A MAP OF A POLYHEDRON ONTO A DISK

BY RICHARD F. E. STRUBE

A map $f: X \to Y$ is said to be universal if for every map $g: X \to Y$ there exists an $x \in X$ such that f(x) = g(x). In [2] W. Holsztyński observed that if B is a Boltyanskii continuum (see [1]), then there exists a universal map $f: B \to I^2$ such that the product map $f \times f: B \times B \to I^2 \times I^2$ is not universal. Using this he showed that B can be replaced by a two-dimensional polyhedron. He did not, however, give a concrete example. We exhibit explicitly a two-dimensional polyhedron K and a universal map $f: K \to I^2$ such that $f \times f: K \times K \to I^2 \times I^2$ is not universal.

Consider the annulus $S^1 \rtimes I$, with boundary consisting of the circles $S^1 \times \{0\}$ and $S^1 \times \{1\}$. Identify every four points of the circle $S^1 \times \{0\}$ which divide it into four equal arcs, and identify every two points of the circle $S^1 \times \{1\}$ which divide it into two equal arcs. Let K denote the polyhedron obtained from $S^1 \times I$ with these identifications. (K is called a "leaf of degree one" in [1]).

Define a map $f: K \to I^2$ as follows: f maps the image of $S^1 \times \{0\}$ in K to the centre of I^2 , f maps the image of $S^1 \times \{1\}$ in K homeomorphically to the boundary \dot{I}^2 of I^2 , and f maps the image of a radial line segment from $S^1 \times \{0\}$ to $S^1 \times \{1\}$ in K to a radial line segment from the centre to the boundary of I^2 .

PROPOSITION 1. The map $f: K \to I^2$ is a universal map.

PROPOSITION 2. The map $f \times f: K \times K \to I^2 \times I^2$ is not a universal map.

LEMMA 1. A map $f: X \to I^n$ is not universal if and only if there is an extension F of the map $f \mid f^{-1}(\dot{I}^n): f^{-1}(\dot{I}^n) \to \dot{I}^n$ to all of X.

Proof. If f is not a universal map then there exists a map $g: X \to I^n$ such that $f(x) \neq g(x)$ for all $x \in X$. Construct a directed line segment from g(x) through f(x), intersecting \dot{I}^n at F(x). Then F is the desired extension. If F is such an extension, let $h: \dot{I}^n \to \dot{I}^n$ be the antipodal map. Then $(h \circ F)(x) \neq f(x)$ for all $x \in X$, and thus f is not universal.

Proof of Proposition 1. Let $A = f^{-1}(\dot{I}^2)$. By Lemma 1 it suffices to show that we cannot extend $f \mid A: A \to \dot{I}^2$ to a map $F: K \to \dot{I}^2$. For if such an extension

Received by the editors October 8, 1975.

R. F. E. STRUBS

existed, we would have a commutative homology triangle

$$H_1(A; Z_4) \xrightarrow{i_*} H_1(K; Z_4)$$

$$\downarrow^{(f|A)_*} \bigvee \downarrow^{F_*} H_1(\dot{I}^2; Z_4)$$

Using the cell structure of K pictured in the proof of the following Lemma 3, $i_*[2e_1^1] = i_*[2e_1^1 + 4e_2^1] = i_*[\partial e_1^2] = 0$. Since $(f \mid A)_*[e_1^1] = [f_1^1]$, this would imply that $2[f_1^1] = 0$, a contradiction.

Proposition 2 is an immediate consequence of the following two lemmas. Let $C = (f \times f)^{-1}(\dot{I}^4)$, and let s^* be a generator of $H^3(S^3)$ (we use integral coefficients).

LEMMA 2. $\delta(f \times f \mid C)^*(s^*) = 0$ in $H^4(K \times K, C)$ if and only if $f \times f$ is not universal.

Proof. By the Hopf extension theorem (see Spanier, [4]), $\delta(f \times f \mid C)^*(s^*) = 0$ if and only if the map $f \times f \mid C$ can be extended over $K \times K$. The lemma then follows from Lemma 1.

LEMMA 3. $\delta(f \times f \mid C)^*(s^*) = 0$ in $H^4(K \times K, C)$.

Proof. Consider the diagram

$$H^{3}(K \times K) \xrightarrow{i^{*}} H^{3}(C) \longrightarrow H^{4}(K \times K, C)$$
$$\uparrow^{(f \times f \mid C)^{*}} H^{3}(S^{3})$$

Since Ker $\delta = \text{Im } i^*$, it suffices to show that $(f \times f \mid C)^*(s^*)$ is in Im i^* . Give K and I^2 the cell structure indicated below (K is a regular cell complex with identifications and the arrows give the orientations of the cells).

Then $f_*: C_*(K) \to C_*(I^2)$ maps e_1^0 to f_1^0 , e_2^0 to f_2^0 , e_1^1 to f_1^1 , e_2^1 to 0, e_3^1 to f_2^1 , and e_1^2 to $2f_1^2$. Choose ordered bases of oriented cells: $\{\alpha_1, \alpha_2\}$ for $C_3(C)$, $\{\beta_1, \ldots, \beta_7\}$ for $C_2(C)$, $\{\gamma_1\}$ for $C_4(K \times K)$, $\{\delta_1, \ldots, \delta_6\}$ for $C_3(K \times K)$, $\{\varepsilon_1, \varepsilon_2\}$ for $C_3(S^3)$, and $\{\phi_1, \ldots, \phi_5\}$ for $C_2(S^3)$. For appropriate choices of these bases we have

 $\partial \alpha_1 = 2\beta_1$ $\partial \alpha_2 = 4\beta_2$ $\partial \gamma_1 = 2\delta_1$ $\partial \varepsilon_1 = \phi_1$ $\partial \varepsilon_2 = -\phi_1$

and

$$i_{\ast}(\alpha_{1}) = \delta_{1} - \delta_{4} - 2\delta_{5} - 2\delta_{6} \qquad i_{\ast}(\alpha_{2}) = -\delta_{1} + 2\delta_{5} + 2\delta_{6}$$
$$(f \times f)_{\ast}(\alpha_{1}) = 2\varepsilon_{1} \qquad (f \times f)_{\ast}(\alpha_{2}) = -2(\varepsilon_{1} + \varepsilon_{2})$$

Let (k_1, \ldots, k_n) in Hom $(\mathbb{Z}^n, \mathbb{Z})$ denote the homomorphism which multiplies the *i*th component by k_i . Then a generator s^* of $H^3(S^3)$ is given by [(1, 0)], and hence $(f \times f \mid C)^*(s^*) = [(2, -2)]$. This element is not zero in $H^3(C)$: for $(k_1, \ldots, k_7) = (2k_1, 4k_2) = (2, -2)$ for any choice of (k_1, \ldots, k_7) in Hom $(C_2(C), \mathbb{Z})$. However, if $(k_1, \ldots, k_6) \in \text{Hom}(C_3(K \times K), \mathbb{Z})$, then $i^*(k_1, \ldots, k_6) = (k_1 - k_4 - 2k_5 - 2k_6, -k_1 + 2k_5 + 2k_6)$. Since $\delta(k_1, \ldots, k_6)(\gamma_1) =$ $2k_1, (k_1, \ldots, k_6)$ represents a cocycle in Hom $(C_3(K \times K), \mathbb{Z})$ if and only if $k_1 = 0$. Hence $i^*[(k_1, \ldots, k_6)] = [(2, -2)]$ if and only if $k_1 = 0, k_4 = 0$, and $k_5 + k_6 = -1$. In particular, $i^*[(0, 0, 0, 0, 0, -1)] = [(2, -2)] = (f \times f \mid C)^*(s^*)$ and hence $(f \times f \mid C)^*(s^*) \in \text{Im } i^*$.

Since K can be imbedded in R^4 , taking the double of a closed regular neighbourhood of K in R^4 leads to a concrete example of a closed 4-manifold M^4 and a universal map $g: M^4 \to I^2$ such that $g \times g: M^4 \times M^4 \to I^2 \times I^2$ is not a universal map (compare [3]).

References

1. V. Boltyanskii, An example of a two-dimensional compactum whose topological square is three-dimensional, Doklady Akad. Nauk SSSR (N.S.) 67 (1949), 597-599. [Amer. Math. Soc. Transl.]

2. W. Holsztyński, Universal mappings and fixed point theorems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 433-438.

3. W. Holsztyński, On the product and composition of universal mappings of manifolds into cubes, Proc. Amer. Math. Soc. 58 (1976), 311-314.

4. E. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Department of Mathematics University of Western Ontario London, Ontario, N6A 3K7 Canada

1976]