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ABSTRACT. To study distribution of galaxies and voids, the rectangular 
box under study is divided into cubic cells, and mean density of 
particles in cells is derived. For any density level cells can be 
divided into 'filled' or 'empty' ones if their density is higher or 
lower than a threshold density. The length and volume of the largest 
connected system, as well as the number of systems of connected cells 
are derived for observed, model and random samples. The comparison of 
results demonstrates that galaxy formation is biased, supercluster-void 
topology is sponge-like in a wide threshold density interval, and that 
there are no isolated galaxies in voids. 

1. INTRODUCTION 

Most widely used quantitative methods to describe the spatial 
distribution of galaxies include correlation analysis and recently 
introduced cluster and percolation analyses. These methods complement 
each other and describe different aspects of the spatial distribution 
of test particles. 

The study of the supercluster-void topology, the comparison of the 
distribution of isolated galaxies and models with biased galaxy formation 
with observations have raised the question: how to analyze these problems 
in quantitative terms. By experimentation we have found that a suitable 
method to study these problems is the division of a box under study into 
small cubic cells and to investigate the distribution, clustering etc. 
of filled and empty cells. 

In the following we give a short description of the cell method, an 
overview of observational data and theoretical samples used and basic 
results obtained. This work is a result of collaborative efforts, more 
detailed reports are in preparation. We thank our collaborators Mirt 
Gramann, Maret Einasto and Adrian Melott for permission to use our joint 
results prior to detailed publication. Our special thank is due to Dr 
John Huchra, whose compilations of redshifts of galaxies have made this 
investigation possible. 
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2. METHOD 

Consider a cubic box of side L, containing Ν test particles, galaxies or 
particles from numerical simulations. Split this volume into k cubic 
cells of side 1 = L/k. Each cell contains in the mean 

particles. Calculate a continuous density field by smoothing the density 
of each particle using a hat function centered at the particle's actual 
position and having the hat side equal to the grid size 1. Mark cells 
as 'empty' or 'filled' if the density of cells is lower'or equal/higher 
than a given threshold density. 

Now we can calculate the filling factors, study clustering 
properties of empty and filled cells separately etc. In contrast to 
classical cluster analysis where individual particles are used, in the 
cell method we consider cells of one class, either filled or empty. If 
two neighboring cells have a common sidewall, we count both cells as 
members of a system. The advantage of the cell method lies in the fact 
that identical procedures can be used to study the clustering of filled 
and empty regions whereas classical cluster analysis is not suited to 
study clustering of voids. We can vary the density threshold which 
divides cells into filled and empty ones. This corresponds to the 
variation of the neighborhood radius in the classical cluster analysis. 

The cell method has been used previously to study large scale 
distribution of galaxies by Guberman et al. (1983) and Gott, Melott and 
Dickinson (1986) in two and three dimensional cases, respectively. In 
present paper we develope this method further by using a wide variety of 
statistical quantities over a broad threshold density interval. In the 
following we use dimensionless densities 

Observational data are based on the Huchra's (1983).compilation of 
redshifts which is complete in the Northern Galactic Hemisphere^up to 
14.5 apparent magnitude. We have used three samples from this 
compilation, located in a box of side L = 20 h Mpc (h is the Hubble 
constant in units of 100 km/s/Mpc) and the center coordinate in 
supergalactic coordinates x Q = 0, y Q = 15 h Mpc, z Q = 0, which is 
close to the center of the Local Supercluster. The samples are absolute 
magnitude limited. Sample Virgo A contains galaxies brighter than M Q = 
-17.5 (absolute magnitudes are calculated for H = 100 km/s/Mpc). This 
limit corresponds to the limiting magnitude of the CfA survey at the far 
side of the box, i.e. data in this sample are complete. Sample Virgo Β 
contains dwarf galaxies in absolute magnitude interval -15.0 > M > -17.5 
and includes numerous dwarfs from H radio surveys. This sample is not 
complete, but it is the best sample of dwarf galaxies available. Sample 

(1) 

δ = P / P m . (2) 

DATA 
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Virgo C is the sum of samples Virgo A and Β· 
Observed distribution of galaxies is compared with theoretical 

samples found from N-body calculations. Three model samples were used. 
The first model sample, denoted Mel, is based on an axion dominated 
universe, containing 64 3 particles in a 64 3 mesh (Melott 1986). The 
second model, denoted GR-5, is based on a cold dark matter model with 
nonzero cosmological constant, containing also 64 3 particles in a 64 3 

mesh. Parameters of the model were tuned to have for the present epoch 
(expansion factor a = 5.2) Ω λ = 0.8 and Matter

 = ° · 2 (Gramann 1986). 
The third model, denoted M, corresponds to a neutrino dominated universe 
and was calculated for 32 3 particles in a 32 3 mesh (Melott et al. 1983). 
In all models several cases were considered, without and with biased 
galaxy formation. The first case includes all test particles. In other 
cases particles in low density environment were considered as primeval 
ones and rejected. 

For comparison three samples with randomly distributed particles 
were used, containing 6 4 , 32 3 and 16 3 particles and denoted by R-64, 
R-32 and R-16, respectively. Data on samples are given in Table 1· 

TABLE 1. Data on samples used 

Sample L Bias 
level 

Ν log δ^ Λ ν 4 Λ ° perc Cperc 

Virgo A 20h" 1 524 0.70 0.028 
Virgo Β 486 0.55 0.049 
Virgo C 1010 0.65 0.036 

Mo 32h~ 2 2.7 4089 0.00 0.017 
M l 2.7 4139 0.00 0.017 
M 2 2.7 4294 0.00 0.017 
M3 2.7 4449 0.00 0.017 

M e laxion 32h""2 0 262144 0.25 0.056 
1 39944 0.35 0.039 

GR-5 40h~ 2 0 262144 0.55 0.031 
1.5 50823 0.35 0.039 

R-64 32 0 262144 0.05 0.255 
R-32 0 32768 0.12 0.254 
R-16 0 4096 0.16 0.250 

4. TESTS BASED ON CELL METHOD 

Figs 1-3 present plots of three quantities, the relative length of the 
largest system, = l m a x/L, the volume fraction of the largest system, 
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Cmax = Vmax^ V' a n d t h e n u m ^ e r o i % systems of multiplicity 4 and larger. 
The length of the system, l m a x # was calculated as the maximum length of 
the system in coordinates x, y, and z. The total filled volume fraction, 
C, was also calculated, but respective curves are not plotted here since 
they are quite similar to curves for largest systems, i.e. most of the 
volume is occupied by the largest system. 

At a threshold density higher than the density of the highest peak 
in a respective sample, there are no filled regions, and the total 
volume of the box is occupied by one large system of 'empty' cells. 
Respectively, for filled regions = C m a x = n 4 = 0, and for empty 
regions = C m a x = n 4 = 1. With decreasing density threshold there 
appear filled systems which at threshold density δ = δ r c form a 
percolating system: the length of the largest system is just equal to 
the length of the box, = 1. The percolating threshold density is 
related to the percolation parameter Β (Shandarin 1983, Einasto et 
al. 1984) as follows 

At a low threshold density the whole space is occupied by one large 
'filled' system and the situation 'filled' versus 'empty' regions is 
reversed in comparison to high threshold density situation. 

Some details of the tests depend on mean density of test particles 
in cells. The mean density p m depends on the resolution parameter k and 
enters as an independent parameter of the method. Some quantities are, 
however, almost independent of mean density. Thus percolating density 
only little changes with p m, and critical volume fraction of 'filled' 
cells (the volume fraction at the percolating density) of random samples 
is practically constant for all mean densities considered, as seen from 
Table 1. 

Differences between random and other samples lie in the percolating 
density and the critical volume fraction. All random samples percolate 
at a threshold density & D e r c ~ 1* whereas all observed and simulated 
samples percolate at much higher threshold densities. On the contrary, 
all random samples have the critical volume fraction C ß e r c = 0.25, but 
all observed and model samples have C p e r c = 0.02 - 0.05. Both parameters 
reflect the presence of a connected network of filaments in observed and 
model samples which make the percolation easier than for random samples. 

There exist also differences between various model samples, in 
particular, between model samples with and without biasing galaxy 
formation. 

5. BIASED GALAXY FORMATION 

Early comparisons of the observed distribution of galaxies (Joeveer, 
Einasto and Tago 1977, Einasto, Joeveer and Saar 1979) with numerical 
simulations (Zeldovich 1978) demonstrated a striking difference between 
theory and observations: in the real world the space between 
superclusters is empty whereas in simulations there exist a rarefied 
field population between densely populated structures. Quantitatively 
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Fig. 1. The plot of the length of largest system in units of the box 
size, λ = imax^' versus relative threshold density. Panel VIRGO 
describes observed samples, panels MEL and GR axion-dominated models (GR 
model includes non-zero cosmological constant), and panel R-32 - a 
Poisson sample. Curves corresponding to filled and empty regions are 
labeled by F and E, respectively. Bright and faint galaxy samples are 
plotted by dashed and dotted curves, and the total sample by solid line 
(panel VIRGO)· In panels MEL and GR unbiased samples are plotted by 
solid lines, biased samples by dashed lines. 

this difference is seen in the relative fraction of populations of 
isolated particles (Einasto, Klypin and Shandarin 1983, Einasto et 
al. 1984). This difference was explained by Zeldovich, Einasto and 
Shandarin (1982) by the absence of galaxy formation in low density 
regions. 

The term 'biased galaxy formation' was suggested by Kaiser (1984) 
who independently noticed that galaxy formation occurs basically in 
high-density regions. Biased galaxy formation has been recently widely 
discussed (Efstathiou et al. 1985, Bardeen et al. 1986, Kaiser 1986, 
Melott and Fry 1986), however detailed physical mechanisms which lead to 
the bias are not fully understood (Rees 1985, Silk 1985). 

Tests provided with the cell method give further quantitative 
evidence for biased galaxy formation. As seen in Figs 2 and 3, unbiased 
model samples have some similarity to random samples. This similarity 
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Fig. 2 (left). The plot of the volume fraction of the largest system, 
Cmax = Vmax^ V* versus relative threshold density. Designations as in 
Fig. 1. 

Fig. 3 (right). The plot of the number of systems of multiplicity 4 and 
larger, n 4, versus relative threshold density. Designations as in 
Fig. 1. 

is, however, only a qualitative one. E.g. the unbiased model sample GR-5 
has mean density p m = 8, as in the random sample R-64, but the volume 
fraction curve of this sample is similar to that of random samples 
between R-32 and R-16, which have much smaller mean density. This 
similarity is due to the fact that unbiased model samples have a 
population of low density particles distributed more or less randomly. 

Model samples can be brought into agreement with observations if 
particles from low density regions are removed, i.e. by introducing a 
bias in galaxy formation. Changing the biasing threshold it is possible 
to bring model curves plotted in Figs 2 and 3 (as well as the curve for 
total filling factor G) into agreement with observations. Filling 
factors C and C m a x are especially sensitive to the biasing level, thus 
this test can be uaed to derive 'observational' biasing level of model 
samples. 

Observed samples are centered on the eore of the Virgo supercluster 
which has higher than an average filling factor. Model samples 
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correspond to much larger boxes which must have lower filling factors. 
Thus we have used a biasing parameter which supplies a C m a x curve by a 
factor of two lower than the observed curve. 

6. SUPERCLUSTER-VOID TOPOLOGY 

There has been some discussion concerning the supercluster-void 
topology. Zeldovich (1983) argued from theoretical considerations that 
primeval matter at some low density must have cellular topology, i.e. low 
density regions are from all sides surrounded by high density regions. 
Also from theoretical considerations Gott, Melott and Dickinson (1986) 
demonstrated that at median density the topology is of sponge-type, 
i.e. both high and low density regions form penetrating percolating 
systems. From observational point of view both possible topologies were 
discussed by Jocvecr, Einasto and Tago (1978) with no conclusive 
results. More detailed observational data became available in early 
80-ies. These data suggest that there are no isolating surfaces between 
voids (Einasto and Miller 1983, Einasto et al. 1984). 

The cell method used here indicates that at low density unbiased 
model samples have cellular topology which confirms theoretical 
predictions by Zeldovich. At densities close to median density all 
samples have sponge-topology conforming to the Gott, Melott and Dickinson 
study. Observed and biased model samples have sponge-topology in a wide 
range of threshold densities. At high threshold densities all samples 
have the topology of isolated islands in a continuous ocean of voids. 

Recently interest to supercluster-void topology was renewed by the 
discovery of large empty bubbles by de Lapparent, Geller and Huchra 
(1986), surrounded apparently by continuous sheets of galaxies. Data 
available on nearby voids do not support the view that surfaces 
surrounding bubbles are actually continuous. If sheets of galaxies 
around bubbles observed in the de Lapparent et al. survey do not have 
structure radically different from nearby sheets observed in the Local 
Supercluster then these distant sheets should also have holes which make 
percolation of voids possible. 

7. ISOLATED GALAXIES 

Currently the most popular galaxy formation scenario is the biased cold 
dark matter model (White et al. 1986). One particular problem with this 
scenario is the presence or absence of isolated galaxies. As suggested 
by Dekel and Silk (1986), giant galaxies should be formed only at highest 
density peaks of the initial density field whereas dwarf galaxies should 
be formed either everywhere or at lower density peaks. In both cases 
there should exist a population of isolated dwarf galaxies. 

Correlation and conventional cluster analyses are not sensitive to 
the presence or absence of a relatively small population of isolated 
galaxies. The cell method used here is more appropriate for this 
purpose. We have found that the most sensitive test is the number of 
small systems with cell multiplicity 1 to 3. 
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Fig. 4· Number of systems of multiplicity 1-3 versus relative threshold 
density. Panels R-32 and R-16 describe Poisson samples, panel VIRGO -
observed samples, and panel M - a neutrino-dominated model. Bright and 
faint galaxy samples in panel VIRGO are plotted by dashed and dotted 
curves, respectively. 

Cluster analysis (Einasto et al, 1984) demonstrates that there 
exists a small population of relatively isolated galaxies in observed as 
well as in model samples. Traditional cluster analysis gives, however, 
no answer to the question, are these galaxies outlying members of larger 
systems or do they form a population of truly isolated galaxies, more or 
less randomly spread over the whole space. 

If the spatial distribution of galaxies is studied by the cell 
method, then isolated galaxies create a population of systems of low 
multiplicity, 1, 2 or 3 (due to density smoothing one galaxy increases 
the density in 1, 2 or 3 neighboring cells). If 'isolated' galaxies are 
actually outlying members of larger systems then at low threshold 
densities these systems of low multiplicity join up with larger systems. 
On the other hand, if these galaxies are really isolated, then at these 
same threshold densities they create an excess of systems of low 
multiplicity. This effect is seen in panel d of Fig. 4, Curve labeled 
M Q is based on the Melott neutrino dominated model (Melott et al. 1983) 
with biased galaxy formation. All test particles from low density 
regions are removed, and voids contain no test particles. Samples M 1 # 
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M 2, and M3 contain all particles of sample M Q plus 50, 205 and 410 
randomly located additional particles (1%, 5% and 10% of the original 
population). An excess of systems of low multiplicity in samples M 1 # M 2 

and M3 is clearly visible. Sample M Q, as well as both observational 
samples have no excess of systems of low multiplicity in respective 
density interval. 

This test demonstrates that galaxies at low density tail are related 
to other galaxy systems and that voids are really empty. This result is 
valid for both bright and faint galaxy samples. 

8. FINAL REMARKS 

The cell method used here complements other quantitative methods used 
earlier and is no substitute for them. Real world has a complex 
structure and there exist no single statistics which characterizes all 
aspects of the distribution of galaxies. Tests applied in this paper, 
suggest that 

(i) there is strong observational evidence for biased galaxy 
formation, 

(ii) at a broad relative density interval superclusters and voids 
have sponge-like topology, i.e. both filled and empty regions form 
infinite percolating and intertwined systems, 

(iii) voids are really empty and contain neither bright nor faint 
galaxies. 
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DISCUSSION 

LACHIEZE-REY: A smooth variation of the filling factor with scale is 
an indication of scale invariance. So the fit between the observations 
and biased galaxy formation is the consequence of the fact that the 
real distribution of galaxies, and the one predicted by biased galaxy 
formation, both obey some scaling law. A fractal model exhibits such 
a characteristic. 
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