# Double covers of graphs 

## Derek A. Waller


#### Abstract

A projection morphism $\rho: G_{1} \rightarrow G_{2}$ of finite graphs maps the vertex-set of $G_{1}$ onto the vertex-set of $G_{2}$, and preserves adjacency. As an example, if each vertex $v$ of the dodecahedron graph $D$ is identified with its unique antipodal vertex $\bar{v}$ (which has distance 5 from $v$ ) then this induces an identification of antipodal pairs of edges, and gives a (2:1)-projection $P: D \rightarrow P$ where $P$ is the Petersen graph. In this paper a category-theoretical approach to graphs is used to define and study such double cover projections. An upper bound is found for the number of distinct double covers $\rho: G_{1} \rightarrow G_{2}$ for a given graph $G_{2}$. A classification theorem for double cover projections is obtained, and it is shown that the $n$-dimensional octahedron graph $K_{2,2, \ldots, 2}$ plays the role of universal object.


## 1. Introduction

Related to any graph $G$ (finite, undirected, without loops or multiple edges) is a set $D(G)$ of graphs each having twice as many vertices and edges as $G$, and each having a two-fold projection onto $G$ which 'preserves local structure'. Such a 'double cover concept' is considered by Biggs [1, §19] (using group-actions) and Massey [7, VI.7] (using topological spaces).

For a simple way of making the idea precise, and leading to a classification theorem, it is convenient to work in the category Graph

Received 25 November 1975.
whose objects are graphs and whose morphisms are adjacency-preserving maps between graphs. Thus $f: G \rightarrow H$ is a morphism if $f(v)$ is adjacent to $f(w)$ in $H$ whenever $v$ is adjacent to $w$. (denoted $v \sim \omega$ ) in $G$. It follows that a morphism $f$ sends an edge $[v, w]$ of $G$ to an edge $[f(v), f(w)$ ] of $H$. A category-theoretical approach to graph theory enables us to define, study and classify double covers of graphs.

## 2. Localisation of Kronecker products of graphs

Our first type of double cover of $G$ can now be dealt with using the fact that the category Graph has products (see for example Farzan and Waller [3] and the references therein). The product $G_{1} \wedge G_{2}$ of two graphs $G_{1}$ and $G_{2}$ (often known as their Kronecker product) has vertexset $V\left(G_{1} \wedge G_{2}\right)$ equal to the cartesian product $V\left(G_{1}\right) \times V\left(G_{2}\right)$ of the vertex-sets of the given graphs, with adjacency in $G_{1} \wedge G_{2}$ given by $\left(v_{1}, v_{2}\right) \sim\left(w_{1}, w_{2}\right)$ if (and only if)

$$
v_{1} \sim w_{1} \text { in } G_{1} \text { and } v_{2} \sim w_{2} \text { in } G_{2} .
$$

In particular, taking the complete graph $K_{2}$ with vertices denoted 0 and 1 to play the role of $G_{2}$, we can associate to any graph $G$ the graph $G \wedge K_{2}$. This bears the required relationship to $G$, and we shall call it the Kronecker double cover of $G$. The projection morphism $p: G \wedge K_{2} \rightarrow G$ is defined by

$$
\left.\begin{array}{l}
(v, 0) \\
(v, 1)
\end{array}\right\} \mapsto v
$$

on vertices, and this induces a (2:1) map on edges:

$$
\left.\begin{array}{l}
{[(v, 0),(w, 1)]} \\
{[(v, 1),(w, 0)]}
\end{array}\right\} \mapsto[v, w] .
$$

The Kronecker double cover of an odd circuit $C_{2 n+1}$ is the circuit $c_{4 n+2}$

An illustrative example is $K_{4}$, whose Kronecker double cover is
the 3-cube graph $Q_{3}$ :


A second form of 'double cover concept' is the 'trivial' case of 2-fold projections $G \mathbb{H} G \rightarrow G$ involving the disjoint union of two copies of $G$.

Thirdly, in between these two extremes, we must also allow for 'hybrids' such as

(where the projection morphism is given by $v \mapsto v, v^{\prime} \mapsto v$ ).
The Kronecker double cover and trivial double cover of $G$ are isomorphic if and only if $G$ is bipartite. In particular for star-graphs $K_{1, d}$ we have $K_{1, d} \wedge K_{2} \cong K_{1 ; d} \|_{1, d}$.

In order to coordinate these examples, and also to include (and generalise) the 'antipodal double covers' of Smith [8] and Biggs [1, p. 151], one can 'localise' the definition of Kronecker double cover:

DEFINITION. A double cover of a graph $G$ consists of a graph $D$ together with a morphism $p: D \rightarrow G$ satisfying
(i) for each $v \in V(G), p^{-1}(v)=\left\{v^{1}, v^{2}\right\}$,
(ii) if $v \sim w$ in $G$, then in $D$, either
(a) $v^{1} \sim w^{1}$ and $v^{2} \sim w^{2}$, or
(b) $v^{\perp} \sim w^{2}$ and $v^{2} \sim w^{1}$.

NOTE. The definition ensures that the double cover projection $p$ is a (2:1) epimorphism not only on vertices but also on edges. Where there is no danger of confusion we shall abbreviate $p: D \rightarrow G$ by either $p$ or $D$ as appropriate.

One can regard work on the automorphism group of $G$ as the study of (1:1) morphisms onto $G$; here we are studying (2:1) morphisms onto $G$.

PROPOSITION 2.1. If $p: D \rightarrow G$ is a double cover projection, then the vertex $v$ has degree $d$ in $G$ if and only if the two associated vertices $v^{1}$ and $v^{2}$ in $D$ both have degree $d$.

Proof. $v$ is adjacent to the vertices $v_{1}, \ldots, v_{d}$ in $G$ if and only if in $D$ the vertices $v^{1}$ and $v^{2}$ are each adjacent to exactly one vertex $v_{i}^{1}$ or $v_{i}^{2}$ corresponding to each $v_{i}, i=1, \ldots, d$, and the result follows.

COROLLARY 2.2. If $G$ is regular with $n$ vertices of degree $d$, then every double cover $D$ of $G$ is regular with $2 n$ vertices of degree $d$.

Thus, considering the star-graph $K_{1, d}$ as a closed neighbourhood of the vertex $v$ in $G$, we have in each double cover $D$ of $G$ a disjoint union $p^{-1}\left(K_{1, d}\right) \cong K_{1, d} \Perp K_{1, d}$, as the subgraph of $D$ which projects onto the subgraph $K_{1, d}$ of $G$.

Thus locally, any double cover is isomorphic to a Kronecker double cover. (In the category of topological spaces, one also meets spaces which are local products, and the concept of fibre bundle is an appropriate form of localisation of that product (see [6]).) In our analogous graphtheoretical construction, the 'fibre' $p^{-1}(v)$ over the vertex $v$ consists of two vertices.

PROBLEM. Characterise those graphs $D$ for which there exists a graph $G$ such that $D$ is a double cover of $G$. Clearly $D$ must have an even number of vertices and of edges; this is not sufficient, since the graph

is not a double cover of any graph $G$.
3. Antipodal double covers

An important class of examples of double covers is given by the antipodal double covers:

DEFINITIONS. (i) The distance $\partial(v, w)$ of $v$ from $w$ in $G$ is the number of edges in a shortest path from $v$ to $w$.
(ii) The diameter $d=\operatorname{diam} G$ of $G$ is $\max _{v, w} \partial(v, w)$.
(iii) A double cover projection $p: D \rightarrow G$ is called antipodal if the fibres $p^{-1} v$ in $D$ consist of antipodal pairs of vertices; that is, $\partial\left(v^{1}, v^{2}\right)=\operatorname{diam} G$ if and only if $p\left(v^{1}\right)=p\left(v^{2}\right)$.

This concept (and more generally $n$-fold antipodal covers) was first studied in the context of distance-transitive graphs by Smith [8], and has been extended by Gardiner [4]. They refer to $G$ in such cases as the derived graph of $D$. We do not restrict attention to regular graphs. In fact some irregular graphs have an antipodal double cover in $D(G)$, for example:


It should also be noted that $D(G)$ may contain non-isomorphic
antipodal graphs. (The reader is invited to construct three different antipodal double covers of Petersen's graph.)

As an aid to the construction of antipodal double covers, recall (Harary [5], p. 22) the cartesian product $G_{1} \times G_{2}$ of the graphs $G_{1}$ and $G_{2}$ has vertex-set $V\left(G_{1}\right) \times v\left(G_{2}\right)$, with $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ if and only if $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} \sim v_{2}\right]$ or $\left[u_{1} \sim v_{1}\right.$ and $\left.u_{2}=v_{2}\right]$. The set of all antipodal double covers is closed under cartesian product.

THEOREM 3.1. If the graph $D_{i}$ is an antipodal double cover of $G_{i}$ with $\bar{v}_{i}$ antipodal to $v_{i}$ in $D_{i}(i=1,2)$, then there exists a graph $G_{1} \tilde{\times} G_{2}$ over which $D_{1} \times D_{2}$ is an antipodal double cover, with the "product vertex" $\left(v_{1}, v_{2}\right)$ antipodal to $\left(\bar{v}_{1}, \bar{v}_{2}\right)$.

Proof. Now we have $\operatorname{diam}\left(D_{1} \times D_{2}\right)=\operatorname{diam} D_{1}+\operatorname{diam} D_{2}$. It is clear that the product-projection maps

$$
p_{i}: D_{1} \times D_{2} \rightarrow D_{i} \quad(i=1,2)
$$

given by

$$
\left(v_{1}, v_{2}\right) \mapsto v_{i}
$$

are not morphisms. However, they do project paths in $D_{1} \times D_{2}$ to paths in $D_{i}(i=1,2)$. What is more $p_{i}$ projects a minimal path from $\left(v_{1}, v_{2}\right)$ to $\left(\bar{v}_{1}, \bar{v}_{2}\right)$ in $D_{1} \times D_{2}$ to a minimal path from $v_{i}$ to $\bar{v}_{i}$ in $D_{i}$. It follows that the length of a minimal path from $\left(v_{1}, v_{2}\right)$ to $\left(\bar{v}_{1}, \bar{v}_{2}\right)$ in $D_{1} \times D_{2}$ is equal to the sum of the lengths of the projected paths in $D_{1}$ and $D_{2}$, which is equal to $\operatorname{diam}\left(D_{1} \times D_{2}\right)$.

It is also clear that no vertex other than $\left(\bar{v}_{1}, \bar{v}_{2}\right)$ is so far from $\left(v_{1}, v_{2}\right)$ in $D_{1} \times D_{2}$ (for if such existed, then projection by $p_{i}$ would contradict the antipodality of $\bar{v}_{i}$ to $v_{i}$ in $D_{i}$ ). Thus each vertex of $D_{1} \times D_{2}$ has a unique antipodal vertex, given by $\left(v_{1}, v_{2}\right)=\left(\bar{v}_{1}, \bar{v}_{2}\right)$.

Finally, the graph $G_{1} \tilde{\times} G_{2}$ of which $D_{1} \times D_{2}$ is an antipodal double
cover is derived in the obvious way. We have

$$
\begin{aligned}
\left(v_{1}, v_{2}\right) \sim\left(w_{1}, w_{2}\right) & \Leftrightarrow \bar{v}_{1} \sim_{D_{1}} \bar{w}_{1} \text { and } \bar{v}_{2} \sim_{D_{2}} \bar{w}_{2} \\
& \Leftrightarrow v_{1} \sim_{D_{1}} w_{1} \text { and } v_{2} \sim_{D_{2}} w_{2} \\
& \Leftrightarrow\left(v_{1}, v_{2}\right) \sim\left(w_{1}, w_{2}\right)
\end{aligned}
$$

Thus $G_{1} \tilde{\times} G_{2}$ has a vertex for each antipodal pair of vertices in $D_{1} \times D_{2}$, and an edge corresponding to each antipodal pair of edges in $D_{1} \times D_{2}$.

## 4. Pullbacks of double covers

DEFINITION. Given any two graph-morphisms:

the graph $D_{\alpha}$ induced by $\alpha$ from $D$ has vertex-set

$$
V\left(D_{\alpha}\right)=\{(h, d) \in V(H) \times V(D): \alpha(h)=p(d)\}
$$

and adjacency

$$
(h, d) \sim-\left(h^{\prime}, d^{\prime}\right) \Leftrightarrow h \sim_{H} h^{\prime} \text { and } d \sim_{D} d^{\prime}
$$

The morphism $p_{\alpha}: D_{\alpha} \rightarrow H$ induced by $\alpha$ from $p$ is given by $(h, d) \mapsto h$. Thus we have a (commutative) pullback diagram in the category Graph:

where $\alpha_{p}$ is given by $(h, d) \mapsto d$.
PROPOSITION 4.1. If $p: D \rightarrow G$ is a double cover projection, then so is $p_{\alpha}: D_{\alpha} \rightarrow B$.

Proof. For each $h \in V(H)$, we have that $p^{-1}(\alpha(h))$ consists of two vertices, $\alpha(h)^{1}$ and $\alpha(h)^{2}$. Thus $p_{\alpha}^{-1}(h)=\left\{\left(h, \alpha(h)^{1}\right),\left(h, \alpha(h)^{2}\right)\right\}$. These two points constituting the fibre over $h$ are not adjacent, since $\alpha(h)^{1}$ and $\alpha(h)^{2}$ are not adjacent in $D$. Axiom (ii) for $p_{\alpha}$ to be a double cover follows from the corresponding condition for $p$.

EXAMPLE. If $\alpha: H \subset G$ is a subgraph-inclusion, then the double cover $p_{\alpha}: D_{\alpha} \rightarrow G$ is isomorphic to the restriction $p \mid p^{-1} H: p^{-1} H \rightarrow H$. If $p: D \rightarrow G$ is a Kronecker double cover then so is $p_{\alpha}: D_{\alpha} \rightarrow H$ (see [3]).

The concept of isomorphism of double covers which is needed here is defined as follows (see Djokovic [2]).

DEFINITIONS. (i) A morphism $f$ of double covers over $G$ is a commutative diagram

(ii) $f$ is called an isomorphism of double covers if also there is a morphism $g: D_{2} \rightarrow D_{1}$ such that $g \cdot f=I_{D_{1}}$ and $f \cdot g=l_{D_{2}}$.

Isomorphism is an equivalence relation (denoted $D_{1} \cong D_{2}$ ); let $[p]$ denote the isomorphism class represented by $p: D \rightarrow G$, and let $D(G)$ denote the set of isomorphism classes of double covers of $G$.

Let Set denote the category of sets. Proposition 4.1 can now be applied to give our first structure-theorem.

THEOREM 4.2. There is a contravariont functor $D:$ Graph $\rightarrow$ Set.
Proof. First we observe that, a graph-morphism $\alpha: H \rightarrow G$ induces a set-function

$$
D(\alpha): D(G) \rightarrow D(H)
$$

given by

We define $D(\alpha)(p)=p_{\alpha}$ (using the above pullback construction).
The conditions for $D$ to be a contravariant functor are now easily verified:
(i) if $\alpha$ is the identity morphism, then the induced double cover is isomorphic to $p$ itself. Thus $D\left(I_{G}\right)=I_{D(G)}$;
(ii) $D$ respects (but reverses) composite morphisms.

If $K \xrightarrow{\beta} H \xrightarrow{\alpha} G$, then it is easily verified that $D(\alpha \beta)(p)=p_{\alpha \beta}=D(\beta) D(\alpha)(p)$.

Clearly for all $G, D(G)$ contains the trivial double cover which we shall denote by $G \mathbb{H} G$ or $p_{0}$. In the case of a tree, this is the only possibility.

PROPOSITION 4.3. If $T$ is a tree then $D(T)$ consists of $\left[p_{0}\right]$ azone.

Proof. Since $T$ is bipartite, there is a morphism $\alpha: T \rightarrow K_{2}$. The graph $K_{2}$ only has the trivial double cover, and the absence of circuits from $T$ implies that the pullback diagram

gives the only possibility over $T\left(\right.$ with $\left.\left(K_{2} \mathbb{L} K_{2}\right)_{\alpha} \cong T \mathbb{L}\right)$.

In particular, this applies to spanning trees, and we can use Proposition 4.3 to study non-trivial double covers. In the following, let $G$ be a fixed arbitrary, connected graph, and let $T \subset G$ be a spanning tree. Of course, a choice is involved here, and this will affect our labelling, but the main results will be seen to be independent of this choice of spanning tree.

Suppose $G$ has $n$ vertices and $m$ edges, whence the cutset rank $K(G)$ is equal to the number $n-1$ of edges in (any) spanning tree $T$. The circuit rank $\gamma(G)$ is the number $m-n+1$ of edges in $G-T$.

NOTATION 4.4. Throughout $\S 4$, we choose a spanning tree $T$ for $G$, and consider the pullback with respect to the inclusion $T \subset G$. Then $T \Perp T$ is a subgraph of any double cover $D$ of $G$. If $V(G)=v_{1}, \ldots, v_{n}$, then label the vertices of one copy $T_{1}$ of $T$ as $v_{1}^{1}, \ldots, v_{n}^{1}$, and those of the other copy $T_{2}$ of $T$ as $v_{1}^{2}, \ldots, v_{n}^{2}$.

Subject to this labelling, we shall call an edge $\left[v_{i}, v_{j}\right]$ of $G$ trivial in $p: D \rightarrow G$ if $v_{i}^{1} \sim v_{j}^{1}$ and $v_{i}^{2} \sim v_{j}^{2} \quad$ (in the definition of double cover) in $D$, and non-trivial if $v_{i}^{1} \sim v_{j}^{2}$ and $v_{i}^{2} \sim v_{j}^{1}$ in $D$.

LEMMA 4.5. If $p: D \rightarrow G$ is any double cover projection, then $D$ is disconnected if and only if $p$ is isomorphic to the trivial projection $p_{0}$. In this case $k(D)=2(n-1)$ and $\gamma(D)=2(m-n+1)$. In all other cases, $D$ is connected, with $k(D)=2 n-1$ and $\gamma(D)=2 m-2 n+1$.

Proof. Consider the spanning forest $T \Perp T$ for $D$ as in 4.4. Clearly $D$ is disconnected (and $D=G \Perp G$ ) if and only if every edge of $G-T$ is trivial (in which case the two copies of $T$ are never linked). The rank-computations then follow immediately.

PROBLEM. How many (non-isomorphic) double covers does a graph $G$ have?

PROPOSITION 4.6. $1 \leq|D(G)| \leq 2^{Y(G)}$.
Proof. Again consider the pullback and notation of 4.4. Every double cover $D$ of $G$ contains $T_{1} \| T_{2}$ as a spanning forest. To reconstruct $D$ we must add two edges corresponding to each edge $e \in G-T$. For each of these $\gamma(G)$ edges there are exactly two possibilities: either we make it trivial or non-trivial in $p$, and the result follows.

NOTE. These $2^{\gamma(G)}$ double covers are not necessarily distinct (hence the inequality in Proposition 4.6). For example $\gamma\left(K_{4}\right)=3$, but the
$2^{3}=8$ double covers can be partitioned into exactly three isomorphismclasses, namely those given in $\$ 2$.

LEMMA 4.7. The n-circuit $C_{n}$ has exactly two non-isomorphic double covers.

Proof. The (only) non-trivial one is given by the morphism $C_{2 n} \rightarrow C_{n}$.

THEOREM 4.8. If $\gamma(G)=1$, then $|D(G)|=2$.
Proof. Here the 4.4 construction leaves one edga $e \in G-T$. There is one isomorphism class of connected double covers, corresponding to $e$ being a non-trivial edge for $p$.

## 5. Classification of double covers

The $n$-dimensional octahedron $K_{n(2)}=\underbrace{K_{2, \ldots, 2}}_{n \text { times }}$ is the complete n-partite graph which generalises the graph $K_{3(2)}=K_{2,2,2}$ of the Platonic solid octahedron:


For each natural number $n, K_{n(2)}$ is an antipodal graph but it is (understandably) excluded from study by Smith and Biggs because its small diameter of 2 causes its 'derived graph' to have the apparently undesirable feature of being a multigraph $K_{n}^{2}$. (For any graph $G$, we denote by $G^{2}$ the associated multigraph with the same vertex-set as $G$, and each edge duplicated.)

We shall show that not only can this feature be turned to our
advantage, but also that $K_{n(2)}$ is the most important double cover of all! (of course $K_{n}^{2}$ is not in the category of graphs. However morphisms and pullbacks involving $K_{n}^{2}$ are defined as for graphs.)

We begin by labelling the $2 n$ vertices of $K_{n(2)}$ as $\left\{v_{1}^{1}, \ldots, v_{n}^{1}, v_{1}^{2}, \ldots, v_{n}^{2}\right\}$ with $v_{i}^{2}$ antipodal to $v_{i}^{1}$. The $2 n(n-1)$ edges of $K_{n(2)}$ are then of two types:

Type 1 of the form $\left[v_{i}^{1}, v_{i}^{1}\right]$ or $\left[v_{i}^{2}, v_{i}^{2}\right]$;
Type 2 of the form $\left[v_{i}^{1}, v_{i}^{2}\right]$.
There are $n(n-1)$ edges of each type. This provides a natural expression of $K_{n(2)}$ as an antipodal double cover of the multigraph $K_{n}^{2}$ which has a 'type 1 edge' $\left[v_{i}, v_{j}\right]$ derived from the two type 1 edges $\left[v_{i}^{1}, v_{j}^{1}\right]$ and $\left[v_{i}^{2}, v_{j}^{2}\right]$ and also a 'itype 2 edge' $\left[v_{i}, v_{j}\right]$ derived from the two type 2 edges $\left[v_{i}^{1}, v_{j}^{2}\right]$ and $\left[v_{i}^{2}, v_{j}^{1}\right]$.

This classifies the two edges between any two vertices of $K_{n}^{2}$ in a useful way. If $G$ and $H$ have the same vertex-set, we denote by $G \cup H$ their edge-disjoint union which has again the same vertex-set, with all edges of both $G$ and $H$. In particular, $K_{n}^{2}=K_{n} \cup K_{n}$. This helps clarify the octahedron double cover.

THEOREM 5.1. $K_{n(2)} \cong\left(K_{n} \Perp K_{n}\right) \cup\left(K_{n} \wedge K_{2}\right)$.
Proof. The graphs $K_{n} \mathbb{L} K_{n}$ and $K_{n} \wedge K_{2}$ each have $2 n$ vertices. They are respectively the trivial and Kronecker double covers of $K_{n}$. The double cover $K_{n(2)} \rightarrow K_{n}^{2}$ is the edge disjoint union of these two double covers of $K_{n}$, with the type 1 edges of $K_{n(2)}$ projecting (2:1) to type

1 edges of $K_{n}^{2}$ as the trivial double cover, and the type 2 edges projecting (2:1) to the type 2 edges of $K_{n}^{2}$, as the Kronecker double cover $K_{n} \wedge K \rightarrow K_{n}$.

EXAMPLE. The $n=4$ case expresses the 4 -dimensional octahedron $K_{4}(2)$ as the edge disjoint union of a cube $Q_{3}$ and two tetrahedra $K_{4}$, as illustrated by the antipodal double cover projection:


We now show that this double cover $p_{U}: K_{n(2)} \rightarrow K_{n}^{2}$ is 'universal' for all $n$-colourable graphs $G$ in the sense that all double covers of $G$ can be expressed as pullbacks (as in $\S 4$ ) of $p_{U}$ with respect to a certain morphism.

LEMMA 5.2. A graph $G$ is n-colourable if and only if there is a morphism $\alpha: G \rightarrow K_{n}$.

Proof. A morphism $\alpha: G \rightarrow K_{n}$ sends adjacent vertices to adjacent vertices. If we give a vertex in $G$ the same colour as $\alpha(v)$ has in some (fixed) $n$-colouring of $K_{n}$, this gives a valid $n$-colouring of $G$.

Conversely any given $n$-colouring of $G$ defines a morphism $\alpha$ to $K_{n}$ : simply colour $K_{n}$ with the same $n$ colours and let $\alpha$ preserve colours.

Denoting by $\chi(G)$ the chromatic number of $G$, we have
PROPOSITION 5.3. Every double cover $D$ of a graph $G$ satisfies $\chi(D) \leq \chi(G)$.

Proof. Application of Lemma 5.2 to the composite $D \xrightarrow{p} G \xrightarrow{\alpha} K_{n}$ allows us to 'lift' an $n$-colouring of $G$ to an $n$-colouring of $D$.

COROLLARY 5.4. If $G$ is bipartite, then so is every double cover $D$ of $G$.

We can now show that all double covers can be expressed as pullbacks of an octahedron.

THEOREM 5.5. Let $p: D \rightarrow G$ be a double cover, with $G$ $n$-colourable. Then there is a morphism $\alpha^{\prime}: G \rightarrow K_{n}^{2}$ such that $p$ is isomorphic to the double cover

$$
\left(p_{U}\right)_{\alpha^{\prime}}:\left(K_{n(2)}\right)_{\alpha^{\prime}} \rightarrow G
$$

induced by $\alpha$ ' from the 'universal' double cover $p_{U}$.
Proof. Let $\alpha: G \rightarrow K_{n}$ be an $n$-colouring morphism for $G$, as in Lemma 5.2.

Define a morphism $\alpha^{\prime}: G \rightarrow K_{n}^{2}$ by:

$$
\begin{aligned}
& \alpha^{\prime}(v)=\alpha(v), \quad v \in V(G) ; \\
& \alpha^{\prime}(e)= \begin{cases}\alpha(e)^{l} & \text { if } e \text { is a trivial edge of } p \\
\alpha(e)^{2} & \text { if } e \text { is a non-trivial edge of } p\end{cases}
\end{aligned}
$$

The pullback $\left(p_{U}\right)_{\alpha}$, has the required property.
There is a strong analogy between this use of the n-octahedron as a 'universal double cover' and the universal bundle (due to Milnor) for the contravariant fibre bundle functor (see for example Husemolier ([6], 4.11.1). Milnor's construction involves the join of $n$ copies of the 0-sphere $S^{0}$, and $K_{n(2)}$ is indeed the graph-theoretical analogue of this. Similarly our multigraph $K_{2}^{n}$ plays the role of classifying object for the functor $D$.

The inclusion morphism of $K_{n-1}^{2}$ in $K_{n}^{2}$ induces inclusions of double covers:

$$
\begin{array}{cccc}
K_{1(2)} & \rightarrow K_{2(2)} & \rightarrow K_{3(2)} & \rightarrow \ldots \\
\downarrow & & \downarrow & \downarrow \\
& & \\
K_{1}^{2} & \rightarrow & K_{2}^{2} & \rightarrow \\
K_{3}^{2} & \rightarrow \ldots
\end{array}
$$

Finally, to give a full classification of double covers of graphs, we must investigate when two morphisms from $G$ to $K_{n}^{2}$ induce isomorphic double covers. A suitable equivalence relation on such morphisms will correspond to that of homotopy in fibre bundle theory.

With Lemma 4.7 in mind, we define two morphisms $\alpha^{\prime}, \beta^{\prime}: C_{n} \rightarrow K_{n}^{2}$ to have the same parity if $\alpha^{\prime}=\beta^{\prime}$ on vertices and either
(i) they both produce an even number of type 2 edges (in which case they both induce from $p_{U}$ the trivial double cover $\left.C_{n} \| C_{n}\right) ;$ or
(ii) they both produce an odd number of type 2 edges (in which case they both induce from $P_{U}$ the non-trivial double cover $C_{2 n}$ ).

Then we define two morphisms $\alpha^{\prime}, \beta^{\prime}: G \rightarrow K_{n}^{2}$ to be equivalent if $K_{n}^{2}$ has an automorphism $\varphi$ such that $\beta^{\prime}$ and $\varphi \cdot \alpha^{\prime}$ have the same parity on every circuit of $G$. This is easily seen to be a proper equivalence
relation; let $\left[G, K_{n}^{2}\right]$ denote the set of equivalence classes of morphisms from $G$ to $K_{n}^{2}$.

THEOREM 5.6. There is a $1: 1$ correspondence $D(G) \leftrightarrow\left[G, K_{n}^{2}\right]$, for any $n$-colourable graph $G$.

Proof. Double covers induced from the $n$-octahedron universal double cover $p_{U}: K_{n(2)} \rightarrow K_{n}^{2}$ are formed as in Theorem 5.5. The definition of equivalence of morphisms ensures that $\left(p_{U}\right)_{\alpha^{\prime}}$ and $\left(p_{U}\right)_{\beta^{\prime}}$ are isomorphic if and only if $\alpha^{\prime}$ and $\beta^{\prime}$ are equivalent. The result then follows immediately.

## References

[1] Norman Biggs, Algebraic graph theory (Cambridge Tracts in Mathematics, 67. Cambridge University Press, Cambridge, 1974).
[2] D.Ž. Djokovic, "Automorphisms of graphs and coverings", J. Combinatorial Theory Ser. B 16 (1974), 243-247.
[3] M. Farzan and D.A. Waller, "Kronecker products and local joins of graphs", submitted.
[4] A. Gardiner, "Antipodal covering graphs", J. Combinatorial Theory Ser. B 16 (1974), 255-273.
[5] Frank Harary, Graph theory (Addison-Wesley, Reading, Massachusetts; London; Ontario; 1969).
[6] Dale Husemoller, Fibre brodles (McGraw-Hill, New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966).
[7] William S. Massey, Algebraic topology: an introduction (Harcourt, Brace and World, New York, 1967).
[8] D.H. Smith, "Primitive and imprimitive graphs", Quart. J. Math. Oxford Ser. 22 (1971), 551-557.

Department of Pure Mathematics, University College, Swansea, Wales.

