BULL. AUSTRAL. MATH. SOC. VOL. 14 (1976), 233-248.

Double covers of graphs

Derek A. Waller

A projection morphism $\rho : G_1 \rightarrow G_2$ of finite graphs maps the vertex-set of G_1 onto the vertex-set of G_2 , and preserves adjacency. As an example, if each vertex v of the dodecahedron graph D is identified with its unique antipodal vertex \bar{v} (which has distance 5 from v) then this induces an identification of antipodal pairs of edges, and gives a (2:1)-projection $p: D \rightarrow P$ where P is the Petersen graph. In this paper a category-theoretical approach to graphs is used to define and study such double cover projections. An upper bound is found for the number of distinct double covers $\rho: G_1 \rightarrow G_2$ for a given graph G_2 . A classification theorem for double cover projections is obtained, and it is shown that the *n*-dimensional octahedron graph $K_{2,2},\ldots,2$ plays the role of universal object.

1. Introduction

Related to any graph G (finite, undirected, without loops or multiple edges) is a set D(G) of graphs each having twice as many vertices and edges as G, and each having a two-fold projection onto Gwhich 'preserves local structure'. Such a 'double cover concept' is considered by Biggs [1, §19] (using group-actions) and Massey [7, VI.7] (using topological spaces).

For a simple way of making the idea precise, and leading to a classification theorem, it is convenient to work in the category *Graph*

Received 25 November 1975.

234

whose objects are graphs and whose morphisms are adjacency-preserving maps between graphs. Thus $f: G \rightarrow H$ is a morphism if f(v) is adjacent to f(w) in H whenever v is adjacent to w (denoted $v \sim w$) in G. It follows that a morphism f sends an edge [v, w] of G to an edge [f(v), f(w)] of H. A category-theoretical approach to graph theory enables us to define, study and classify double covers of graphs.

2. Localisation of Kronecker products of graphs

Our first type of double cover of G can now be dealt with using the fact that the category Graph has products (see for example Farzan and Waller [3] and the references therein). The product $G_1 \wedge G_2$ of two graphs G_1 and G_2 (often known as their Kronecker product) has vertex-set $V(G_1 \wedge G_2)$ equal to the cartesian product $V(G_1) \times V(G_2)$ of the vertex-sets of the given graphs, with adjacency in $G_1 \wedge G_2$ given by $(v_1, v_2) \sim (w_1, w_2)$ if (and only if)

$$v_1 \sim w_1$$
 in G_1 and $v_2 \sim w_2$ in G_2 .

In particular, taking the complete graph K_2 with vertices denoted 0 and 1 to play the role of G_2 , we can associate to any graph G the graph $G \wedge K_2$. This bears the required relationship to G, and we shall call it the *Kronecker double cover* of G. The projection morphism $p : G \wedge K_2 \neq G$ is defined by

$$(v, 0) \\ (v, 1) \mapsto v$$

on vertices, and this induces a (2:1) map on edges:

$$[(v, 0), (w, 1)] \\ [(v, 1), (w, 0)] \qquad \mapsto [v, w] .$$

The Kronecker double cover of an odd circuit C_{2n+1} is the circuit C_{4n+2} An illustrative example is K_{4} , whose Kronecker double cover is

the 3-cube graph Q_3 :

A second form of 'double cover concept' is the 'trivial' case of 2-fold projections $G \parallel G \Rightarrow G$ involving the *disjoint union* of two copies of G.

Thirdly, in between these two extremes, we must also allow for 'hybrids' such as

(where the projection morphism is given by $v\mapsto v$, $v'\mapsto v$).

The Kronecker double cover and trivial double cover of G are isomorphic if and only if G is bipartite. In particular for star-graphs $K_{1,d}$ we have $K_{1,d} \wedge K_2 \cong K_{1;d} \parallel K_{1,d}$.

In order to coordinate these examples, and also to include (and generalise) the 'antipodal double covers' of Smith [8] and Biggs [1, p. 151], one can 'localise' the definition of Kronecker double cover:

DEFINITION. A double cover of a graph G consists of a graph D together with a morphism $p : D \rightarrow G$ satisfying

(i) for each $v \in V(G)$, $p^{-1}(v) = \{v^1, v^2\}$, (ii) if $v \sim w$ in G, then in D, either (a) $v^1 \sim w^1$ and $v^2 \sim w^2$, or (b) $v^1 \sim w^2$ and $v^2 \sim w^1$. NOTE. The definition ensures that the *double cover projection* p is a (2:1) epimorphism not only on vertices but also on edges. Where there is no danger of confusion we shall abbreviate $p: D \rightarrow G$ by either p or D as appropriate.

One can regard work on the automorphism group of G as the study of (1:1) morphisms onto G; here we are studying (2:1) morphisms onto G.

PROPOSITION 2.1. If $p: D \rightarrow G$ is a double cover projection, then the vertex v has degree d in G if and only if the two associated vertices v^1 and v^2 in D both have degree d.

Proof. v is adjacent to the vertices v_1, \ldots, v_d in G if and only if in D the vertices v^1 and v^2 are each adjacent to exactly one vertex v_i^1 or v_i^2 corresponding to each v_i , $i = 1, \ldots, d$, and the result follows.

COROLLARY 2.2. If G is regular with n vertices of degree d, then every double cover D of G is regular with 2n vertices of degree d.

Thus, considering the star-graph $K_{1,d}$ as a closed neighbourhood of the vertex v in G, we have in each double cover D of G a disjoint union $p^{-1}(K_{1,d}) \cong K_{1,d} \parallel K_{1,d}$, as the subgraph of D which projects onto the subgraph $K_{1,d}$ of G.

Thus *locally*, any double cover is isomorphic to a Kronecker double cover. (In the category of topological spaces, one also meets spaces which are *local* products, and the concept of *fibre bundle* is an appropriate form of localisation of that product (see [6]).) In our analogous graph-theoretical construction, the 'fibre' $p^{-1}(v)$ over the vertex v consists of two vertices.

PROBLEM. Characterise those graphs D for which there exists a graph G such that D is a double cover of G. Clearly D must have an even number of vertices and of edges; this is not sufficient, since the graph

is not a double cover of any graph G .

3. Antipodal double covers

An important class of examples of double covers is given by the antipodal double covers:

DEFINITIONS. (i) The distance $\partial(v, w)$ of v from w in G is the number of edges in a shortest path from v to w.

(ii) The diameter $d = \operatorname{diam} G$ of G is $\max \partial(v, w)$. v, ω

(iii) A double cover projection $p: D \rightarrow G$ is called *antipodal* if the *fibres* $p^{-1}v$ in D consist of antipodal pairs of vertices; that is, $\partial(v^1, v^2) = \text{diam } G$ if and only if $p(v^1) = p(v^2)$.

This concept (and more generally *n*-fold antipodal covers) was first studied in the context of distance-transitive graphs by Smith [&], and has been extended by Gardiner [4]. They refer to G in such cases as the *derived graph* of D. We do not restrict attention to regular graphs. In fact some irregular graphs have an antipodal double cover in D(G), for example:

It should also be noted that D(G) may contain non-isomorphic

antipodal graphs. (The reader is invited to construct *three* different antipodal double covers of Petersen's graph.)

As an aid to the construction of antipodal double covers, recall (Harary [5], p. 22) the cartesian product $G_1 \times G_2$ of the graphs G_1 and G_2 has vertex-set $V(G_1) \times V(G_2)$, with $(u_1, u_2) \sim (v_1, v_2)$ if and only if $[u_1 = v_1 \text{ and } u_2 \sim v_2]$ or $[u_1 \sim v_1 \text{ and } u_2 = v_2]$. The set of all antipodal double covers is closed under cartesian product.

THEOREM 3.1. If the graph D_i is an antipodal double cover of G_i with \bar{v}_i antipodal to v_i in D_i (i = 1, 2), then there exists a graph $G_1 \stackrel{\times}{\times} G_2$ over which $D_1 \times D_2$ is an antipodal double cover, with the "product vertex" (v_1, v_2) antipodal to (\bar{v}_1, \bar{v}_2) .

Proof. Now we have $diam(D_1 \times D_2) = diam D_1 + diam D_2$. It is clear that the product-projection maps

$$p_{i}: D_{1} \times D_{2} + D_{i} \quad (i = 1, 2)$$

given by

$$(v_1, v_2) \mapsto v_i$$

are not morphisms. However, they do project paths in $D_1 \times D_2$ to paths in D_i (i = 1, 2). What is more p_i projects a minimal path from (v_1, v_2) to $(\overline{v}_1, \overline{v}_2)$ in $D_1 \times D_2$ to a minimal path from v_i to \overline{v}_i in D_i . It follows that the length of a minimal path from (v_1, v_2) to $(\overline{v}_1, \overline{v}_2)$ in $D_1 \times D_2$ is equal to the sum of the lengths of the projected paths in D_1 and D_2 , which is equal to diam $(D_1 \times D_2)$.

It is also clear that no vertex other than (\bar{v}_1, \bar{v}_2) is so far from (v_1, v_2) in $D_1 \times D_2$ (for if such existed, then projection by p_i would contradict the antipodality of \bar{v}_i to v_i in D_i). Thus each vertex of $D_1 \times D_2$ has a unique antipodal vertex, given by $(\overline{v_1, v_2}) = (\bar{v}_1, \bar{v}_2)$.

Finally, the graph $G_1 \stackrel{\sim}{\times} G_2$ of which $D_1 \times D_2$ is an antipodal double

cover is derived in the obvious way. We have

$$\begin{split} (\overline{v_1, v_2}) &\sim (\overline{w_1, w_2}) &\Leftrightarrow \overline{v}_1 \sim_{D_1} \overline{w}_1 \quad \text{and} \quad \overline{v}_2 \sim_{D_2} \overline{w}_2 \\ &\Leftrightarrow v_1 \sim_{D_1} w_1 \quad \text{and} \quad v_2 \sim_{D_2} w_2 \\ &\Leftrightarrow (v_1, v_2) \sim (w_1, w_2) \ . \end{split}$$

Thus $G_1 \approx G_2$ has a vertex for each antipodal pair of vertices in $D_1 \times D_2$, and an edge corresponding to each antipodal pair of edges in $D_1 \times D_2$.

4. Pullbacks of double covers

DEFINITION. Given any two graph-morphisms:

$$H \xrightarrow{\alpha} G$$

the graph D_{α} induced by α from D has vertex-set

$$V(D_{\alpha}) = \{(h, d) \in V(H) \times V(D) : \alpha(h) = p(d)\}$$

and adjacency

$$(h, d) \sim (h', d') \Leftrightarrow h \sim_H h' \text{ and } d \sim_D d'$$
.

The morphism $p_{\alpha} : D_{\alpha} \to H$ induced by α from p is given by $(h, d) \mapsto h$. Thus we have a (commutative) pullback diagram in the category Graph:

where α_p is given by $(h, d) \mapsto d$.

PROPOSITION 4.1. If $p:D \to G$ is a double cover projection, then so is $p_\alpha:D_\alpha \to H$.

Proof. For each $h \in V(H)$, we have that $p^{-1}(\alpha(h))$ consists of two vertices, $\alpha(h)^1$ and $\alpha(h)^2$. Thus $p_{\alpha}^{-1}(h) = \{(h, \alpha(h)^1), (h, \alpha(h)^2)\}$. These two points constituting the fibre over h are not adjacent, since $\alpha(h)^1$ and $\alpha(h)^2$ are not adjacent in D. Axiom (ii) for p_{α} to be a double cover follows from the corresponding condition for p.

EXAMPLE. If $\alpha : H \subset G$ is a subgraph-inclusion, then the double cover $p_{\alpha} : D_{\alpha} \rightarrow G$ is *isomorphic* to the restriction $p|p^{-1}H : p^{-1}H \rightarrow H$.

If $p: D \to G$ is a Kronecker double cover then so is $p_{\alpha}: D_{\alpha} \to H$ (see [3]).

The concept of isomorphism of double covers which is needed here is defined as follows (see Djoković [2]).

DEFINITIONS. (i) A morphism f of double covers over G is a commutative diagram

(ii) f is called an *isomorphism of double covers* if also there is a morphism $g: D_2 \xrightarrow{\rightarrow} D_1$ such that $g.f = 1_{D_1}$ and $f.g = 1_{D_2}$.

Isomorphism is an equivalence relation (denoted $D_1 \cong D_2$); let [p] denote the isomorphism class represented by $p: D \neq G$, and let $\mathcal{D}(G)$ denote the set of isomorphism classes of double covers of G.

Let Set denote the category of sets. Proposition 4.1 can now be applied to give our first structure-theorem.

THEOREM 4.2. There is a contravariant functor D : Graph \rightarrow Set.

Proof. First we observe that a graph-morphism $\alpha : H \rightarrow G$ induces a set-function

$$\mathcal{D}(\alpha)$$
 : $\mathcal{D}(G) \rightarrow \mathcal{D}(H)$

given by

We define $\mathcal{D}(\alpha)(p) = p_{\alpha}$ (using the above pullback construction).

The conditions for $\mathcal D$ to be a contravariant functor are now easily verified:

(i) if α is the identity morphism, then the induced double cover is isomorphic to p itself. Thus $\mathcal{D}(l_{C}) = l_{\mathcal{D}(C)}$;

(ii) $\mathcal D$ respects (but reverses) composite morphisms.

If $K \xrightarrow{\beta} H \xrightarrow{\alpha} G$, then it is easily verified that $\mathcal{D}(\alpha\beta)(p) = p_{\alpha\beta} = \mathcal{D}(\beta)\mathcal{D}(\alpha)(p)$.

Clearly for all G, $\mathcal{D}(G)$ contains the *trivial double cover* which we shall denote by $G \parallel G$ or p_0 . In the case of a tree, this is the only possibility.

PROPOSITION 4.3. If T is a tree then D(T) consists of $[p_0]$ alone.

Proof. Since T is bipartite, there is a morphism $\alpha : T \rightarrow K_2$. The graph K_2 only has the trivial double cover, and the absence of circuits from T implies that the pullback diagram

gives the only possibility over T (with $(K_2 \parallel K_2)_{\alpha} \cong T \parallel T$).

In particular, this applies to spanning trees, and we can use Proposition 4.3 to study non-trivial double covers. In the following, let G be a fixed arbitrary, connected graph, and let $T \subset G$ be a spanning tree. Of course, a choice is involved here, and this will affect our labelling, but the main results will be seen to be independent of this choice of spanning tree. Suppose G has n vertices and m edges, whence the cutset rank $\kappa(G)$ is equal to the number n-1 of edges in (any) spanning tree T. The circuit rank $\gamma(G)$ is the number m-n+1 of edges in G-T.

NOTATION 4.4. Throughout §4, we choose a spanning tree T for G, and consider the pullback with respect to the inclusion $T \subseteq G$. Then $T \parallel T$ is a subgraph of any double cover D of G. If $V(G) = v_1, \ldots, v_n$, then label the vertices of one copy T_1 of T as v_1^1, \ldots, v_n^1 , and those of the other copy T_2 of T as v_1^2, \ldots, v_n^2 . Subject to this labelling, we shall call an edge $[v_i, v_j]$ of Gtrivial in $p: D \neq G$ if $v_i^1 \sim v_j^1$ and $v_i^2 \sim v_j^2$ (in the definition of double cover) in D, and non-trivial if $v_i^1 \sim v_j^2$ and $v_i^2 \sim v_j^1$ in D.

LEMMA 4.5. If $p: D \rightarrow G$ is any double cover projection, then D is disconnected if and only if p is isomorphic to the trivial projection p_0 . In this case $\kappa(D) = 2(n-1)$ and $\gamma(D) = 2(m-n+1)$. In all other cases, D is connected, with $\kappa(D) = 2n - 1$ and $\gamma(D) = 2m - 2n + 1$.

Proof. Consider the spanning forest $T \parallel T$ for D as in 4.4. Clearly D is disconnected (and $D = G \parallel G$) if and only if every edge of G - T is trivial (in which case the two copies of T are never linked). The rank-computations then follow immediately.

PROBLEM. How many (non-isomorphic) double covers does a graph G have?

PROPOSITION 4.6. $l \leq |\mathcal{D}(G)| \leq 2^{\gamma(G)}$.

Proof. Again consider the pullback and notation of 4.4. Every double cover D of G contains $T_1 \parallel T_2$ as a spanning forest. To reconstruct D we must add two edges corresponding to each edge $e \in G-T$. For each of these $\gamma(G)$ edges there are exactly two possibilities: either we make it trivial or non-trivial in p, and the result follows. \Box

NOTE. These $2^{\gamma(G)}$ double covers are not necessarily distinct (hence the inequality in Proposition 4.6). For example $\gamma(K_h) = 3$, but the

 $2^3 = 8$ double covers can be partitioned into exactly *three* isomorphism-classes, namely those given in §2.

LEMMA 4.7. The n-circuit C_n has exactly two non-isomorphic double covers.

Proof. The (only) non-trivial one is given by the morphism $C_{2n} \neq C_n$.

THEOREM 4.8. If $\gamma(G) = 1$, then $|\mathcal{D}(G)| = 2$.

Proof. Here the 4.4 construction leaves one edge $e \in G-T$. There is one isomorphism class of connected double covers, corresponding to ebeing a non-trivial edge for p. \Box

5. Classification of double covers

The *n*-dimensional octahedron $K_{n(2)} = \underbrace{K_{2,...,2}}_{n \text{ times}}$ is the complete

n-partite graph which generalises the graph $K_{3(2)} = K_{2,2,2}$ of the Platonic solid octahedron:

For each natural number n, $K_{n(2)}$ is an antipodal graph but it is (understandably) excluded from study by Smith and Biggs because its small diameter of 2 causes its 'derived graph' to have the apparently undesirable feature of being a *multigraph* K_n^2 . (For any graph G, we denote by G^2 the associated *multigraph* with the same vertex-set as G, and each edge duplicated.)

We shall show that not only can this feature be turned to our

advantage, but also that $K_{n(2)}$ is the most important double cover of all! (Of course K_n^2 is not in the category of graphs. However morphisms and pullbacks involving K_n^2 are defined as for graphs.)

We begin by labelling the 2*n* vertices of $K_{n(2)}$ as $\left\{v_1^1, \ldots, v_n^1, v_1^2, \ldots, v_n^2\right\}$ with v_i^2 antipodal to v_i^1 . The 2*n*(*n*-1) edges of $K_{n(2)}$ are then of two types:

Type 1 of the form $\begin{bmatrix} v_i^1, v_j^1 \end{bmatrix}$ or $\begin{bmatrix} v_i^2, v_j^2 \end{bmatrix}$; Type 2 of the form $\begin{bmatrix} v_i^1, v_j^2 \end{bmatrix}$.

There are n(n-1) edges of each type. This provides a natural expression of $K_{n(2)}$ as an antipodal double cover of the multigraph K_n^2 which has a 'type l edge' $[v_i, v_j]$ derived from the two type l edges $\begin{bmatrix} v_i^1, v_j^1 \end{bmatrix}$ and $\begin{bmatrix} v_i^2, v_j^2 \end{bmatrix}$ and also a 'type 2 edge' $\begin{bmatrix} v_i, v_j \end{bmatrix}$ derived from the two type 2 edges $\begin{bmatrix} v_i^1, v_j^2 \end{bmatrix}$ and $\begin{bmatrix} v_i^2, v_j^1 \end{bmatrix}$.

This classifies the two edges between any two vertices of K_n^2 in a useful way. If *G* and *H* have the *same* vertex-set, we denote by $G \cup H$ their *edge-disjoint union* which has again the same vertex-set, with all edges of both *G* and *H*. In particular, $K_n^2 = K_n \cup K_n$. This helps clarify the octahedron double cover.

THEOREM 5.1. $K_{n(2)} \cong (K_n \parallel K_n) \cup (K_n \wedge K_2)$.

Proof. The graphs $K_n \perp K_n$ and $K_n \wedge K_2$ each have 2n vertices. They are respectively the trivial and Kronecker double covers of K_n . The double cover $K_{n(2)} \neq K_n^2$ is the edge disjoint union of these two double covers of K_n , with the type l edges of $K_{n(2)}$ projecting (2:1) to type l edges of K_n^2 as the trivial double cover, and the type 2 edges projecting (2:1) to the type 2 edges of K_n^2 , as the Kronecker double cover $K_n \wedge K \rightarrow K_n$.

EXAMPLE. The n = 4 case expresses the 4-dimensional octahedron $K_{4(2)}$ as the edge disjoint union of a cube Q_3 and two tetrahedra K_4 , as illustrated by the antipodal double cover projection:

We now show that this double cover $p_U: K_{n(2)} \to K_n^2$ is 'universal' for all *n*-colourable graphs *G* in the sense that all double covers of *G* can be expressed as pullbacks (as in §4) of p_U with respect to a certain morphism.

LEMMA 5.2. A graph G is n-colourable if and only if there is a morphism $\alpha : G \neq K_n$.

Proof. A morphism $\alpha : G \to K_n$ sends adjacent vertices to adjacent vertices. If we give a vertex in G the same colour as $\alpha(v)$ has in some (fixed) *n*-colouring of K_n , this gives a valid *n*-colouring of G.

Conversely any given *n*-colouring of *G* defines a morphism α to K_n : simply colour K_n with the same *n* colours and let α preserve colours. \Box

Denoting by $\chi(G)$ the chromatic number of G , we have

PROPOSITION 5.3. Every double cover D of a graph G satisfies $\chi(D) \leq \chi(G)$.

Proof. Application of Lemma 5.2 to the composite $D \xrightarrow{p} G \xrightarrow{\alpha} K_n$ allows us to 'lift' an *n*-colouring of G to an *n*-colouring of D.

COROLLARY 5.4. If G is bipartite, then so is every double cover D of G . $\hfill\square$

We can now show that all double covers can be expressed as pullbacks of an octahedron.

THEOREM 5.5. Let $p: D \rightarrow G$ be a double cover, with G n-colourable. Then there is a morphism $\alpha': G \rightarrow K_n^2$ such that p is isomorphic to the double cover

$$(p_U)_{\alpha'} : (K_{n(2)})_{\alpha'} \rightarrow G$$

induced by α' from the 'universal' double cover $\boldsymbol{p}_{_{II}}$.

Proof. Let $\alpha : G \to K_n$ be an *n*-colouring morphism for G, as in Lemma 5.2.

Define a morphism $\alpha' : G \neq K_n^2$ by: $\alpha'(v) = \alpha(v) , v \in V(G) ;$ $\alpha'(e) = \begin{cases} \alpha(e)^1 & \text{if } e \text{ is a trivial edge of } p , \\ \\ \\ \alpha(e)^2 & \text{if } e \text{ is a non-trivial edge of } p . \end{cases}$

https://doi.org/10.1017/S0004972700025053 Published online by Cambridge University Press

The pullback $(p_{II})_{\alpha}$, has the required property. \Box

There is a strong analogy between this use of the *n*-octahedron as a 'universal double cover' and the universal bundle (due to Milnor) for the contravariant fibre bundle functor (see for example Husemoller ([6], 4.11.1). Milnor's construction involves the *join* of *n* copies of the 0-sphere S^0 , and $K_{n(2)}$ is indeed the graph-theoretical analogue of this. Similarly our multigraph K_2^n plays the role of *classifying object* for the functor \mathcal{P} .

The inclusion morphism of K_{n-1}^2 in K_n^2 induces inclusions of double covers:

$$\begin{array}{c} K_{1(2)} \rightarrow K_{2(2)} \rightarrow K_{3(2)} \rightarrow \cdots \\ + & + & + \\ K_{1}^{2} \rightarrow K_{2}^{2} \rightarrow K_{3}^{2} \rightarrow \cdots \end{array}$$

Finally, to give a full classification of double covers of graphs, we must investigate when two morphisms from G to K_n^2 induce isomorphic double covers. A suitable equivalence relation on such morphisms will correspond to that of homotopy in fibre bundle theory.

With Lemma 4.7 in mind, we define two morphisms $\alpha', \beta' : C_n \neq K_n^2$ to have the same parity if $\alpha' = \beta'$ on vertices and either

- (i) they both produce an even number of type 2 edges (in which case they both induce from p_U the trivial double cover $C_n \parallel C_n$); or
- (ii) they both produce an odd number of type 2 edges (in which case they both induce from p_U the non-trivial double cover c_{2n}).

Then we define two morphisms $\alpha', \beta' : G \to K_n^2$ to be *equivalent* if K_n^2 has an automorphism φ such that β' and $\varphi.\alpha'$ have the same parity on every circuit of G. This is easily seen to be a proper equivalence

https://doi.org/10.1017/S0004972700025053 Published online by Cambridge University Press

relation; let $\begin{bmatrix} G, & K_n^2 \end{bmatrix}$ denote the set of equivalence classes of morphisms from G to K_n^2 .

THEOREM 5.6. There is a 1:1 correspondence $\mathcal{D}(G) \leftrightarrow \begin{bmatrix} G, & k_n^2 \\ n \end{bmatrix}$, for any n-colourable graph G.

Proof. Double covers induced from the *n*-octahedron universal double cover $p_U : K_{n(2)} \rightarrow K_n^2$ are formed as in Theorem 5.5. The definition of equivalence of morphisms ensures that $(p_U)_{\alpha'}$ and $(p_U)_{\beta'}$, are isomorphic if and only if α' and β' are equivalent. The result then follows immediately.

References

- [1] Norman Biggs, Algebraic graph theory (Cambridge Tracts in Mathematics,
 67. Cambridge University Press, Cambridge, 1974).
- [2] D.Ž. Djoković, "Automorphisms of graphs and coverings", J.
 Combinatorial Theory Ser. B 16 (1974), 243-247.
- [3] M. Farzan and D.A. Waller, "Kronecker products and local joins of graphs", submitted.
- [4] A. Gardiner, "Antipodal covering graphs", J. Combinatorial Theory Ser. B 16 (1974), 255-273.
- [5] Frank Harary, Graph theory (Addison-Wesley, Reading, Massachusetts; London; Ontario; 1969).
- [6] Dale Husemoller, Fibre bundles (McGraw-Hill, New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966).
- [7] William S. Massey, Algebraic topology: an introduction (Harcourt, Brace and World, New York, 1967).
- [8] D.H. Smith, "Primitive and imprimitive graphs", Quart. J. Math. Oxford Ser. 22 (1971), 551-557.

Department of Pure Mathematics, University College, Swansea, Wales.