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Double covers of graphs

Derek A. Waller

A projection morphism p : G -*• G_ of finite graphs maps the

vertex-set of G onto the vertex-set of Gp , and preserves

adjacency. As an example, if each vertex V of the dodecahedron

graph D is identified with its unique antipodal vertex V

(which has distance 5 from V ) then this induces an

identification of antipodal pairs of edges, and gives a

(2:l)-projection p : D -*• P where P is the Petersen graph.

In this paper a category-theoretical approach to graphs is used

to define and study such double cover projections. An upper

bound is found for the number of distinct double covers

p : G -»• £?„ for a given graph G_ . A classification theorem

for double cover projections is obtained, and it is shown that

the w-dimensional octahedron graph K „ plays the role

of universal object.

1. Introduction

Related to any graph G (finite, undirected, without loops or

multiple edges) is a set D(G) of graphs each having twice as many

vertices and edges as G , and each having a two-fold projection onto G

which 'preserves local structure'. Such a 'double cover concept' is

considered by Biggs [/, §19] (using group-actions) and Massey [7, VI.7]

(using topological spaces).

For a simple way of making the idea precise, and leading to a

classification theorem, it is convenient to work in the category Gnaph
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whose objects are graphs and whose morphisms are adjacency-preserving maps

between graphs. Thus f : G -*• H i s a morphism i f f{v) i s adjacent to

f{w) in H whenever -y i s adjacent to w _ (denoted v ~ w ) in G . I t

follows that a morphism f sends an edge [v, w] of G to an edge

[f(v), f(w)] of R . A category-theoretical approach to graph theory

enables us to define, study and classify double covers of graphs.

2. Local isation of Kronecker products of graphs

Our f i r s t type of double cover of G can now be dealt with using the

fact that the category Giutuph. has products (see for example Farzan and

Wailer [3] and the references therein) . The product G A G of two

graphs G. and G~ (often known as the i r Kronecker product) has vertex-

set V[G A C ) equal to the cartesian product v[G ) x V[GS\ of the

vertex-sets of the given graphs, with adjacency in G A G given by

{v±, v2) ~ (ux, w2) i f (and only i f )

v. ~ u, in G and «„ ~ w in (?„ .

In particular, taking the complete graph K^ with vertices denoted 0 and

1 to play the role of <?„ , we can associate to any graph G the graph

G A K . This bears the required relationship to G , and we shall call it

the Kronecker double cover of G . The projection morphism p : C A X + ff

is defined by

(v, 0)'

(v, 1).

on vertices, and this induces a (2:1) map on edges:

[(u, 0 ) , (u, 1)]'

• •->• [v, w] .

[(v, 1 ) , (w, 0)]

The Kronecker double cover of an odd circuit C~_ , is the circuit

C-, + 2 An illustrative example is K, , whose Kronecker double cover is
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the 3-cube graph <2_ :

1, 0

h, 1
/

3, 1

2, 0

/

k, 0

1, 1

\

2, 1

3, 0

A second form of 'double cover concept' is the 'trivial' case of

2-fold projections G JJ_ G •*• G involving the disjoint Union of two copies

of G .

Thirdly, in between these two extremes, we must also allow for

'hybrids' such as

(where the projection morphism is given by V t—• v , v' •—*• V ).

The Kronecker double cover and trivial double cover of G are

isomorphic if and only if G is bipartite. In particular for star-graphs

K , we have K , A K = K , JJ_ K . .

In order to coordinate these examples, and also to include (and

generalise) the 'antipodal double covers' of Smith [S] and Biggs [/,

p. 15l], one can 'localise' the definition of Kronecker double cover:

DEFINITION. A double cover of a graph G consists of a graph D

together with a morphism p : D •* G satisfying

(i) for each u € V(G) , p'1^) = [v1, v2} ,

(ii) if v ~ w in G , then in D , either

1 1 2 2
(a) v ~ w and v ~ w , or

1 2 2 1
(b) v ~ W and V ~ W
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NOTE. The definition ensures that the double oover •projection p is

a (2:1) epimorphism not only on vertices tut also on edges. Where there

is no danger of confusion we shall abbreviate p : D -*• G by either p or

D as appropriate.

One can regard work on the automorphism group of G as the study of

(l:l) morphisms onto G ; here we are studying (2:1) morphisms onto

G .

PROPOSITION 2.1. If p : D ->• G is a double oover projection, then

the vertex v has degree d in G if end only if the two associated

1 2
vertioes v and v in D both have degree d .

Proof, v is adjacent to the vertices v^, — , U, in G if and

1 2
only if in D the vertices v and v are each adjacent to exactly one

1 2
vertex v- or v. corresponding to each v. , i = 1, ..., d , and the

result follows. D

COROLLARY 2.2. If G is regular with n vertioes of degree d ,

then every double oover D of G is regular with 2n vertices of degree

d .

Thus, considering the star-graph K , as a closed neighbourhood of
1 ,U

the vertex v in G , we have in each double cover D of G a disjoint

union p [K ,) = K , Jj_ K , , as the subgraph of D which projects onto

the subgraph K. •, of G .
-L,a

Thus locally, any double cover is isomorphic to a Kronecker double

cover. (in the category of topological spaces, one also meets spaces which

are local products, and the concept of fibre bundle is an appropriate form

of localisation of that product (see [6]).) In our analogous graph-

theoretical construction, the 'fibre1 p~ (v) over the vertex v consists

of two vertices.

PROBLEM. Characterise those graphs D for which there exists a graph

G such that D is a double cover of G . Clearly D must have an even

number of vertices and of edges; this is not sufficient, since the graph
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i s not a double cover of any graph G .

3. Antipodal double covers

An important class of examples of double covers is given by the anti-

podal double covers:

DEFINITIONS, (i) The distance 8(u, w) of u from w in G is

the number of edges in a shortest path from u to w .

(ii) The diameter d = diam G of G is max 8(u, w) .

v,w

(iii) A double cover projection p : D •* G is called antipodal if

the fibres p v in D consist of antipodal pairs of vertices; that is,

8(u , v ) = diam G if and only if p[v ) = p[v ) .

This concept (and more generally M-fold antipodal covers) was first

studied in the context of distance-transitive graphs by Smith [8], and has

been extended by Gardiner [4]. They refer to G in such cases as the

derived graph of D . We do not restrict attention to regular graphs. In

fact some irregular graphs have an antipodal double cover in D(G) , for

example:

It should also be noted that D{G) may contain non-isomorphic

https://doi.org/10.1017/S0004972700025053 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025053


238 ' Derek A. WaI Ie r

antipodal graphs. (The reader is invited to construct three different
antipodal double covers of Petersen's graph.)

As an aid to the construction of antipodal double covers, recall
(Harary [5], p. 22) the cartesian product G, x G of the graphs G, and

(?2 has vertex-set v[G) x v[G ) , with (u , u ) ~ [v , v ) if and only

if [w_ = V. and Up ~ «„] or [w ~ y and u = vS\ . The set of al l

antipodal double covers is closed under cartesian product.

THEOREM 3 .1 . If the graph D. is an antipodal double cover of G.
If Is

with v. antipodal to v. in D. {i = 1, 2) , then there exists a graph
If If If

G. ^< Gp over which D. x n is an antipodal double cover, with the

"product vertex" (y , v ) antipodal to [v , v ) .

Proof. Now we have diam(D-. x D J = diam D^ + diam Dp . I t i s clear

tha t the product-projection maps

p . : D x D + D. (i = 1 , 2)

given by

are not morphisms. However, they do project paths in D x n to paths in

2?. (£ = 1, 2) . What is more p. projects a minimal path from [v , V )
1* I' 1 C.

to fu , Vn) in Z? x Do to a minimal path from v. to V. in D. . It

follows that the length of a minimal path from [v , V ) to [v , v ) in

D x D is equal to the sum of the lengths of the projected paths in D

and Dp , which is equal to diam[D x n ] .

It is also clear that no vertex other than (v , V J is so far from

(y , v ) in D x n (for if such existed, then projection by p. would

contradict the antipodality of v. to V. in D. ) . Thus each vertex of
If If 1*

D-. x D2 has a unique antipodal vertex, given by (y , v2) = (y , u ) .

Finally, the graph G, x ff of which D. x n is an antipodal double
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cover is derived in the obvious way. We have

Thus G x <?„ has a vertex for each antipodal pair of vertices in

D. x j) 5 and an edge corresponding to each antipodal pair of edges in

4. Pul lbacks of double covers

DEFINITION. Given any two graph-morphisms:

D

the graph D induced by a from D has vertex-set

V{DJ = {(h, d) € V(H) x v(D) : a{h) = p(d)}

and adjacency

(h, d) ~-{h', d') *°*h~Hh' and d ~p d' .

The morphi8m p : D -*• H induced by a from p is given by

(h, d) •—»• h . Thus we have a (commutative) pullback diagram in the

category Gnxvpk:

where a is given by (h, d) •—•• d .

PROPOSITION 4.1. If p : D + G is a double cover projection, then

so is p : D •*• H .r a a
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Proof. For each h € V(H) , we have that p~ [a.(h)) consists of two

vertices, a(Tz)1 and a(h)2 . Thus p~^W = {[h, a(fc)1) , [h, a{h)2)} .

These two points constituting the fibre over h -are not adjacent, since
1 2

a(h) and u{h) are not adjacent in D . Axiom (ii) for pQ to be a
double cover follows from the corresponding condition for p . Q

EXAMPLE. If a : H c G is a subgraph-inclusion, then the double

cover p : D •* G is isomorphio to the restriction p|p~ H : p~ H •* H .

If p : D •* G is a Kronecker double cover then so is p : D •* H

(see [33).

The concept of isomorphism of double covers which is needed here is
defined as follows (see DjokoviS [2]).

DEFINITIONS, ( i ) A morphism f of double covers over G i s a

commutative diagram

h - ^ D2

(ii) / is called an isomorphism of double covers if also there is a
morphism g : D? •*• IL such that g.f = 1 and f.g = 1_

Isomorphism is an equivalence relation (denoted £L = £> ) ; let [p]

denote the isomorphism class represented by p : D •+• G , and let P(C)
denote the set of isomorphism classes of double covers of G .

Let Sti denote the category of sets. Proposition U.I can now be
applied to give our f irs t structure-theorem.

THEOREM 4.2. There is a eontravariant functor V : GAaph -*• S(>X. .

Proof. First we observe that a graph-morphism a : H -»• G induces a
set-function

V(a) : V(G) -*• V(H)

given by
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Mp°
We define P(ci)(p) = p (using the above pullback construction).

The conditions for V to be a contravariant functor are now easily-

verified:

(i) if a is the identity morphism, then the induced double

cover is isomorphic to p itself. Thus ^(l/J = ^~ni n) »

(ii) V respects (but reverses) composite morphisms.

If K -£-• H -̂ *- G , then it is easily verified that

Clearly for all G , V{G) contains the trivial double cover which we

shall denote by G JJ_ G or p. . In the case of a tree, this is the only

possibility.

PROPOSITION 4.3. If T is a tree then V(T) consists of [pj

alone.

Proof. Since T is bipartite, there is a morphism a : T -*- K^ . The

graph Zp only has the trivial double cover, and the absence of circuits

from T implies that the pullback diagram

T 1 T —* K2 1 K2

a 2

gives the only possibility over T (with (xg JJ_ x j S T J[ T ) . D

In particular, this applies to spanning trees, and we can use

Proposition It.3 to study non-trivial double covers. In the following, let

G be a fixed arbitrary, connected graph, and let T c G be a spanning

tree. Of course, a choice is involved here, and this will affect our

labelling, but the main results will be seen to be independent of this

choice of spanning tree.
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Suppose G has n vertices and m edges, whence the cutset rank

<{G) i s equal to the number n - 1 of edges in (any) spanning tree T .

The c i rcui t rank y{G) i s the number m - n + 1 of edges in G - T .

NOTATION 4.4. Throughout §4, we choose a spanning t ree T for G ,

and consider the pullback with respect to the inclusion T c G . Then

1 JJ_ T i s a subgraph of any double cover D of G . I f

V(G) = v., ..., v , then label the vert ices of one copy T of T as

1 1 2 2
v , ..., v , and those of the other copy T of T as v , ..., V .

Subject to t h i s labe l l ing , we sha l l ca l l an edge {y., v .1 of G

- i - i 2 2

trivial in p : D •+ G if v- ~ v. and v. ~ v. (in the definition of
> 0 1 - 3

1 2 2 1
double cover) in D , and non-trivial i f y. ~ V. and V. ~ v. in 0 .

•*• J *• J

LEMMA 4.5 . J f p : D ->• G is any double cover projection^ then D

is disconnected if and only if p is isomorphic to the trivial projection

pQ . In this case K(£>) = 2(n-l) and y{D) = 2(m-n+l) . In all other
cases, D is connected, with K{D) = 2n - 1 and y{D) = 2m - 2n + 1 .

Proof. Consider the spanning forest T Jj_ T for D as in k.k.

Clearly D i s disconnected (and V = G Jj_ G ) i f and only i f every edge of

G - T i s t r i v i a l (in which case the two copies of T are never l inked).

The rank-computations then follow immediately. •

PROBLEM. How many (non-isomorphic) double covers does a graph G

have?

PROPOSITION 4 . 6 . l s \V(G)\ s 2 y ( f f ) .

Proof. Again consider the pullback and notation of k.k. Every double

cover D of G contains 2\ jj_ T~ as a spanning forest . To reconstruct

D we must add two edges corresponding to each edge e € G-T . For each of

these y(G) edges there are exactly two poss ib i l i t i e s : ei ther we make i t

t r i v i a l or non- t r iv ia l in p , and the resul t follows. •

•> NOTE. These 2 ^ ' double covers are not necessarily d is t inc t (hence

the inequality in Proposition U.6). For example YC^I.)
 = 3 , but the
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2 = 8 double covers can be partitioned into exactly three isomorphism-

classes, namely those given in §2.

LEMMA 4.7. The n-circidt C has exactly two non-isomorphic double

covers.

Proof. The (only) n o n - t r i v i a l one i s given by the morphism

2n n

THEOREM 4 . 8 . If y(G) = 1 , then \V(G)\ = 2 .

Proof. Here the i+.i+ construction leaves one edge e (. G-T . There is

one isomorphism class of connected double covers, corresponding to e

being a non-trivial edge for p . Q

5. C l a s s i f i c a t i o n of double covers

T h e n - d i m e n s i o n a l o c t a h e d r o n K / O \ = K O o
 i s t n e complete

n times

n-partite graph which generalises the graph ^o(p) = ^2 2 2 ° f t n e

Platonic solid octahedron:

For each natural number n , K /„> is an antipodal graph but it is

(understandably) excluded from study by Smith and Biggs because its small

diameter of 2 causes its 'derived graph' to have the apparently

undesirable feature of being a multigraph Kr . (For any graph G , we

denote by u the associated multigraph with the same vertex-set as G ,

and each edge duplicated.)

We shall show that not only can this feature be turned to our
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advantage, but also that K . . is the most important double cover of all!

(of course A is not in the category of graphs. However morphisms and

pullbacks involving A are defined as for graphs.)

We begin by labelling the In vertices of K ,„, as

iv1;, ..., v1, v2 ..., v2) with v£ antipodal to v\ . The 2w(n-l)

edges of K , . are then of two types:

Type 1 of the form Iv1., v\\ or \v2., V2.\ ;

Type 2 of the form Iv1., V2.\ .

There are w(w-l) edges of each type. This provides a natural expression

of K , , as an antipodal double cover of the multigraph A which has a

'type 1 edge1 \y., V .] derived from the two type 1 edges \v., V A and

V., v A and also a 'type 2 edge1 [v., u H derived from the two type 2[•
edges g , *|] and

AThis classifies the two edges between any two vertices of A in a

useful way. If G and H have the same vertex-set, we denote by G u H

their edge-disjoint union which has again the same vertex-set, with all

edges of both G and H . In particular, K = K u K . This helps

clarify the octahedron double cover.

THEOREM 5.1. K ,„> ̂  [K 1 K ) u [K A A O .
n(2) *• n •"• n' K n 2J

Proof. The graphs K JJ_ X and X A K^ each have 2 M vertices.

They are respectively the trivial and Kronecker double covers of K . The

double cover K ,„> -* A is the edge disjoint union of these two double

covers of K , with the type 1 edges of K ,„> projecting (2:1) to type
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1 edges of A as the trivial double cover, and the type 2 edges

projecting (2:1) to the type 2 edges of x , as the Kronecker double

cover K A K •* K . •
n n

EXAMPLE. The n = k case expresses the It-dimensional octahedron

A", , , as the edge disjoint union of a cube Q- and two tetrahedra K,

as illustrated by the antipodal double cover projection:

We now show that this double cover p.. : K ,„•> -*• A is 'universal'

for all n-colourable graphs G in the sense that all double covers of G

can be expressed as pullbacks (as in §4) of p with respect to a certain

morphism.

LEMMA 5.2. A graph G is n-colourable if and only if there is a

morphism a : G •*• K .
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Proof. A morphism a : G •* K sends adjacent vertices to adjacent

vertices. If we give a vertex in G the same colour as a{v) has in
some (fixed) n-colouring of K , this gives a valid n-colouring of G .

Conversely any given n-colouring of G defines a morphism a to
K : simply colour K with the same n colours and let a preserve

colours. D

Denoting by x(G) the chromatic number of G , we have

PROPOSITION 5.3. Every double cover D of a graph G satisfies

Proof. Application of Lemma 5-2 to the composite D -2->- G - ^ K

allovs us to ' l i f t 1 an n-colouring of G to an n-colouring of D . D

COROLLARY 5.4. If G is bipartite, then so is every double cover D
of G . D

We can now show that a l l double covers can be expressed as pullbacks
of an octahedron.

THEOREM 5.5. Let p : D •* G be a double cover, with G

n-aolourable. Then there is a morphism a' : G -»• A such that p is

isomorphia to the double cover

induced by a' from the 'universal' double cover p. .

Proof. Let a : G •*• K be an n-colouring morphism for G , as in

Lemma 5-2.

Define a morphism ex' : G •* Kr by:

ct'(v) = a(») , v € V(G) ;

ot ' (e ) =

a(e) if e is a trivial edge of p ,

2
a(e) if e is a non-trivial edge of p .
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The pullback (Py)a>
 h a s tlie required property. C

There is a strong analogy between this use of the w-octahedron as a

'universal double cover1 and the universal bundle (due to Mi I nor) for the

contravariant fibre bundle functor (see for example Husemol ier ([6],

U.ll.l). Mi Inor's construction involves the join of n copies of the

0-sphere S , and K
n(2)

 i s i n ( i e e d the graph-theoretical analogue of

this. Similarly our multigraph AV plays the role of classifying object

for the functor V .

The inclusion morphism of A ., in A induces inclusions of double
n—1 n

^ 2 ( 2 ) ^

*? - 4 •* i *••• •
Finally, to give a full classification of double covers of graphs, we

must investigate when two morphisms from G to A ~ induce isomorphic

double covers. A suitable equivalence relation on such morphisms will

correspond to that of homotopy in fibre bundle theory.

With Lemma k.1 in mind, we define two morphisms a1, &' : C -»• ¥r to

have the same parity if a' = 3' on vertices and either

(i) they both produce an even number of type 2 edges (in which

case they both induce from p.. the trivial double cover

(ii) they both produce an odd number of type 2 edges (in which

case they both induce from p.. the non-trivial double

Then we define two morphisms a'3 &' : G •* K to be equivalent if A

has an automorphism cp such that (3' and (p.a1 have the same parity on

every circuit of G . This is easily seen to be a proper equivalence
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re la t ion ; l e t \G, K~\ denote the set of equivalence classes of morphisms

from C to A .

THEOREM 5 .6 . There is a 1 : 1 correspondence V(G) +•* \G, lr\ ,

for any n-oolourable graph G .

Proof. Double covers induced from the n-octahedron universal double

cover p„ : K . . -»• IT are formed as in Theorem 5-5- The definition of

equivalence of morphisms ensures that (py) , and (p..) „ ( are isomorphic

i f and only i f a1 and &' are equivalent. The resu l t then follows

immediately. ^
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