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Abstract
Poor post-prandial glucose control is a risk factor for multiple health conditions. The second-meal effect refers to the progressively improved
glycaemic control with repeated feedings, an effect which is achievable with protein ingestion at the initial eating occasion. The most
pronounced glycaemic response each day therefore typically occurs following breakfast, so the present study investigated whether ingesting
protein during the night could improve glucose control at the first meal of the day. In a randomised crossover design, fifteen adults (sevenmales,
eight females; age, 22 (SD 3) years; BMI, 24·0 (SD 2·8) kg/m2; fasting blood glucose, 4·9 (SD 0·5) mmol/l) woke at 04.00 (SD 1) hours to ingest
300ml water with or without 63 g whey protein. Participants then completed a mixed-macronutrient meal tolerance test (1 g carbohydrate/
kg body mass, 2356 (SD 435) kJ), 5 h 39 min following the nocturnal feeding. Nocturnal protein ingestion increased the glycaemic response
(incremental AUC) to breakfast by 43·5 (SD 55·5) mmol × 120 min/l (P= 0·009, d= 0·94). Consistent with this effect, individual peak blood glu-
cose concentrations were 0·6 (SD 1·0) mmol/l higher following breakfast when protein had been ingested (P= 0·049, d= 0·50). Immediately
prior to breakfast, rates of lipid oxidation were 0·02 (SD 0·03) g/min higher (P= 0·045) in the protein condition, followed by an elevated
post-prandial energy expenditure (0·38 (SD 0·50) kJ/min, P= 0·018). Post-prandial appetite and energy intake were similar between conditions.
The present study reveals a paradoxical second-meal phenomenon whereby nocturnal whey protein feeding impaired subsequent glucose
tolerance, whilst increasing post-prandial energy expenditure.
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The post-prandial glycaemic response to a fixed carbohydrate
load can be used to assess the proficiency of glucose control(1).
Repetitive and/or prolonged hyperglycaemic episodes are
linked to a heightened risk of multiple health conditions includ-
ing: type 2 diabetesmellitus, CVD and ultimately prematuremor-
tality(2). Ineffective post-prandial glucose tolerance also impairs
satiety perception and is thus linked to obesity, a key risk factor
for type 2 diabetes(3,4). Even amongst normoglycaemic individ-
uals(5), those with poorer post-prandial glycaemic control are at
increased risk of developing type 2 diabetes and CVD(6). The
prevalence of thesemorbidities is increasing and presents a large
personal and socio-economic burden(3,7). Several clinical mark-
ers are available to diagnose defective glucose control; incre-
mental area under the blood glucose concentration curve
(iAUC) reflects the response to a glucose challenge and provides
a more valid indication of glucose tolerance than basal/fasted
measures alone(2,8). This is entirely understandable given that
the time spent hyperglycaemic is a primary factor in the aetiology
of diabetic complications(9,10).

Beyond the internal validity of post-prandial glycaemia as a
measure of glucose control, the external validity of fasted (i.e.
post-absorptive) measures is also more limited given that typical
eating patterns in most societies mean that humans spend most
or all waking hours in a fed state (i.e. post-prandial)(9,11). Of even
greater practical relevance is the response to sequential meals, as
most meals are therefore consumed in an already post-prandial
state. The ‘second-meal effect’ describes how initial glucose inges-
tion improves glucose tolerance at a second eating occasion(12).
Whilst this phenomenon was first discovered with sequential oral
glucose tolerance tests, a more ecologically valid method consid-
ers the effect of the mixed-macronutrient meals. This has been
most commonly examined in the literature as the magnitude of
metabolic responses to lunch when breakfast is consumed, com-
parative to no breakfast(8). Notably, this effect also promotes a
more even glycaemic stability across the day, thus eliciting a
potentially beneficial effect on satiety perception(13). The sec-
ond-meal effect is hypothesised to involve several interacting
mechanisms, such as enhanced hepatic and peripheral insulin
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sensitivity, potentiated insulin secretion, and slowed gastric emp-
tying following ingestion of a second meal(14).

Whereas the influence of carbohydrate (CHO) and fat on sec-
ond-meal effects are relatively well understood (i.e. high-CHO,
low-glycaemic index and low-fat breakfasts are effective in
optimising the insulin secretion and glycaemic response to
lunch(15–18)), the efficacy of protein has received less research
attention. Several studies have demonstrated that protein, spe-
cifically whey, consumed as a pre-load can elicit the second-
meal effect(19–21). This has been attributed to augmented insulin
secretion and insulin priming of the muscle and liver, alongside
delayed gastric emptying of the second load(20,21). Protein inges-
tion has also been linked to appetite suppression and a reduction
in subsequent energy intake(4,20,22), although other studies report
no such effects(19,23). In addition, recent evidence suggests that a
high-protein breakfast may be a more potent stimulator of the
second-meal effect than a high-CHO breakfast(24,25), although
this possibility requires confirmation in young, normoglycaemic
populations. Moreover, previous studies have only examined
the carry-over effects between the established daily sequence
of eating occasions (i.e. breakfast–lunch–dinner), yet a novel
strategy would be to attenuate the profound first glycaemic
response after waking using a model wherein breakfast serves
as the second meal of the day.

The purpose of the present study, therefore, was to examine
the effect of nocturnal whey protein ingestion on the glucose
response to breakfast, alongside any secondary effects on sub-
sequent satiety and energy intake later in the day. Based on
extant literature examining the effects of prior feeding during
the morning on metabolic responses to lunch, we hypothesised
that protein ingestionwould attenuate the glycaemic response to
breakfast and reduce subsequent appetite and energy intake.

Experimental methods

Approach to the research question

The innovative nature of this investigation stems from the unique
combination of protein ingestion with nocturnal feeding. Whey
protein was chosen in preference to alternative protein sources
(such as casein) due to a shorter gastric emptying time, resulting
in a more rapid development and greater magnitude of hyper-
aminoacidaemia and therefore a more rapid insulin release.
This is consistent with the rationale for our stated hypothesis
above that an increased morning insulin requirement is due to
a lack of residual insulin from a preceding meal(26). As such, this
novel strategy may reduce the insulin requirement to breakfast,
consequently improving glucose control.

Whey also reduces subsequent food intake and appetite to a
greater extent than casein, egg or soya(20,26,27). A whey protein
dose between 20–40 g can be effective in reducing appetite,
while as little as 10 g is reported to stimulate the second-meal
effect(20). A large, but palatable dose of 63 g was used in this
novel protocol to conclusively elucidate any effects on sequen-
tial glycaemic response and satiety (i.e. if effects are observed
then that provides proof-of-principle and could warrant further
examination of lower doses). This protein solution was made up

with 300ml of water instead of milk to avoid confounding effects
of fat ingestion and to allow any effects of protein to be isolated.

The time of protein feedingwas 04.00 (SD 1) hours to ensure a
post-absorptive state following dinner and to allow sufficient
time before breakfast for the acute initial metabolic response
to the ingested protein to subside. The time of feeding resulted
in, on average, a 5 h 39min period between protein ingestion
and breakfast, which aligns with the majority of studies investi-
gating the second-meal effect using 3–6 h between sequential
meals(13,18,28,29). Additionally, participants were instructed to
be in bed, lights out, at 23.00 hours, whichwould therefore result
in a minimum of 5 h separating dinner and the nocturnal protein
feed. A mixed-macronutrient tolerance test was deemed more
appropriate than an oral glucose tolerance test as the present
study focuses on the response to sequential meals to provide
practical results applicable to daily living. A porridge breakfast
aligns with this aim as a common breakfast meal, providing
information on the ability to process a realistic glucose and fat
challenge.

Participants

Fifteen individuals who self-identified as healthy volunteered
to participate (seven males, eight females; age, 22 (SD 3) years;
BMI, 24·0 (SD 2·8) kg/m2; resting heart rate, 69 (SD 15) beats/min;
resting mean arterial pressure, 72 (SD 6) mmHg; fasting blood
glucose, 4·9 (SD 0·5) mmol/l; sleep chronotype, 54 (SD 7) (inter-
mediate)). Participants were informed of the study objectives,
requirements and any potential risks before written consent
was obtained. Ethical approval was received from the
University of Bath Research Ethics Committee (SESHES-18R1-
004). Exclusion criteria included allergy or intolerance to any
of the breakfast constituents or any metabolic conditions which
may have posed undue personal risk to the participant or intro-
duced bias into the experiment.

Study design

The present study employed a randomised crossover design,
comprising two conditions; nocturnal ingestion of either a
protein solution (PRO) or water (control; CON). The following
morning participants visited the laboratory to complete a
mixed-macronutrient meal tolerance test. Participants were not
blinded to the condition as it would have been immediately ap-
parent upon ingestion and to analyse subsequent food choices
participants needed to be aware of their consumption as they
would in free-living conditions. Trials were completed within
a month for males, or within 4–7 d for females to ensure the
phase of the menstrual cycle was consistent between trials in
order to avoid large systematic differences in glucose control
due to menstrual cycle phase(30). All procedures were performed
in accordance with the Declaration of Helsinki.

Experimental procedures

Participants refrained from vigorous physical activity and repli-
cated their diet the day prior to both laboratory visits.
Compliance was confirmed verbally upon laboratory arrival. A
schematic for the study protocol is shown in Fig. 1. Prior to data

670 E. S. Smith et al.

https://doi.org/10.1017/S0007114520002901  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520002901


collection, participants completed the Horne & Östberg
Morningness-Eveningness Questionnaire(31), to assess sleep
chronotype and establish habitual morning or evening prefer-
ence. Participants were instructed to be in bed, lights out at
23.00 hours, awaking at 07.00 hours and arriving in the labora-
tory the following morning at 09.00 hours. Participants awoke at
04.00 hours to consume the relevant solution. Compliance was
confirmed with a text message to a researcher at this time. Based
on the questionnaire results, these time components were
adjusted by 1 h for morning or evening preference. This aimed
to minimise disturbance to habitual sleep patterns due to the
confounding effect on glucose tolerance(32).

Upon laboratory arrival the followingmorning, anthropomet-
ric (height and mass) and pre-breakfast resting measures were
collected. Fingertip blood glucose concentration was recorded
using an automatic glucose analyser (CV 5·03 %) (FreeStyle
Optium, Abbott Laboratories Ltd). Three 5-min expired gas sam-
ples were collected using Douglas bags (Hans Rudolph), which
were analysed using a Servomex 1440 Gas Analyser (Servomex
Group Ltd) and the volume of expired air determined by evacu-
ating the Douglas bag with a dry gas meter (Harvard Apparatus).
Heart rate and blood pressure (Omron M2 Compact blood pres-
sure monitor, Omron Healthcare Co.) were collected, alongside
100mm visual analogue scales (VAS).

A standardised porridge breakfast was then consumed,
followed by a 2-h resting period in the seated position with water
consumption permitted (ad libitum). Blood glucose measure-
ments were collected every 15min for the first 60min and then
every 30min until 120min. Five-min expired air samples were col-
lected at 20, 40, 75 and 100min. At 60 and 120min appetite VAS
were completed. Upon completion of the tolerance test, partici-
pants were free to leave the laboratory and completed a food
diary for the remainder of the day under free-living conditions.

Nutritional composition

Experimental solutions were prepared by researchers and
provided to participants the night before the trial. The protein
solution contained 75 g whey protein powder (Myprotein),
resulting in an intake of 63 g protein (21 g protein per 25 g serv-
ing), 300 ml of water and 0 kJ vanilla flavouring drops to taste
(Myprotein). An amino acid profile for the whey protein used
is depicted in Fig. 2. The control solution was 300ml water.
Breakfast consisted of 29 % porridge oats (Sainsbury’s), 67 %
whole milk (3·7/100 g fat; Sainsbury’s) and 4 % granulated sugar
(Sainsbury’s). Porridge was provided in quantities to deliver 1 g
CHO/kg body mass, obtained from 80 % oats and 20 % sugar.
This resulted in an energy intake of 2356 (SD 435) kJ, containing
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Fig. 1. Protocol schematic. A mixed-macronutrient tolerance test was conducted following nocturnal ingestion of either protein (PRO) or water (control; CON). VAS,
visual analogue scale.
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18·0 (SD 3·3) g protein and 72·4 (SD 13·9) g CHO. The quantity
was replicated for the second trial, regardless of any minor
change in body mass. Participants were instructed to consume
the porridge within 15 min to standardise effects of eating rate
upon appetite hormones(33).

Statistical analysis

All data are presented as mean values and standard deviations.
Statistical analyses were performed using the Statistical Package
for the Social Sciences (IBM SPSS Statistics 25), with statistical sig-
nificance accepted at an α level of P≤ 0·05. A minimum sample
size of eleven was calculated in order to detect an effect size of
0·95 with 80 % power (G*Power 3.1.9.4), based on the effect size
in similar studies in normoglycaemic individuals(24,34). Data from
one female participant who volunteered for the study were not
included in the analysis because she experienced very poor
sleep quantity in the control condition (>2 SD below the mean),
given the established negative effect of sleep deprivation on
glucose tolerance(32). This is illustrated by her almost doubled
blood glucose iAUC in the CON condition (396 v. 195 mmol ×
120min/l).

Blood glucose iAUC was calculated using the trapezoid
method(35). Rates of oxygen utilisation and carbon dioxide pro-
ductionwere used to calculate RER and energy expenditure from
expired gas samples(36). Substrate oxidation rates were calcu-
lated in accordance with the stoichiometric equations outlined
by Frayn(37) assuming negligible protein oxidation. Of the three
resting gas samples, the average of thosewithin a 418 kJ/d agree-
ment in energy expenditure was taken to calculate pre-breakfast
values of substrate utilisation, RER and energy expenditure. If
none of the three bags met this criterion, the lowest of the three
sampleswas considered themost reflectivemeasure of RMR (this
was the case for five out of twenty-seven bags). Scores from the
appetite VASwere combined to give an average appetite score at
each time point according to the equation outlined by Gonzalez
& Stevenson(8). Regarding sleep VAS, a difference >10 mm is
deemed of clinical relevance and more meaningful than

statistical significance(38), and thus this criterion was used when
examining intraindividual differences in VAS scores between
conditions.

A Shapiro–Wilk test was used to assess the normality of intra-
individual differences between conditions. Consequently, a
paired t test was applied to analyse normally distributed para-
metric data and a Wilcoxon test used for non-parametric data.
Order effects were examined with a paired t test for iAUC
between trial 1 and 2 alongside a two-way mixed-models
ANOVA (treatment × sequence); there was a 2·2 % decrease
in iAUC from trial 1 to 2 with no significant order effect
(P= 0·875) and no treatment × sequence interaction (P= 0·509,
F= 0·463). Pearson correlation coefficients were calculated for
the difference in iAUC between conditions and both body
mass and sleep quality (calmness and wakefulness). A two-
way repeated-measures ANOVA (treatment × time) was used
to examine differences in blood glucose response and appetite
over time. The Greenhouse–Geisser correction was applied for
epsilon values<0·75 and theHuynd–Feldt correction applied for
less severe asphericity. Effect size was calculated using pooled
standard deviation, with Cohen’s thresholds applied(39).

Results

Blood glucose concentration

Blood glucose concentrations increased more rapidly in PRO
than in CON, reaching a 7·5 % higher peak (7·9 (SD 1·4) v. 7·3
(SD 0·9) mmol/l, P= 0·049, d= 0·50, moderate effect; Fig. 3(a))
and then remaining higher than the CON trial until the final
blood sample, such that there was a main effect of treatment
(P= 0·037, F= 5·392) but no treatment × time interaction
(P= 0·308, F= 1·241; Fig. 4). Accordingly, there was a 28·1 %
mean increase in post-prandial blood glucose iAUC in the
PRO condition (161·8 (SD 55·7) v. 116·3 (SD 39·2) mmol ×
120min/l (P= 0·009, d= 0·94; Fig. 3(b)). Time spent above
the clinical threshold of 7·5 mmol/l blood glucose concentration
was longer in the PRO trial for nine out of fourteen participants
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by an average of 8·2 (SD 13·4) min (15·9 (SD 17) v.
7·7 (SD 11·6) min, P= 0·039, d= 0·56, moderate effect).
Although not significant (P= 0·206, d= 0·48, small effect), on
average there was a 6·4 (SD 18·3) min delay in time to peak glu-
cose with PRO (37·5 (SD 16·4) min) compared with CON
(31·1 (SD 9·2) min).

Substrate utilisation, RER and energy expenditure

Lipid oxidation was 30·8 % greater at pre-breakfast (following
intervention but prior to the test meal) in the PRO trial compared
with CON (P= 0·045) (Table 1). There were no significant
differences between conditions at pre-breakfast for RER, CHO
oxidation or energy expenditure. Mean responses over the
120-min post-prandial period did not differ between conditions
for RER, CHO oxidation or lipid oxidation. Post-prandial energy
expenditure was greater in the PRO trial (P= 0·018).

Subjective appetite and energy intake

There were no significant differences in any appetite ratings or
combined appetite score at pre-breakfast (all P> 0·05, Table 2).

There was a main effect of time (P < 0·001, F = 11·411), but
neither treatment (P = 0·674, F = 0·185) nor treatment × time
interaction (P = 0·681, F = 0·222) for post-prandial combined
appetite score. Further, there was a main effect of time
(P < 0·03), but neither treatment nor treatment × time inte-
raction (all P > 0·05), for hunger, fullness, satisfaction and
prospective consumption during the post-prandial period.
There was no difference in volitional energy intake
(P = 0·736) in CON (7230 (SD 2849) kJ) compared with PRO
(6971 (SD 3205) kJ).

Sleep quantity and quality

There was no difference in self-reported sleep quantity between
conditions (450 (SD 52) v. 444 (SD 52) min, P= 0·788). Reductions
>10mm were observed in the sleep quality measures of
wakefulness (15mm) and calmness (12mm) in the PRO v.
CON condition. However, there was no correlation between
the difference in iAUC between conditions and the change in
sleep wakefulness (r 0·017, P= 0·953) or calmness (r 0·176,
P= 0·546) between trials.
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Table 1. Pre-breakfast and post-prandial (120 min) values for substrate utilisation, RER and energy expenditure at pre-breakfast
(n 13) due to difficulties associated with expired air collection
(Mean values and standard deviations)

Control Protein

PMean SD Mean SD

Pre-breakfast
RER 0·88 0·06 0·85 0·05 0·102
CHO oxidation (g/min) 0·21 0·10 0·18 0·09 0·173
Lipid oxidation (g/min) 0·06 0·02 0·07 0·02 0·045*
Energy expenditure (kJ/d) 7954 1569 8167 1264 0·196

Post-prandial (120min period)
RER 0·89 0·03 0·89 0·05 0·804
CHO oxidation (g/120 min) 28·17 7·37 31·88 12·29 0·084
Lipid oxidation (g/120 min) 6·85 2·11 6·58 2·75 0·694
Energy expenditure (kJ/120min) 703 113 749 138 0·018*

CHO, carbohydrate.
* Significant difference between control and protein.
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Discussion

This is the first study to investigate nocturnal protein ingestion in
relation to the second-meal effect at breakfast. Contrary to our
hypothesis, the primary findings demonstrate impaired post-
prandial glucose tolerance at breakfast after nocturnal protein
ingestion, evidenced by the increased glycaemic response
(iAUC) and peak blood glucose concentrations. Pre-breakfast
(fasted) lipid oxidation was also elevated following protein
ingestion, whilst post-prandial after breakfast energy expendi-
ture was higher. There was no difference in appetite or volitional
energy intake between conditions. These findings illustrate that
protein elicited a response opposite to the second-meal effect,
impairing sequential glucose tolerance, with no effect on appe-
tite or energy intake. This is the opposite response to that
reported in the available literature regarding daytime meals dur-
ing waking hours(15,16,18,20).

The differences in glucose tolerance observed in the
present study may be due to the 63 g dose of protein, as the
majority of studies demonstrating a beneficial effect of a protein
pre-load have used doses in the range of 10–55 g(19–21). Further,
previous studies havemost commonly utilised a protein pre-load
30min prior to the second meal(19–21), which differs from 5 h
39min separating meals in the present study. Although both
Meng et al.(24) and Park et al.(25) demonstrated that protein
stimulates the second-meal effect with 4 h separating meals,
both studies used high-protein breakfast foods, rather than the
addition of whey protein used in the aforementioned pre-load
studies(19–21). Moreover, these studies were conducted in
adults with type 2 diabetes(25) and post-menopausal women(24).
Regarding appetite, our results support the findings of Allerton
et al.(28), which also reported no attenuation in appetite when
whey protein was added to breakfast(28) ingested with a longer
duration (i.e. 3 h) between meals than used in other pre-load
studies(19–21).

Protein ingestion in excess of physiological needs can
stimulate ureagenesis and the use of glucogenic amino acids
in gluconeogenesis(40). Boden & Tappy(41) demonstrated the
hyperaminoacidaemia following protein ingestion stimulated
endogenous glucose production despite hyperinsulinaemia.
Studies employing stable isotope methodologies have demon-
strated approximately 17–19 % of protein ingested is converted
to glucose(42,43). Therefore, assuming similar rates in the present

study, it could be hypothesised that 17–19 % of the 63 g protein
ingested in the present study resulted in glucose production, pro-
ducing 10·7–12·0 g glucose. This is supported by the findings of
Ang et al.(44), who demonstrated that a 75 g of whey protein dose
resulted in 11 g endogenous glucose production. Fromentin
et al.(42) state that the percentage of dietary amino acids con-
verted to glucose was mainly related to the provision of gluco-
genic amino acids. Thewhey protein utilised in the present study
comprised 79·8/100 g glucogenic or mixed amino acids (Fig. 2),
providing a high availability of gluconeogenic precursors. In
addition, the relative lack of other sources of gluconeogenic
precursors (glycerol, pyruvate and lactate) in our whey protein
solution, comparative to egg(42) or cottage cheese(43), may have
further increased the contribution of amino acids to gluconeo-
genesis. Hence, glucose productionmay have been at the higher
end of this estimate.

There are multiple underlying mechanisms through which
the above-reasoned endogenous glucose production could alter
glucose control following breakfast. Firstly, it may be that there
was still some residual endogenous glucose production from the
nocturnal protein by the time breakfast was ingested. Indeed,
Ang et al.(44) reported that endogenous glucose production
was still elevated at 4 h following whey protein ingestion, which
could therefore supplement the carbohydrate directly ingested
at breakfast and thus explain the elevated post-prandial glycae-
mia in the PRO condition. It should be noted, however, that the
breakfast in the present study was provided almost 6 h following
the protein dose, so the contribution of the ingested protein
towards endogenous glucose production may have subsided
by the time of the second delivery of ingested nutrients.

Secondly, any glucose generated from the ingested amino
acids even prior to breakfast could still contribute to a more pos-
itive carbohydrate balance (i.e. increased glycogen availability)
and thus potentially limit the capacity for further non-oxidative
carbohydrate disposal at breakfast. Certainly, the 10–12 g of glu-
cose that would theoretically arise via gluconeogenesis from the
ingested protein could make a meaningful contribution towards
the total capacity for hepatic glycogen stores. The present study
employed a somewhat unusual protocol in that a large provision
of energy was delivered at an atypical time of day when neither
required nor expected by the body. Overnight fasting depletes
hepatic glycogen stores and stimulates gluconeogenesis(45,46),

Table 2. Pre-breakfast (0 min) and post-prandial (60, 120 min) subjective appetite responses*
(Mean values and standard deviations)

0 min 60min 120min

CON PRO CON PRO CON PRO

Variable Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Hunger 42 29 42 28 27 15 28 21 40 23 42 23
Fullness 34 29 32 31 60 21 59 23 54 23 53 23
Satisfaction 38 27 36 28 63 14 54 24 52 24 51 24
Prospective consumption 55 28 55 28 33 16 43 20 47 26 55 26
Combined appetite score 57 26 57 24 34 15 40 18 45 23 48 20

CON, control; PRO, protein.
* All variables demonstrated a main effect of time (P< 0·03).
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hence the livermay have beenmore sensitive to the large protein
dose ingested during the night. It is unlikely that any large pro-
portion of glucose producedwould be oxidised in this rested and
fasted state and therefore is more likely to be stored, increasing
hepatic glycogen stores. An increase in glycogen stores may
reduce the liver’s capacity for first pass extraction following
breakfast, reducing hepatic glucose uptake and resulting inmore
glucose remaining in circulation(47). In the present study, the
mean time between protein ingestion and breakfast was 5 h
39min. Peak liver glycogen concentration is achieved approxi-
mately 5 h post-prandially(46); therefore, it is possible this peak
may have coincidedwith breakfast, reducing the capacity for first
pass extraction. However, rather than liver glycogen storage, the
primary driver of post-prandial glucose tolerance is thought to be
insulin-stimulated glucose uptake into peripheral tissues and the
synthesis of skeletal muscle glycogen(48,49), yet 10–12 g of newly
synthesised glucose would represent a much smaller contribu-
tion to whole-bodymuscle glycogen reserves and thus less likely
to impair skeletal muscle glucose uptake at breakfast. The
present results regarding glycaemic control therefore warrant
future studies to examine such mechanisms by measuring glu-
cose synthesis/disposal, along with muscle and liver glycogen
concentrations.

The time of feeding in the present study may also have
impacted gluconeogenesis and insulin sensitivity. Protein was
fed at a time when the relative concentrations of both glucagon
and cortisol were increasing. Elevated glucagon concentration
stimulates hepatic gluconeogenesis and amino acid uptake(50,51),
while cortisol also stimulates hepatic gluconeogenesis, along-
side reducing insulin sensitivity(50). Betts et al.(52) demonstrated
that the overnight cortisol response is elevated following the co-
ingestion of protein with CHO before bed. Thus, the protein
ingestion in the present study may have augmented the natural
circadian elevation in cortisol thus reducing insulin sensitivity.
There is also evidence for circadian rhythmicity in circulating
amino acids, with lowest concentrations between 04.00 and
08.00 hours(53,54). Feigin et al.(54) demonstrated that the ingestion
of a large protein bolus at 08.00 hours resulted in an additional
increase in blood amino acid concentrations, exceeding that
anticipated from typical circadian periodicity, an interference
not replicated with an identical protein load consumed at
20.00 hours. This further supports the idea that the body may
not be entrained to deal with a large bolus protein dose at the
time of feeding in the present study. Finally, whey protein inges-
tion and an increase in plasma branched-chain amino acids, par-
ticularly leucine, have also been demonstrated to impair insulin
sensitivity directly, especially in high doses(55–57). The high
branched-chain amino acid (22·6/100 g) and specifically leucine
content (10·6/100 g) of the whey protein (Fig. 2) may therefore
have impaired glucose uptake via that mechanism. As such, any
priming effect of insulin secretion following protein ingestion
may have been insufficient to overcome this reduced insulin sen-
sitivity at breakfast. Therefore, the arrival of a large dose of amino
acids at an atypical time of day might, via the hypothesised in-
fluence on hepatic gluconeogenesis and insulin sensitivity, result
in impaired glucose control upon waking in a manner specific to
this time frame. This further highlights the novel nature of the

present study employing an atypical feeding time. Additional
study is warranted to investigate if the glucose tolerance to a sec-
ond meal is impaired following protein ingestion prior to other
daily meals in a more ‘conventional’ feeding pattern.

Pre-breakfast lipid oxidation was elevated in the PRO trial,
and post-prandial energy expenditure was also then higher. It
should be noted, however, that these calculations were not
adjusted based on 24-h nitrogen excretion and so assume neg-
ligible protein oxidation, whichmay not be a valid assumption in
this experiment(37). Witard et al.(58) reported that ingesting 40 g
whey protein isolate stimulates phenylalanine oxidation for
4 h, so the 63 g ingested in the present study is likely to have
stimulated a similar response, although this may have reduced
by the time measurements were made 6 h later at breakfast.
Nonetheless, if protein undergoes gluconeogenesis and is
oxidised, then the RQ for that process is approximately 0·8
(the same as for direct protein oxidation), whereas the RQ if
the newly synthesised glucose is stored is 0·4(59). Any persistent
protein oxidation or gluconeogenesis 6 h after the nocturnal
bolus would therefore be expected to slightly reduce the
whole-body RER based onmeasured oxygen uptake and carbon
dioxide production. However, the fact that the RER under both
conditions were very similar and in the range of 0·85–0·89means
any such difference is likely to be small and thus it remains a rea-
sonable alternative explanation that the ingested protein did in
fact increase lipid oxidation.

In conclusion, consumption of a whey protein solution dur-
ing the night impaired post-prandial glucose control at breakfast,
whilst increasing post-prandial energy expenditure, with no
effect on satiety or energy intake. As such, this approach would
not be recommended to improve post-prandial glucose control
following breakfast. This paradoxical second-meal phenome-
non may relate to an influence of protein oxidation on the avail-
ability of hepatic and/or skeletal muscle glycogen and/or insulin
sensitivity.
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