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Abstract

In this note we present a general Jordan-Hélder type theorem for modular lattices and apply it
to obtain various (old and new) versions of the Jordan-Hélder Theorem for finite groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 30.

Isbell [10] has observed that the Jordan-Hoélder Theorem may be derived from
the Zassenhaus Theorem, and that this yields a uniqueness statement for the
correspondence given by the Jordan-Holder Theorem. This result, however,
does not give the various versions of the Jordan-Hoélder Theorem for finite
groups that have received some interest more recently, for example, the one
that states that for any two chief series of a finite group a correspondence
can be found associating Frattini chief factors with Frattini chief factors and
non-Frattini ones with non-Frattini ones. Such a theorem was first published
by Carter, Fischer and Hawkes [4] for finite soluble groups, and for finite
groups in general in the author’s [12], with a different approach by Forster in
[7] (see also Chapter 1 of [2]). Further, Barnes proved that in soluble groups
corresponding complemented (which, for finite soluble groups, means non-
Frattini) chief factors have a common (maximal) complement. On the other
hand, for arbitrary finite groups the number of complemented chief factors
in a given chief series can depend on the series (see Baer and Forster [2] or
Kovacs and Newman [11] for examples).
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Here we will obtain a Jordan-Hoélder correspondence for chief series of an
arbitrary finite group G which not only respects the Frattini or non-Frattini
nature of chief factors, but also the property of being complemented by a
maximal subgroup; in fact, corresponding chief factors have a common max-
imal complement, if complemented at all by a maximal subgroup. (However,
for such a correspondence, corresponding chief factors are not normally G-
isomorphic, but only G-connected as defined by the author in [13] and, inde-
pendently, by Forster in [7) (G-related) and [2] (G-verwandt).)

Our result will emerge as a corollary to a Jordan-Hélder type theorem
for modular lattices, in an approach inspired by unpublished notes [11] of
Kovics and Newman.

1. A general Jordan-Holder Theorem in modular lattices

Throughout this section, . will denote a modular lattice, .# a subset
of the set & of its prime intervals (that is, those pairs A, B of elements
of Z such that B < A4, and C € {4, B} whenever B < C < A4; we shall
adopt the notation A/B for such pairs), and K = Yo < Y, <---<Y,=H
will denote a chain in & such that Y,/Y;_, € L, i =1,..., n. We set
Fn={XeZLK<X<H}and PFpyg={X/Y eI K<Y and X < H}.

Further, we write A/B > X/Y (or X/Y < A/B), if A/B,X/Y € & are
such that 4 = XvBand XAB =Y. f X*/X « Z*/Z > Y*/Y or
X*/X » Z*/Z < Y*/Y for some Z*/Z, we say that X*/X and Y*/Y are
under the Zassenhaus correspondence: X*/X Zsh Y*/Y. (General notation
and terminology will be taken from [9].)

The following observation (and its dual, which we omit) is well known.

1.1 LEMMA. For any X*|X € Pk y there exists some j € {1,...,n} such
that X*VY,=XvY,fork=j,....n, X*VY,>XVvY, fork=0,..., j-1
and

X'VYj-]/XVYj_l >>X‘VYJ'_2/XVYJ'_2>>"'>>X*VY0/XVY0=X‘/X

1.2 DEFINITIONS. (a) Two prime intervals R;/S;, i = 1, 2, are said to be of
the same # -type, if either both are in .# or both are in #' = P\ A .

(b) If # 5 C/D < A/B € #' and A/C € P, then (4/B,C/D) is an
M -crossing.

(c) A is called an M-set in .2, if it satisfies the following two conditions.

(M1) If A/B >» C/D, then A/B € .# implies that C/D € .#.

(M2) If (A/B, C/D) is an .# -crossing, then so is (4/C, B/D).
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Note that .# is an M-set in & if and only if .#' is an M-set in the dual of
. Trivial examples of M-sets are given by & and &. We record a simple
property of M-sets, leaving the verification (as well as the statement of the
dual) to the reader.

1.3 LEMMA. Let X*/X € # C Pxy andset Y* =Y;, Y = Y;_| where
J=max{ie{l,...,n}|X*VY,_y/XVY,_y € #}. Then one of the following
holds.

(i) X*vY*=XVY* =X*VY, X*/X K< X*VY*/XVY » Y*/Y,
XAY=X*AY=XAY* and X*/X > X*AY*/XAY K Y*|Y.

(i) (X*VvY*/XVvY X*VvYXVY)is an #-crossing, X*/X <
X*VY/XVY and Y*]Y K XVY*/X VY.

In particular, if # is an M-set, then in both cases Y*|Y € .#, and the
same holds for X*VY*/XVY and XVY*/XVY.

In the remainder of this section, .# will always denote an M-set in ..

1.4 DEFINITION. Two prime intervals X*/X and Y*/Y are .#-related, if
one of the following holds.

(1) X*/X < R*/R> Y*]Y for some R*/Rc #.

(2) X*/X < B/D and C/D » Y*/Y for some .# -crossing (4/B, C/D).

(3) X*/X > 8*/S <« Y*/Y for some $*/S € .#'.

(4) X*/X > A/B and A/C <« Y*/Y for some .#-crossing (4/B, C/D).

1.5 THEOREM. Let X be a modular lattice and # an M-set in Zx p.
Assume that

K=Xo<Xi <+ <Xpy=H and K=Yy<Y; <---<Y,=H

are two maximal chains in & between H and K. Then n = m, and there
exists a unique m € S, such that X;/X,—, and Yi|Yx_, are .# -related for
i=1,..., n.

In fact,

"= max{j S {1,...,H}|Xi \% Yj_l/X,'_l \% Yj—l G/[}, le,'/X,'_1 cA,
i"=min{j €{l,...,n}X; A Yj/Xi_l AY; ed'y, ifX;/Xi— eA'.

Proor. Without loss of generality, m < n. Let the map n: {1,...,n} —
{1,..., m} be defined by the equations in the statement of the theorem.

First note that applying 1.3 and its dual to the definition of 7 one sees that
Xi/X;—y and Y;»/Y;x_, are .# -related for i = 1,...,n and, therefore, have
the same .# -type.

https://doi.org/10.1017/51446788700030846 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030846

4] Maximal subgroups and the Jordan-Holder Theorem 359

In order to prove injectivity, and hence bijectivity, of n, write X*/X =
X,'/X,'_l, Y‘/Y = Yj/Yj_l, and Z‘/Z = Xk/Xk—ls where i < k, but i* =
J = k*. Suppose that X;/X;_.€ .#; thus, all three intervals are .# -intervals.
Now apply Lemma 1.3.

In the first case, X*VY* = X*vY. From X* < Z wegetthat ZvY* = ZVvY.
Since Z*/Z € . # and k™ = j, Lemma 1.3 applies and yields the contradiction
that ZvY*>ZvVvY.

Hence (X*VY*/XVY*, X*VY/XVY)is an .#-crossing; so X*vY*/X*v
Yed' SinceZVY #Z*VY by Lemma 1.3, ZVY*/ZVY € L. As
X*<Zgives X*VY <ZVvY aswellas X*VvY* < ZvY*, we may use (M1)
to deduce that ZVY*/ZVY € .#’, contrary to the conclusion of Lemma 1.3.

We have shown that the restrictionof m to I = {i € {1,...,n}|X;/X;_; €
A} is injective. Application of this conclusion to the dual of .#, with .#’
instead of .#, shows that the restriction of 7 to {1,..., n}\] is injective. As
mentioned above, n leaves these two sets invariant, and we may conclude
that & is injective.

Finally, if ¥ is any permutation with the above properties, then the def-
inition of # requires that i¥ < i* (i¥ > j*) forallie I (i € {1,...,n}\I).
Consequently, ¥ = «.

Taking .# = & gives Isbell’s result, with the Zassenhaus correspondence:
here Condition 1.4(1) always applies, and there are no .#-crossings. Some-
what more general, under the following hypothesis (), conditions (2) and (4)
in Definition 1.4 are redundant:

(%) (A/B,C/D) is an # -crossing in .% implies A/E € .# for some
EeZwithD<E<A.

Observe that, for 4, B, C, D, E as in (x), by Theorem 1.5, applied to
.4, AJE € A implies that E/D € .#'; furthermore, if X*/X <« B/D,
C/D » Y*/Y, then we have X*/X « A/E > Y*/Y (and, of course, the
dual statement also holds).

It is easy to see that, under the hypothesis of Theorem 1.5, to a given
Xi/Xi~, there may exist more than one Y,/Y;_, .#-related to X;/X;_,.
However, one always has

1.6 PROPOSITION. Assume the hypothesis of Theorem 1.5 and let I1 be any
theoretical property on Py y which is preserved under the relation of being
M -related.

Then for any X;/X;_ with I, there exists at least one X;/X;_, with Il and
of the same A -type as X;[/X;_,, which is .# -related to only one Y [Y_,.

Proor. We consider the case X;/X;_, € #. Let us define
k =min{k’ € {1,...,n}|Y}/ Y\ _, has [1 and is in A},
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and write k = j* with n given by Theorem 1.5. From Theorem 1.5, X,/X;_,
is .# -related to Y, /Y, ; in particular, it has IT and belongs to .#".

Assume that X;/X;_, is .#-related to Y;,/Y,._;. Then the latter, like
X;j/X;-1, has IT and is in .#; so k < k’ by choice of k. On the other hand,
k = j™ is maximal with respect to X;VY;_,/X;_VY;_, € #,sothatk > k'
is a consequence of the following general observation (which is easily derived
from Definition 1.4, using (M1)): if X;/X,_, is .# -related to Y,/ Y}._;, and
is in ./l, then Xj \ Yk’—-l/Xj—l v Yk’—l eA.

2. Applications to finite groups

In this section we consider chief series of a finite group G (and K, H 4 G,
K < H).

(1) Since the lattice .2’ of normal subgroups of a group is modular, we may
apply Theorem 1.5 to deduce Isbell’s version of the Jordan-Hoélder Theorem
for finite groups (namely, by taking .# = P y). This yields a correspon-
dence m between the chief factors of the two series such that for all i the
corresponding factors X;/X;_| and Y;x/Y;x_, satisfy X;/X;—_1ZshY;x/Yx_;
and, in particular, are G-isomorphic.

(2) To get the Carter, Fischer and Hawkes version mentioned in the intro-
duction (but for not necessarily soluble finite groups), with a correspondence
ne respecting the Frattini or non-Frattini nature of corresponding chief fac-
tors, one considers the set .#g of all non-Frattini chief factors between K and
H (the chief factors supplemented in G by a proper subgroup of G). This
is an M-set: indeed, condition (M1) is trivial, while (M2) follows from two
basic properties of the Frattini subgroup (see, for example, 1.25 in [2], for
the less well-known one of them); in fact, the latter property also proves the
validity of hypothesis (*) from Section 1; so .#gp-related chief factors 4/B
and C/D always satisfy A/B Zsh C/D, and hence are G-isomorphic.

(3) Let ¥ be any set of maximal subgroups of G and consider the set
A5 of all those chief factors X/Y of G complemented in G by at least one
element U of .#:

G=UX and UnX =Y.

Again  satisfies (M1), but (M2) does not hold generally; for example, if
G is elementary abelian of order r, {4, B, C} the set of its maximal subgroups
and . = {4, B}, then all chief factors of G except G/C are complemented
by some U in .%; thus (G/C, B/1) is an .#5-crossing, but (G/B, C/1) is not.

A similar example, but with the relevant chief factors being non-abelian,
is given by G = E| x E; x F; where E,, E,, E; are any three isomorphic
non-abelian simple groups, with * = {D;; x E3, D3 x E|} where Dj; is a
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diagonal subgroup of E; x E;. Here (E; x E3/E,, E3/1) is an .#s-crossing, but
(E3 x E3/E3, Ey/1) is not.

Yet another type of counterexample is obtained as follows. Let G € &,
the class of all groups G with a maximal subgroup U such that Coreg(U),
the normal core of U in G, is 1 and, S(G), the socle in G, is a non-abelian
minimal normal subgroup of G complemented by U. (For examples of such
groups see Forster [6]; a description of all groups in % can be found in
Forster [8].) Let S =; S(G) and form the semidirect product H = GS. This
has precisely two minimal normal subgroups: S, and a diagonal subgroup T
of S(G) x S, and these are complemented by G (see, for example, the first
sections in Baer [1], Forster [5]). Now let ¥ = {G,UT}. Then all chief
factors of G below T x S except (T x S)/S are complemented.

These three examples suggest the hypothesis (#) on . stated below. This
hypothesis is not necessary for .# to satisfy (M2) in the lattice & (it is
satisfied, though, by those .#5 we are interested in), but it appears to be
difficult to formulate in a satisfactory manner the precise condition on %
for #5 to satisfy (M2). Before stating (#), we recall from Baer and Forster
[2), Forster [7], Lafuente [13], the definition of the crown C/R of a group G
associated with its non-Frattini chief factor X/Y:

C = XCs(X/Y), R =yes Coreg(U), 7 the set of all max-
imal subgroups U of G such that X/Y is G-isomorphic to a
minimal normal subgroup of G/Coreg(U).

(#) For each crown C/R of G and any two chief factors X;/Y;
of Gsuchthat R< Y, and X; < C (i = 1,2), if X;/Y, has
a complement in G from %, then so does X,/Y,, except,
perhaps, when X; = C # X3_; for some i € {1,2}.

{(We do not require that the chief factors have a common complement.)
Basic properties of crowns are described in [2, 7, 13], and will be used
without further reference. From such properties the following is immediate.

(+)  Let X/Y be a chief factor of G and C/R the crown of G
associated with it, and let U be a maximal subgroup of G.
Then U complements X/Y if and only if U complements
XR/YR,

Using (+), we will deduce a Jordan-Holder Theorem for general .# from
the special case where the lattice %% y involved is %% ¢. So we now assume
that % consists of maximal subgroups U of G complementing a chief factor
of G between R and C; in view of the structure of crowns (cf. 2.4 in [7]),
this means that U complements a minimal normal subgroup of G/Coreg(U)
and R < Coreg(U) < C.
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Assume hypothesis (#). In order to verify condition (M2) for .#, let
(A/B, E/F) be an .#-crossing. Then some U € % complements E/F, while
A/B does not have a complement in .%; in particular, U cannot complement
A/B. Now U N B > F would easily lead to the contradiction that UN A4 =
UNB=B. Thus UNB = F and B £ U; so U complements B/F. (In
fact, we could have infered from (#) the existence of a complement of U
from .) It remains to observe that from (#) it follows that A/E is not
complemented by an element of % since 4/B is not complemented by an
element of ., but B/F < C/F is, (#) requires that 4 = C; and then, if A/E
were complemented by an element of ., the same should apply to 4/B.

Next, let S, be the set of all maximal subgroups complementing a chief
factor between R and C. Recall that all chief factors X/Y of G between R
and C are isomorphic (although all of them are G-isomorphic only if C/R
is abelian or is itself a chief factor of G; however, they are always similar in
the sense of 53.11 of [15], and G-connected/G-related in the sense of [13]
and [7]. Observe that all these chief factors X/Y are complemented in G
by a maximal subgroup, except those for which X = C and G/Y ¢ A,.
Actually, in [14] we have pointed out that each non-soluble finite group G
has a crown C/R such that the [pairwise isomorphic] groups G/T, T 9 G
with R < T < C and C/T a chief factor, are not in #}). Evidently, the
set ¢/r satisfies hypothesis (#) irrespective of whether or not the crown is
complemented (that is, the G/T, T 4 G with R < T < C and C/T a chief
factor, are in % or not). Hence the above discussion together with Theorem
1.5 yields a Jordan-Hoélder correspondence n¢/g, and a uniqueness statement
for this.

(4) To get the general result, note that each chief factor X/Y of G is ei-
ther Frattini or has a unique crown C/R associated with it. The latter is
determined by the requirement that XR < YR (and then X/Y <« XR/YR,;
in fact, X/Y = XR/YR). Therefore, given any chief series of G, multi-
plying by R induces a bijection between those factors in the series whose
associated crown is C/R and the factors in the chief series of G between
R and C obtained by taking the images of the former chief factors un-
der such multiplication. Now put %3 = .#3, the set of all Frattini chief
factors of G and, for each crown C/R of G, let é¢/r comprise all non-
Frattini chief factors of G with C/R as their associated crown. Define
Mcjp = My where & = Sy, and note that #eg C Bejr. Also, say
that two chief factors are .# -related, if both belong to the same %, and are
M,-related, where x is ® or some C/R. Finally, given two chief series of
G of lengths n, m, define m € S, by requiring that the restriction of n to
I,={ie{l,...,n}|H;/K; € &}, where x = ® or x = C/R for some crown
C/R of G, be n;. Then from (2) and (3) we obtain (most of) our main result
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(which we formulate for %% y, although our proof here dealt only with the
special case K =1 and H = G).

2.1 THEOREM. Let K = Xg < X1 < - <Xy =Hand K =Yy, < Y, <
-+ < Yy = H be two chief series of G between H and K. Then n = m, and
there exists a unique n € S, such that X;/X;_, and Yix|Yx_, are # -related
fori=1,..., n. This means the following.

(i) Yo/ Yixoy S O(G/Yix1) & Xi/Xi1 < ®(G/Xi—1) & Xi/Xio1 S
Yix/Yix_y; in fact, there is a Frattini factor A/B such that X;/X,—; > A/B <
Yir/Yin_1.

(if) Xi/Xi—y £ ®(G/Xi—1) & Xi/Xi_\ is G-connected to Yix[Yix_,.

(iit) Yix/Yix_y is complemented in G by a maximal subgroup < X;/X;_,
is complemented in G by a maximal subgroup = X;/X;_, and Yix/Yx_,
have a common maximal complement in G, and for the crown C/R of G
associated with X;/X;_,, either X;/X;_1 « A/B > Yix|Yx_, for some chief
factor A/B of G between R and C (in particular, X;/X;—1 =¢ Yix/Yix_y), or
Xi/Xiy « C/T; # C/Si » Yix/Yix_y where T;,S; < G contain R and are
such that C/T; and C/S; are non-complemented chief factors of G.

(iv) X;/X;_ is non-Frattini, but not complemented by a maximal subgroup
= X,R=C=YsRandC/X;_ R and C/Yx_| R are non-complemented chief
factors of G, where C/R is the crown of G associated with X;/X;_,. Moreover,
Jor each x € {®} U {C/R|C/R acrown of G} and all i € {1,...,n},

i"=max{je{l,..., nHXiY; 1/ Xi1 Yo € 4}, i Xif/Xio € M,
i"=min{j e {1,...,n}X;N Yj/Xj_l N Yj € %\./lx}, lei/Xi—l € gx\‘/[x
To check the above conditions (iii) and (iv), apply Definition 1.4 (here

only cases (1,2) can be relevant) together with statement (+) above and the
description of the structure of G/R for a crown C/R given in [7, 24].
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