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Abstract. An integrable two-component analogue of the two-dimensional long
wave – short wave resonance interaction (2c-2d-LSRI) system is studied. Wronskian
solutions of 2c-2d-LSRI system are presented. A reduced case, which describes
resonant interaction between an interfacial wave and two surface wave packets in
a two-layer fluid, is also discussed.
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1. Introduction. In these past decades, vector soliton equations have received so
much attention in mathematical physics and non-linear physics [1, 2, 8, 13]. Recently, we
derived the following system in a two-layer fluid using reductive perturbation method,
which was motivated by a paper by Onorato et al. [9, 12]:

i
(
S(1)

t + S(1)
y

) − S(1)
xx + LS(1) = 0, i

(
S(2)

t − S(2)
y

) − S(2)
xx + LS(2) = 0,

Lt = 2
(|S(1)|2 + |S(2)|2)x. (1)

This system is an extension of the two-dimensional long wave – short wave resonance
interaction system [14, 10] and describes the two-dimensional resonant interaction
between an interfacial gravity wave and two surface gravity packets propagating in
directions symmetric about the propagation direction of the interfacial wave in a two-
layer fluid.

In this paper, we will study this system and its integrable modification,

i
(
S(1)

t + S(1)
y

) − S(1)
xx + LS(1) = 2iS(2)∗Q,

i
(
S(2)

t − S(2)
y

) − S(2)
xx + LS(2) = 2iS(1)∗Q, (2)

Lt = 2
(|S(1)|2 + |S(2)|2)x,

Qx = S(1)S(2).

where ∗ means complex conjugate. In our recent paper [11], we studied

i
(
S(1)

t + S(1)
y

) − S(1)
xx + LS(1) = 0, i

(
S(2)

t + S(2)
y

) − S(2)
xx + LS(2) = 0,

Lt = 2
(|S(1)|2 + |S(2)|2)x. (3)
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Note that this system is different from system (1) only in the sign of y-derivative term
S(2)

y .

2. Bilinear forms and Wronskian solutions. Consider a two-component analogue
of two-dimensional long wave – short wave resonance interaction (2c-2d-
LSRI) system (2). Using the dependent-variable transformation L = −(2 log F)xx,

S(1) = G/F, S(2) = H/F, Q = −K∗/F, we obtain
(
D2

x − i(Dt + Dy)
)
G · F = 2iH∗K∗, DxDtF · F = −2(GG∗ + HH∗),(

D2
x − i(Dt − Dy)

)
H · F = 2iG∗K∗, DxK · F = −G∗H∗.

(4)

These bilinear forms have the three-component Wronskian solution [3, 4, 7].
Consider the following three-component Wronskian:

τNML = | ϕ ψ χ |,
where ϕ, ψ and χ are (N + M + L) × N, (N+M+L) × M and (N + M + L) × L
matrices, respectively: ϕ = (∂ j−1

x1 ϕi)
1 ≤ j ≤ N
1 ≤ i ≤ N + M + L, ψ = (∂ j−1

x1 ψi)
1 ≤ j ≤ M
1 ≤ i ≤ N+M+L and

χ = (∂ j−1
x1 χi)

1 ≤ j ≤ L
1 ≤ i ≤ N+M+L, and ϕi is an arbitrary function of x1 and x2 satisfying

∂x2ϕi = ∂2
x1

ϕi, and ψi and χi are arbitrary functions of y1 and z1, respectively. The
above Wronskian satisfies

(
D2

x1
− Dx2

)
τN+1,M−1,L · τNML = 0,

(
D2

x1
− Dx2

)
τN+1,M,L−1 · τNML = 0,

Dx1 Dy1τNML · τNML = 2τN+1,M−1,LτN−1,M+1,L,

Dx1 Dz1τNML · τNML = 2τN+1,M,L−1τN−1,M,L+1,

Dx1τN,M+1,L−1 · τNML = −τN−1,M+1,LτN+1,M,L−1,

Dy1τN−1,M,L+1 · τNML = −τN,M−1,L+1τN−1,M+1,L,

Dz1τN+1,M−1,L · τNML = −τN+1,M,L−1τN,M−1,L+1.

Setting

f = τNML, g = τN+1,M−1,L, h = τN−1,M,L+1, k = τN,M+1,L−1,

ḡ = τN−1,M+1,L, h̄ = τN+1,M,L−1, k̄ = τN,M−1,L+1,

we have the following bilinear forms:
(
D2

x1
− Dx2

)
g · f = 0,

(
D2

x1
+ Dx2

)
ḡ · f = 0, Dx1 Dy1 f · f = 2gḡ,(

D2
x1

+ Dx2

)
h · f = 0,

(
D2

x1
− Dx2

)
h̄ · f = 0, Dx1 Dz1 f · f = 2hh̄,

Dx1 k · f = −ḡh̄, Dy1 h · f = −ḡk̄, Dz1 g · f = −h̄k̄,

Dx1 k̄ · f = gh, Dy1 h̄ · f = gk, Dz1 ḡ · f = hk.

By the change of independent variables x1 = x, x2 = −iy, y1 = y − t, z1 = −y − t
(x, y, t : real), we have ∂x = ∂x1 , ∂y = −i∂x2 + ∂y1 − ∂z1 , ∂t= − ∂y1 − ∂z1 . Thus, we obtain

(
D2

x − i(Dt + Dy)
)
g · f = −2ih̄k̄,

(
D2

x + i(Dt + Dy)
)
ḡ · f = −2ihk,(

D2
x − i(Dt − Dy)

)
h · f = −2iḡk̄,

(
D2

x + i(Dt − Dy)
)
h̄ · f = −2igk,

DxDtf · f = −2(gḡ + hh̄), Dxk · f = −ḡh̄, Dxk̄ · f = gh .
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Consider solutions satisfying the following condition:

ḡG = (gG)∗, h̄G = (hG)∗, k̄G = −(kG)∗, fG : real, (5)

whereG is a gauge factor. Then, for F = fG, G = gG, H = hG and K = kG, we will obtain
the bilinear equations of the 2c-2d-LSRI system (4). Thus, the 2c-2d-LSRI system has
a three-component Wronskian solution.

To satisfy the condition (5), we consider the following constrained case: N = M +
L, ψi = 0 for 2M + 1 ≤ i ≤ 2M + 2L, χi = 0 for 1 ≤ i ≤ 2M and

ϕi = eξi , ϕM+i = e−ξ∗
i , ξi = pix1 + p2

i x2,

ψi = aieηi , ψM+i = aM+ie−η∗
i , ηi = qiy1 + ηi0,

for i = 1, 2, . . . , M, and

ϕ2M+i = eθi , ϕ2M+L+i = e−θ∗
i , θi = six1 + s2

i x2,

χ2M+i = bieζi , χ2M+L+i = bL+ie−ζ ∗
i , ζi = riz1 + ζi0,

for i = 1, 2, . . . , L, where pi, si, qi and ri are wave numbers and ηi0 and ζi0 are phase
constants. The parameters ai and bi must be determined from the condition of complex
conjugacy. By using the standard technique [6], ai and bi are determined as

ai =
M∏
k=1
k �=i

pk − pi

qk − qi

M∏
k=1

p∗
k + pi

q∗
k + qi

, aM+i =
L∏

k=1

(sk + p∗
i )(s∗

k − p∗
i ), 1 ≤ i ≤ M,

bi =
L∏

k=1
k �=i

sk − si

rk − ri

L∏
k=1

s∗
k + si

r∗
k + ri

, bL+i =
M∏

k=1

(pk + s∗
i )(p∗

k − s∗
i ), 1 ≤ i ≤ L,

and condition (5) is satisfied for the gauge factor,

G =
∏

1≤i<j≤M

(p∗
j − p∗

i )(qi − qj)
∏

1≤i<j≤L

(s∗
j − s∗

i )(ri − rj)
M∏

i=1

L∏
j=1

(pi − sj)

×e
∑M

i=1(ξ∗
i −ηi)+

∑L
j=1(θ∗

j −ζj).

This solution represents the (M + L)-soliton, i.e., M solitons propagate on the first
component of short wave S(1) whose complex wave numbers are given by pi and qi

and complex phase constants are ηi0 and L solitons propagate on the second one S(2)

whose complex wave numbers and phase constants are si, ri and ζi0.
For instance by taking M = L = 1, (1+1)-soliton solution is given as

F = fG = c
(

p + p∗

q + q∗
s + s∗

r + r∗
1

|p + s∗|2 − s + s∗

r + r∗ eξ+ξ∗−η−η∗ − p + p∗

q + q∗ eθ+θ∗−ζ−ζ ∗

+ |p − s|2eξ+ξ∗−η−η∗+θ+θ∗−ζ−ζ ∗
)

,

G = gG = c(p + p∗)eξ−η

(
s + s∗

r + r∗
1

p∗ + s
− (p − s)eθ+θ∗−ζ−ζ ∗

)
,
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Figure 1. Single-line soliton of equations (2), which is obtained by tau-functions of
(6). (a) −L , (b) |S(1)|, (c) |S(2)|, (d) Re [S(1)], (e) Re [S(2)]. The parameters are

p = 1 + i, q = −1 + 2i, r = −2 + i.

H = hG = −c(s + s∗)eθ∗−ζ ∗
(

p + p∗

q + q∗
1

p∗ + s
+ (p∗ − s∗)eξ+ξ∗−η−η∗

)
,

K = kG = c
(p + p∗)(s + s∗)

p + s∗ eξ∗−η∗+θ−ζ ,

where c = −|(p − s)(p + s∗)|2 and we dropped the index 1 for simplicity. In order to
satisfy the regularity condition F �= 0, we can take Re p > 0, Re s > 0, Re q < 0 and
Re r < 0. After removing the gauge and constant factors, by choosing the same wave
number in x-direction for the above two solitons, i.e. s = p, we obtain the single soliton
solution,

F = 1
p + p∗ − eξ+ξ∗

((q + q∗)e−η−η∗ + (r + r∗)e−ζ−ζ ∗
),

G = (q + q∗)eξ−η, H = −(r + r∗)eξ∗−ζ ∗
, K = (q + q∗)(r + r∗)eξ+ξ∗−η∗−ζ , (6)

where ξ = px − ip2y, η = q(y − t) + η0 and ζ = −r(y + t) + ζ0. Figure 1. shows the plots
of this single soliton solution. L shows V-shape soliton, |S(1)| and |S(2)| show solitoff
behaviour [5].

3. Solutions in the case without Q. We consider the 2c-2d-LSRI system (1)
without the fourth field Q in (2). This system (1) describes waves in the two-layer
fluid. Setting L = −(2 log F)xx, S(1) = G/F, S(2) = H/F, we have

[i(Dt + Dy) − D2
x]G · F = 0, [i(Dt − Dy) − D2

x]H · F = 0,

−(DtDx − 2c)F · F = 2GG∗ + 2HH∗.
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Here we consider the case of c = 0.
Using the procedure of the Hirota bilinear method, we obtain the single soliton

solution

F = 1 + A11 exp(η1 + η∗
1) , G = a1 exp(η1), H = b1 exp(ξ1),

η1 = p1x + iq1y + λ1t + η
(0)
1 , ξ1 = p1x − iq1y + λ1t + η

(0)
1 ,

A11 = − a1a∗
1 + b1b∗

1

(p1 + p∗
1)(λ1 + λ∗

1)
, λ1 = −ip2

1 − iq1.

Here, q1 is a real number. We can rewrite A11 as

A11 = − a1a∗
1 + b1b∗

1(
p1 + p∗

1)2(ip∗
1 − ip1

) .

Thus, we have

S(1) = a1 exp(η1)
1 + A11 exp(η1 + η∗

1)
, S(2) = b1 exp(ξ1)

1 + A11 exp(η1 + η∗
1)

,

L = −2
∂2

∂x2
log(1 + A11 exp(η1 + η∗

1)).

Since |S(1)|2 = GG∗/F2, |S(2)|2 = HH∗/F2, L = −(2 log F)xx do not include y, all
solitons propagate in the x-direction.

There is an exact solution depending on y-variable,

S(1) = A1 exp(px + qy + rt)
1 + exp(2(px + qy + rt))

exp(i(k1x + l1y + m1t)),

S(2) = A2 exp(px + qy + rt)
1 + exp(2(px + qy + rt))

exp(i(k2x + l2y + m2t)),

L = A exp(2(px + qy + rt))
(1 + exp(2(px + qy + rt)))2

,

where p, q, r, k1, l1, m1, k2, l2, m2, A1, A2 and A satisfy the relations
r = (k1 + k2)p, q = (k1 − k2)p, m1 = k2

1 − l1 − p2, m2 = k2
2 + l2 − p2, A = −8p2, A2

1 +
A2

2 = −4(k1 + k2)p2, and p, q, k1, l1, l2 are arbitrary parameters. In Figure 2., we
see that waves in S(1) and S(2) have different modulation property, i.e. carrier waves
in S(1) and S(2) has different directions of propagation. Note that the solutions of
equations (2) also have this property.

It seems that equations (1) are non-integrable and do not admit general N-soliton
solution. Similar system (2) has an N-soliton solution, but its physical derivation has
not been done yet.

4. Concluding remarks. We have studied solutions of a new integrable 2c-2d
LSRI system (2). We presented a Wronskian formula for 2c-2d LSRI system (2) with
complex conjugacy condition. We have also presented solutions of the system (1) in the
case of two-layer fluid, i.e. the 2c-2d LSRI system without Q. In this case, the system
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Figure 2. Line soliton of equations (1). (a) −L , (b) |S(1)|, (c) |S(2)|, (d) Re [S(1)], (e)
Re [S(2)]. The parameters are k1 = −1, k2 = −2, A1 = 1, A2 = 2, l1 = 3, l2 = 4.

(1) seems to be non-integrable, i.e. the system (1) does not have multi-soliton solutions.
We have found that waves in S(1) and S(2) in both systems have different modulation
property, i.e. carrier waves in S(1) and S(2) have different directions of propagation. But
system (2) has much more interesting solutions such as the V-shape soliton and solitoff
because of integrability.
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