation(169,170). Accordingly, alcohol consumption
may inhibit muscle adaptations to resistance training in pop-
ulation groups (i.e. athletes) that aim to enhance muscle mass
and function. Importantly, these observations also likely
apply to older adult binge drinkers, who are consequently
at greater risk of sarcopenia than social drinkers(130,171).
Moreover, the inhibitory effect of systemic inflammation on
rates of MPS may be additive when excessive alcohol con-
sumption and smoking are combined. Although human trials
are lacking to evaluate the direct effect of combined tobacco
and ethanol intake on skeletal muscle protein metabolism, oral
flora modifications from aldehydes (i.e. acetaldehyde) via both
smoking and alcohol exposure may enhance hyperammonemia
and autophagy, and the expression of muscle myostatin, MAFbx
and down-regulatory mechanisms of MPS(119,172). Future work also
is necessary to compare the combined impact of excess alcohol
consumption and electronic cigarettes (i.e. vaping) or conventional
cigarette smoking onmuscle proteinmetabolism andmusculoskel-
etal health outcomes in older adults.

Multiple studies have investigated the impact of chronic
alcohol consumption on skeletal muscle metabolism using
rodent models, and have observed reduced basal rates of
MPS(173–175). Both in vivo(156,176) and in vitro(175,177,178) studies
have demonstrated that alcohol consumption impairs the
muscle protein synthetic machinery via decreased activation
of mTORC1, ribosomal protein S6 kinase 1 (S6K1) and eukary-
otic translation initiation factor 4E-binding protein 1 (4E-BP1).
This down-regulation of mTORC-1 signalling with chronic
alcohol consumption may be initiated via increased AMPK,
REDD1 (regulated in development and DNA damage responses
1) and myostatin activation(158,179), as well as decreased plasma
and muscle insulin-like growth factor I (IGF-I), which is known
to activate the mTORC1 signalling pathway(175,180). In summary,
there is accumulating evidence that inhibiting mTORC1-related
mechanisms with an increase in habitual alcohol intake
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attenuates MPS. However, follow-up pre-clinical human trials
are warranted to definitively determine the impact of chronic
excess alcohol consumption on skeletal muscle protein metabo-
lism and subsequent onset of sarcopenia.

Conclusions

Accumulating evidence suggests that health implications of
smoking and chronic excessive alcohol consumption extend to
themusculoskeletal system, asmediated by the down-regulation
of metabolic pathways that regulate muscle protein metabolism
and subsequent increased risk of sarcopenia. Chronic use of
tobacco products may contribute to undernutrition through oral
health and dopamine receptor dysfunction and, combined with
systemic inflammation, may impair basal rates of MPS. Similarly,
excessive alcohol consumption is linked to the impaired stimulation
of MPS, primarily due to contraindications that occur upstream in
the mTORC1 signalling pathway that are driven by the expression
of pro-inflammatory cytokines. Both smoking and chronic alcohol
consumption also lead to metabolic damage through underlying
conditions such as periodontitis, COPD and liver diseases, which
may act synergistically to inhibit skeletal muscle function. Given
that chronic smoking and alcohol consumption is common in
Western society, these lifestyle habits have the potential to acceler-
ate age-related muscle atrophy and sarcopenia.
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