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The mixing induced by breaking internal gravity waves is an important contributor
to the ocean’s energy budget, shaping, inter alia, nutrient supply, water mass
transformation and the large-scale overturning circulation. Much of the energy
input into the internal wave field is supplied by the conversion of barotropic tides
at rough bottom topography, which hence needs to be described realistically in
internal gravity wave models and mixing parametrisations based thereon. A new
semi-analytical method to describe this internal wave forcing, calculating not only
the total conversion but also the direction of this energy flux, is presented. It is
based on linear theory for variable stratification and finite depth, that is, it computes
the energy flux into the different vertical modes for two-dimensional, subcritical,
small-amplitude topography and small tidal excursion. A practical advantage over
earlier semi-analytical approaches is that the new one gives a positive definite
conversion field. Sensitivity studies using both idealised and realistic topography allow
the identification of suitable numerical parameter settings and corroborate the accuracy
of the method. This motivates the application to the global ocean in order to better
account for the geographical distribution of diapycnal mixing induced by low-mode
internal gravity waves, which can propagate over large distances before breaking.
The first results highlight the significant differences of energy flux magnitudes with
direction, confirming the relevance of this more detailed approach for energetically
consistent mixing parametrisations in ocean models. The method used here should
be applicable to any physical system that is described by the standard wave equation
with a very wide field of sources.

Key words: internal waves, topographic effects

1. Introduction
Besides wind-driven upwelling in the Southern Ocean, interior mixing has been

identified as a major contributor to maintaining the global ocean circulation (e.g.
Munk & Wunsch 1998; Talley 2013, and references therein). Much of the mixing
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7905-4711
https://orcid.org/0000-0002-4414-6859
mailto:friederike.pollmann@uni-hamburg.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2019.9&domain=pdf
https://doi.org/10.1017/jfm.2019.9


382 F. Pollmann, J. Nycander, C. Eden and D. Olbers

energy is contained in the internal wave field, and up to half of the internal wave
energy is estimated to stem from tidal flow over abyssal topography (Egbert &
Ray 2001; Wunsch & Ferrari 2004). This tidal forcing is anisotropic, because the
energy conversion from the tides to the internal waves depends on the shape of
the topography and the orientation of the tidal ellipse. The theoretical framework
typically employed to describe the internal tide field is that of vertical eigenmodes.
Especially the low-mode internal tides, which have a higher energy content and larger
scales than the higher modes, are important for large-scale ocean dynamics. They can
propagate over thousands of kilometres away from their generation sites before their
energy dissipates and contributes to turbulent mixing (Olbers 1983).

Existing (semi-)analytical models of internal tide generation typically do not resolve
the directional dependence of the generated energy flux (e.g. Bell 1975b; Nycander
2005; Falahat et al. 2014b) and if they do, they describe the modal structure of the
internal tide field only in approximate form (Vic et al. 2018). To close this gap and
to help improve mixing parametrisations based on internal wave dynamics, we here
present a new semi-analytical method to calculate both the horizontal direction and
the magnitude of the energy flux from the barotropic tide into the different vertical
modes, taking the full vertical structure of the stratification into account.

Tidal energy conversion can also be simulated with three-dimensional ocean models
(e.g. Niwa & Hibiya 2004; Zilberman et al. 2009; Arbic, Wallcraft & Metzger 2010;
Müller et al. 2012). However, it is not straightforward to diagnose the generation
of internal waves, and even less so its angular distribution, from such simulations.
For example, computing the energy flux through a vertical test surface gives the
net flux, but does not differentiate between the fluxes passing through the surface
from different directions. Further drawbacks are the high computational cost required
for global simulations with high-resolution topography, so that in practice only
the first few modes can be resolved, and the need to parametrise where and how
baroclinic tidal energy dissipates, which happens on spatial scales too small to be
resolved in global ocean models. This motivates the semi-analytical treatment of the
internal tide generation problem. One of the first to follow this approach was Bell
(1975a,b), who computed the energy conversion into linear internal waves radiating
away from the seafloor in a manner consistent with the Wentzel–Kramers–Brillouin
(WKB) approximation, i.e. for waves that vary on smaller vertical scales than the
scales of variation of the background stratification. The underlying assumptions which
render the problem analytically tractable are that the topographic heights are small
compared to the vertical wavelength of the waves and that the topographic slopes
are much smaller than the slope of the tidal beam. By decomposing the wave field
into vertical normal modes, Llewellyn Smith & Young (2002, hereafter LSY02)
extended this method to arbitrary stratification. They found that the main effect of
finite compared to infinite depth is that conversion rates are suppressed for horizontal
topographic scales larger than the horizontal wavelength of the first internal wave
mode. Using the WKB approximation, they moreover showed that the properties
of the stratification relevant for the energy conversion are the buoyancy frequency’s
vertical average, N, and its value at the bottom, NB. For dN/dz = 0, these WKB
solutions for the eigenfunctions, wavenumbers and conversion rates are exact for all
modes (LSY02); for the weak variations of N(z) observed in the ocean interior, they
provide a reasonable description of the conversion field except for the lowest modes
(Zarroug, Nycander & Döös 2010).

Calculations of the energy conversion rate in the global ocean building on these
results were performed for example by Egbert, Ray & Bills (2004), Nycander (2005)
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and Falahat et al. (2014b). Egbert et al. (2004) implemented a computationally less
expensive, approximate version of the convolution integral derived by LSY02 in a
hydrostatic shallow-water model, showing that the modelled tidal elevations could
reproduce those estimated from altimetry data with a root-mean-square (r.m.s.) error
of 5 cm. Nycander (2005) introduced a filter to the expression of Bell (1975a,b),
thereby suppressing internal tide radiation from long topographic scales in line with
the findings by LSY02. The total conversion rates were in good agreement with
the numbers found by Egbert & Ray (2001) from satellite altimetry data; the more
detailed evaluation performed by Green & Nycander (2013), testing different wave
drag parametrisations in a barotropic tidal model, confirmed the positive assessment
of the method. Further support of the semi-analytical approach was given by the
reasonable correlation between microstructure measurements of turbulent kinetic
energy dissipation rates and energy conversion rates calculated using a variation of
Nycander’s formalism (Falahat et al. 2014a). Falahat et al. (2014b), on the other
hand, based their global calculations on the approach by LSY02 and solved the
vertical eigenvalue problem for the first 10 internal tide modes. They compared their
results to those of Nycander (2005) and found that the two methods diverged most
strongly in the upper ocean, with the global integrals of the energy conversion rate
differing by 16 %. In idealised test cases, taking the full vertical structure of the
stratification into account led to more accurate results than the WKB-based method
of Nycander (2005), which considers NB rather than N(z).

Our objective is to describe the directional dependence of the tidal energy
conversion. Recently, Vic et al. (2018) calculated the direction of the energy
conversion over the northern Mid-Atlantic Ridge based on the formulation of
St Laurent & Garrett (2002), which is an approximation of the expression of Bell
(1975b) in the limit of small tidal excursion and involves a first-order correction for
the finite ocean depth based on the assumption of an exponential buoyancy frequency
profile. Here, we instead take the full vertical structure into account by following the
vertical-mode treatment of LSY02. We calculate the energy conversion as an integral
over the energy flux instead of, as done by Nycander (2005) and Falahat et al.
(2014b), an integral over the energy sources. Apart from providing information on
the direction, another, practical, advantage of the new method is that the energy flux
is positive definite, whereas integrating over the energy sources can produce negative
conversion rates (e.g. Falahat et al. 2014b) and hence requires further treatment
before it can be used, for example, as source term in internal wave models.

Our new method is based on the assumptions of a bounded source region and a
horizontally constant tidal velocity. These assumptions are not valid for an entire
ocean basin, and we thus propose to subdivide the seafloor into overlapping circular
patches. By multiplying the topography within each patch by a Gaussian, the effect
of the remote topography on the conversion rates is neglected and the far-field
expression, which is proportional to the Fourier-transformed topography within the
patch, is locally valid. Considering each patch in turn, the energy conversion for the
entire ocean floor can be calculated.

The derivation of the relevant equations is described in § 2. In § 3, we explain
the numerical implementation of the method for large-scale calculations. In § 4, we
discuss the evaluation of the method based on idealised test cases, which allows
the identification of suitable parameter settings, such as the overlap of neighbouring
patches. The energy conversion for a region of realistic topography is presented in
§ 5 before offering a summary and conclusions in § 6. The focus of this paper is
on the introduction of the new method and its evaluation; global calculations of the
angular energy flux into vertical modes using realistic topography, tidal velocities and
stratification will be presented in a follow-up publication.
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2. Derivation of the energy flux

LSY02 derive the expression for the energy conversion into vertical normal modes
for an ocean of non-uniform finite depth with the ocean bottom at depth zB =−H +
h(x, y), where H is a constant. They make the following approximations. First, the
topography is assumed to be weak, so that the bottom boundary condition can be
applied at the flat bottom z=−H, which requires that topographic slopes ∇h are much
less than the slope of the tidal beam (‘subcritical topography’) and that the height of
the topography is smaller than the vertical wavelength of the internal waves. Second,
the tidal excursion is assumed to be small compared to the horizontal scale of the
topography, L, i.e. U0/(ωL)� 1, so that advective effects of the barotropic tide can
be neglected. Here, U0 is the amplitude of the tidal velocity and ω the fundamental
tidal frequency. Third, they use the hydrostatic approximation, which is justified as
long as ω/N� 1.

Internal wave disturbances induced by tidal flow over rough bottom topography
can be described by the linearised hydrostatic Boussinesq equations, which LSY02
projected onto vertical normal modes defined by the following eigenvalue problem:

d2am

dz2
+

N2

c2
m

am = 0, am(0)= am(−H)= 0. (2.1)

Here, cm is the mode-m internal tide phase speed, which is related to the horizontal
wavenumber κm, the Coriolis frequency f and the tidal frequency ω as

κm =

√
ω2 − f 2

cm
. (2.2)

The eigenfunctions satisfy the following orthogonality condition:∫ 0

−H
an(z)am(z)N2(z) dz= fcmξmδmn, (2.3)

where ξm is a non-dimensional normalisation constant which we set to unity without
loss of generality. The eigenfunctions am(z) link the horizontal modal fields to their
corresponding three-dimensional counterparts, e.g. for the perturbation pressure p (see
LSY02, equations 22 and 23):

p(r, z, t)=
∞∑

m=1

cm

f
pm(r, t)a′m(z), (2.4)

where a′m = dam/dz. In this paper bold-face variables represent two-dimensional
horizontal vectors and tensors, e.g. the coordinate vector r = (x, y), whose modulus
is denoted by r = |r|, and the corresponding unit vector in the radial direction,
r̂ = x̂ cos φ + ŷ sin φ, involving the eastward and northward unit vectors x̂ and ŷ,
respectively. The modal pressure pm(r, t) and the tidal velocity u(t) are assumed to
have a sinusoidal time dependence with complex amplitudes Pm and U, respectively:

pm(r, t)=Re{Pm(r)e−iωt
}, (2.5)

u(t)=Re{Ue−iωt
}, (2.6)
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where Re denotes the real part. For the normal-mode decomposition described above,
the modal conversion rate was identified by LSY02 (see their equation 28) as

Cm = ρ0ζm

∫
A
〈pmu〉 · ∇h dx dy (watts), (2.7)

where the angle brackets denote the time average over a period, A the area including
the topographic sources, dx dy the area element and ∇ = (∂/∂x, ∂/∂y). The variable
ζm is a dimensionless quantity related to the vertical derivative of the eigenfunctions
as

ζm = a′m(−H)
cm

f
. (2.8)

Note that, for constant stratification, (2.1) can be solved analytically and

κm =
√
ω2 − f 2

mπ

NH
, ζ 2

m =
2

mπ

N
f
. (2.9a,b)

LSY02 derived the following inhomogeneous Helmholtz equation for the modal
pressure amplitude Pm (see their equation 33):

∇
2Pm + κ

2
mPm = σm, (2.10)

with the source function

σm = iκmζm f

√
1−

f 2

ω2
U · ∇h= iσm,0, (2.11)

where σm,0 is real. Equation (2.10) is the starting point for our derivation of a new
method to resolve the direction of the energy flux into the different internal tide modes.
Note that this equation arises in many physical situations, e.g. atmospheric lee-wave
generation or Lighthill radiation, so that our novel approach to solving (2.10) is in
fact not limited to the phenomenon of oceanic internal tides.

We first derive an energy equation from (2.10) by multiplication with P∗, the
complex conjugate of P:

∇ · (P∗∇P)− |∇P|2 + κ2
|P|2 = P∗σ , (2.12)

where we have dropped the subscript ‘m’ for the sake of brevity. Taking the imaginary
part Im, this reduces to

∇ · Im{P∗∇P} = Im{P∗σ }. (2.13)

This step is motivated by the comparison of (2.10) and (2.12) to the time-dependent
form of the standard two-dimensional forced wave equation and the resultant energy
conservation equation (see appendix A). The left-hand side of (2.13) can then be
identified as the divergence of the energy flux, but only up to a real multiplicative
coefficient B given below, which relates the modal pressure amplitude P to wave
energy.

In consequence, the energy source density s is given by

s= B Im{P∗σ } (2.14)
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and the energy flux F is related to the pressure according to

F= B Im{P∗∇P}. (2.15)

The energy conversion can then be computed either as the integral over the source
density,

C=
∫

A
s dx dy, (2.16)

or as the integral of the energy flux across a closed curve γ around the source region
A,

C=
∮
γ

F · n̂ dl, (2.17)

where n̂ denotes the unit vector pointing outwards at the boundary. Note that F and
C here denote the average over a time period, i.e. we have for simplicity omitted the
angular brackets used in appendix A. The coefficient B can be determined from (2.16)
by comparison to the expression obtained by substituting (2.11) into (2.7):

B=
ρ0

2κf

√
1−

f 2

ω2

. (2.18)

Previous studies (e.g. Falahat et al. 2014b) invoked (2.16) to calculate the energy
conversion. In order to resolve the horizontal direction of the energy flux we instead
have to rely on (2.17). Both methods require solving (2.10) for the pressure, which
can be accomplished following a standard Green’s function approach:

P(r)=
∫

A
G(κ|r− r′|)σ (r′) dx′ dy′. (2.19)

The Green’s function G describes the radiation from a point source and is given by

G(ξ)=−
i
4

H1
0(ξ)=

1
4
[Y0(ξ)− iJ0(ξ)], (2.20)

where H1
0 denotes the Hankel function of the first kind of order zero, and J and Y

are Bessel functions of the first and second kind, respectively. The Green’s function
has the property

(∇2
+ κ2)G(κ|r|)= δ(r), (2.21)

where the δ-function originates from the term Y0 in (2.20), and the term J0 in (2.20)
ensures that the energy flux is directed away from the origin, as can be verified by
inserting G(κ|r|) into (2.15).

When the pressure field is evaluated at a point far away from all sources, the
asymptotic expansion of the Hankel transform

H1
0(ξ)∼

√
2

πξ
ei(ξ−π/4) for ξ � 1 (2.22)
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can be used in (2.19). As a result, the pressure field can be approximated as

P(r)≈
1
4

√
2

πκr
ei(κr−π/4)σ̃0(κ r̂), (2.23)

where the tilde denotes the Fourier transform

σ̃0(k)=
∫

e−ik·rσ0(r) dx dy (2.24)

and k is the two-dimensional wavenumber vector (see appendix B for details of the
derivation). Inserting (2.23) into (2.15) leads to the following expression for the far-
field energy flux:

F= r̂
B

8πr
|σ̃0(κ r̂)|2, (2.25)

whose magnitude is the same on opposite sides of the sources because of σ̃ ∗0 (k) =
σ̃0(−k). Expressing the radial unit vector in terms of the Cartesian counterparts,
r̂ = x̂ cos φ + ŷ sin φ, underlines that this expression is indeed the directional energy
flux in terms of the horizontal angle φ. Following (2.17), the total energy conversion
becomes

C=
B

8π

∫ 2π

0
|σ̃0(κ r̂)|2 dφ. (2.26)

The same expression can also be obtained by using (2.19) and (2.20) in (2.16) and
exploiting symmetry:

C=
B
4

∫∫
J0(κ|r− r′|)σ0(r)σ0(r′) dx dy dx′ dy′. (2.27)

This equation was used by Falahat et al. (2014b) to compute the global energy
conversion. It can be rewritten by means of the following known expression for the
Fourier transform of the Bessel function J0:∫

J0(ar)e−ik·r dx dy=
2π

a
δ(k− a), (2.28)

which leads indeed to the same expression as (2.26). The difference is that the first
derivation based on the approximate Hankel function is more explicit in requiring
that the expression be evaluated far away from the source region (note that both
approaches make use of the radiation condition; see also appendix B).

3. Implementation
The numerical implementation is based on (2.25). The flux magnitude F= |F| can

be written as

F= 1
2 U · R ·U∗, (3.1)

with the symmetric tensor

R =
ρ0

8πr
κ3ζ 2f

√
1−

f 2

ω2
|h̃(κ, φ)|2r̂r̂. (3.2)
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The advantage of writing the energy flux as in (3.1) is that the tidal velocity is treated
separately, so that, for example, the spring–neap tidal cycle can be taken into account
by letting the tidal amplitude U vary slowly in time. Tensor R can be thought of
as a drag tensor (Green & Nycander 2013), which can be transformed into Cartesian
coordinates using

r̂r̂= x̂x̂ cos2 φ + (x̂ŷ+ ŷx̂) cos φ sin φ + ŷŷ sin2 φ. (3.3)

Equation (3.2) shows that the directional energy flux depends on the Fourier
transform of the topography in polar coordinates. An apparently straightforward
approach would be to first calculate the Fourier transform of the topography in
Cartesian coordinates and then interpolate it onto a polar grid in spectral space. Simple
tests comparing (2.17) and (2.16) for idealised topography such as top-hat or Gaussian
seamounts, however, demonstrate that the interpolation of the Fourier-transformed
topography requires a very high spatial resolution. A more practicable alternative, in
terms of both accuracy and computational speed, is to calculate the Fourier transform
in polar coordinates. Baddour (2009) showed that taking the two-dimensional Fourier
transform of a function in polar coordinates is, after appropriate scaling, equivalent
to first determining its Fourier series expansion in the angular direction and then
calculating the nth-order Hankel transform of the radial variable. This implies that
the transform needs to be calculated for one specific wavenumber only instead of all
of them, which additionally reduces the computational expense. In consequence, the
implementation involves the following steps.

(i) Interpolation to a polar grid. The topography h(x, y) is on the Cartesian grid
represented by a bivariate spline, which is then evaluated at the polar grid points.
This gives h(r, φ).

(ii) Calculation of angular modes. A Fourier expansion (fast Fourier transform, FFT)
of h(r, φ) in the φ-direction is performed to compute the angular modes hn(r),
where n is the angular mode number:

h(r, φ)=
n=∞∑

n=−∞

hn(r)einφ. (3.4)

(iii) Hankel transform. We are interested in the Fourier-transformed angular modes
h̃n(k). As shown by Baddour (2009), these are related to the angular modes
calculated in step (ii), hn(r), through the Hankel transform:

h̃n(k)=
2π

in

∫
∞

0
hn(r)Jn(kr)r dr. (3.5)

This integral is solved using numerical quadrature (Simpson’s rule) for the
specific wavenumber k= κ .

(iv) Calculation of the Fourier-transformed topography as a function of angle. An
inverse FFT relates the modes h̃n(κ) to the Fourier transform of the topography,
h̃(κ, β):

h̃(κ, β)=
n=∞∑

n=−∞

h̃n(κ)einβ . (3.6)

This can be evaluated at β = φ.
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In the real ocean, the sources are not confined to small, bounded regions, nor
are the tidal velocity amplitude U or the horizontal wavenumber κ constant in
space (or time), as assumed in the derivation of (2.10). Therefore, the far-field
expression derived in the previous section cannot be applied directly. The same
problem arises when computing the energy conversion as the integral over the source
density using (2.27), as was done by Falahat et al. (2014b). They dealt with this
issue by truncating the Bessel function in the integral after a certain number of
zero crossings, effectively neglecting the influence of topography far away from the
point at which the conversion is calculated. In the same spirit, we only consider
the topography in a certain area around the point of interest to be relevant for the
energy conversion. To that end, we subdivide the topography into overlapping circular
patches of radius rp. In each of these circles, identified by indices i, j and centred
at ri,j, the topography is multiplied by a Gaussian and interpolated onto a polar grid,
which is also centred at ri,j:

hi,j(r)= h(r)e−|r−ri,j|
2/2r2

G . (3.7)

This ‘screened’ topography hi,j(r) is hence confined to a region of length scale rG

and we can therefore, if rG is small enough, apply the far-field expression for each
patch individually, choosing different values for κ and U in the different patches. In
other words, for each patch, we follow steps (i)–(iv) and calculate the angular energy
flux rFi,j based on (3.1) and (3.2), thereby covering the entire ocean floor. Note that
multiplying the topography by a Gaussian is a tapering to avoid sharp cutoffs at the
patch boundary, not a smoothing that removes small topographic scales.

The mean angular flux density per unit area at the patch centre,

Di,j(φ)=
rFi,j(φ)

ai,j
(W m−2 rad−1), (3.8)

is obtained by normalising the energy flux by the effective patch area ai,j,

ai,j =

∫
(e−|r−ri,j|

2/2r2
G)2 dx dy=πr2

G, (3.9)

where the square in the integral accounts for the quadratic dependence of the energy
conversion on the screened topography. The procedure is illustrated in figure 1.

For the numerical implementation, the following parameters have to be set:

(i) fl = rp/rG, the size of the patch relative to that of the Gaussian;
(ii) fκ = κrG, the size of the Gaussian itself relative to the wavenumber for which the

conversion is calculated;
(iii) fp = rG/dxc, the extent to which neighbouring patches overlap, relating the

Gaussian width rG to the patch centre spacing dxc; and
(iv) the resolution of the polar grid in each patch, dr= rp/nr and dφ= 2π/nφ , where

nr is the number of points in the radial direction and nφ is the number of points
in the angular direction – the parameter nφ thus determines the resolution of the
angular energy flux F.

Suitable parameter settings are determined in convergence tests using idealised
topography, which are presented in the following section.
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dxc

dyc

dx

dy

rp

rG

FIGURE 1. Illustration of the method. The topography is given on a Cartesian grid with
spacing dx and dy (small points). The total domain is subdivided into circular patches
of radius rp, whose centres are spaced at a distance of dxc and dyc (larger points). In
each patch, the topography is interpolated onto a polar grid and multiplied by a Gaussian,
whose width (standard deviation) is given by rG. The numerical parameters which have
to be set are: (1) the patch size relative to that of the Gaussian, controlled by the
parameter fl= rp/rG; (2) the size of the Gaussian relative to the wavenumber for which the
conversion is calculated, controlled by the parameter fκ = κrG; (3) the grid spacing dxc and
dyc relative to the Gaussian width, i.e. to what extent the effective patch area πr2

G overlaps
(shaded areas), controlled by the parameter fp= rG/dxc; and (4) the resolution of the polar
grid within each patch, dr= rp/nr and dφ = 2π/nφ , where nr and nφ denote the number
of grid points in the radial and angular directions.

4. Tests with idealised topography
The basic evaluation of the method achieved through the comparison of (2.17),

describing the conversion as the integrated energy flux, and (2.16), defining the
conversion in terms of the integrated source density, showed that for top-hat and
stretched Gaussian topographies, the two solutions for the conversion rate agree well.
For a more detailed evaluation and in order to determine the numerical parameters
introduced in the previous section, we focus on the so-called ‘witch of Agnesi’ profile,
for which it is possible to calculate the conversion rate analytically. This idealised
topography is described as

h(x)=
h0

1+
x2

Λ2

, (4.1)

where Λ denotes the topographic length scale (half-width of the ridge) and h0 the
maximum ridge height. Tidal currents flowing across this idealised topography will
generate parallel wavetrains propagating away from the ridge in the x-direction –
buoyancy oscillations and propagating internal gravity waves can only originate from
flow across, not along, the topographic obstacle. Thus, the orientation of the tidal
ellipse strongly affects the magnitude of the energy conversion for approximately
one-dimensional topography, and in this case, the conversion per unit length in the
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y-direction (W m−1) is a function of the zonal velocity component only (see e.g.
Falahat et al. 2014b):

Cm =
1
4
ρ0 fκ2

mζ
2
m

√
1−

f 2

ω2
U2

0 |h̃(κm)|
2, (4.2)

with the Fourier transform of the topography,

h̃(κm)= h0Λπe−|κm|Λ. (4.3)

We follow Falahat et al. (2014b) and set h0 = 100 m, H = 4 km, f = 8× 10−5 s−1,
the mean seawater density to ρ0= 1040 kg m−3, the tidal frequency corresponding to
that of the M2-tide, ω= 1.4× 10−4 s−1, and the tidal amplitude to U0= 4 cm s−1. The
ridge is located at the centre of a domain which extends 4000 km in each direction
with a grid spacing of dx= dy= 1 km. For topographic scales Λ= (2.5, 5, 10, 20) km,
the underlying assumptions of weak topography and small tidal excursion are met.

The numerical solution Cnum comparable to the analytical solution of the energy
conversion in (4.2), Can, is obtained by integrating Di,j over all angles and across the
ridge, replacing the integrals by simple sums:

Cnum,j =

nxc∑
i=1

dxc

nφ∑
k=0

Di,j(φk) dφ, (4.4)

which is the same for any choice of j=1, . . . ,nyc for reasons of symmetry. In order to
determine suitable choices of the numerical parameters, we compare Cnum,nyc/2 =Cnum
and Can for the different topographic scales Λ and different horizontal wavenumbers
κ given above. We first consider the case of uniform stratification with N = 9.02 ×
10−4 s−1, so that κm = m × 0.1 km−1 (see (2.9)). The resolution of the polar grid is
set such that, at the outer patch boundary, the resolution is the same as that of the
Cartesian grid, i.e. nr = rp/dx and nφ = 2πnr. For most test cases, this is a much
higher resolution than necessary for reproducing the analytical solution within 1 %, but
we keep it that high in order not to lose any information – as shown by Nycander
(2005), insufficient resolution of topography is the most important error source in real
applications.

Figure 2 shows the convergence of the numerical solution towards the analytical
one (see (4.2)) for a topographic scale of Λ = 5 km, using increasing values of the
Gaussian width, the patch size relative to that of the Gaussian and the patch overlap.
The latter is described as the ratio of Gaussian width rG to the patch centre spacing
dxc, which is related to the area overlap relative to the effective patch area, Op,
according to

Op = 2
(

r2
G arccos

(
dxc

2rG

)
−

1
4

dxc

√
4r2

p − dx2
c

)/
(πr2

G). (4.5)

For values of κ between 0.1 km−1 and 0.5 km−1, the numerical solution agrees
very well with the analytical one for settings of fκ > 20, fl > 2.5 and a patch centre
distance comparable to the Gaussian width, that is, fp > 0.8 or Op > 0.25. This
requires (17, 33, 49, 65, 80) patches in each direction, or, in other words, a patch
centre spacing of dxc = dyc = (235.3, 121.2, 81.6, 61.5, 50.0) km. The deviation from
the analytical solution is approximately 1 % for modes 3–5 and less for modes 1
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Energy conversion along ridge of Agnesi witch (Λ = 5 km)
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FIGURE 2. (Colour online) Ratio of numerical and analytical solutions, Cnum and Can, for
the ‘witch of Agnesi’ profile with a topographic length scale of Λ= 5 km. Other settings
are given in the main text. Note the different y-axis scalings. One parameter at a time is
varied while keeping the other two at their reference values: in (a,b), fp = 0.8; in (a,c),
fl = 2.5; and in (b,c), fκ = 20.

and 2. These threshold values are hence chosen as the reference settings for the
following simulations. Note that we do not explore the three-dimensional parameter
space, but keep two parameters fixed at their reference value while varying the third.

In the following step, these reference settings are evaluated for the different values
of the ridge width Λ given above (see figure 3a). These test cases show that, for
wider ridges, the proportion of energy flux into the first vertical mode increases – for
Λ = 20 km, the only mode carrying a significant amount of energy is the first one.
Moreover, these tests demonstrate that the agreement with the analytical solution is
very good except for scenarios with very low conversion rates. Setting Λ = 20 km,
the analytical solutions decrease below 0.002 W m−1 as κ > 0.3 km−1 and the
corresponding numerical solutions deviate by more than 10 % from the analytical
values. Very low energy conversion rates are hence typically overestimated by this
method, but fortunately of minor importance for the energy budget of the internal
tide field. Conversion rates above 0.002 W m−1, on the other hand, are reproduced
within 10 %, and rates above 0.2 W m−1 within 1 %, mostly better. As depicted in
figure 3(a), the total energy conversion is considerably higher than 0.2 W m−1 for the
four different ridge length scales. For relevant energy conversion rates, the proposed
method with standard settings fκ = 20, fl = 2.5 and fp = 0.8 is thus confirmed for this
idealised topography with constant stratification and a ridge width Λ varying between
2.5 km and 20 km.

This also holds true for vertically variable stratification (see figure 3b). In this case,
the full eigenvalue problem given in (2.1) has to be solved, which is done numerically
following the method described by Chelton et al. (1998). We use an N-profile from
the WOCE Global Climatology (Koltermann, Gouretski & Jancke 2011) – this profile
was downloaded from the eWOCE website maintained by R. Schlitzer at the Alfred
Wegener Institute for Polar and Marine Research, Bremerhaven, Germany – from
25◦N, 43◦W, which is characterised by a bottom value of NB = 3.77× 10−4 s−1 and
shown in the inset of figure 3(b). We adjust the Coriolis parameter to a representative
value of f = 6 × 10−5 s−1 and keep the other parameters at the values listed above.
As already observed for the test cases with constant stratification, the energy flux into
higher modes decreases for wider ridges. It is interesting to note that in this idealised
case with one-dimensional topography, there is a clear relation between ridge width
and wavelength λ = 2π/κ of maximum energy conversion: λ(Cmax) = 4πΛ. This
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Energy conversion along ridge of Agnesi witch
N = const. N = N(z)(a) (b)
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FIGURE 3. (Colour online) Energy conversion Cnum along a ‘witch of Agnesi’ ridge for
four different topographic scales as a function of horizontal wavenumber for (a) constant
and (b) variable stratification, with crosses showing the analytical solution given by (4.2).
In the former case, the Coriolis frequency is f = 8× 10−5 s−1; in the latter it is adjusted
to the specific latitude of the N-profile, taken from the WOCE database from 25◦N,
43◦W and shown in a vertically smoothed version in the inset in panel (b), i.e. f =
6× 10−5 s−1. The other parameters are the same in both scenarios and given in the main
text. The numerical parameters are fl = 2.5, fκ = 20 and fp = 0.8. In the test cases with
variable stratification (b), deviations from the analytical solution by more than 10 % are
observed for κ> (0.75,0.80,0.46,0.23) km−1 for Λ= (2.5,5,10,20) km; conversion rates
higher than 0.001 W m−1 are very well reproduced. Assuming a constant stratification
N = 9.02× 10−4 s−1 (a), such deviations only occur for κ > 0.5 for Λ= 10 km and for
κ > 0.3 for Λ= 20 km, when conversion rates are below 0.002 W m−1.

explains why the maximum conversion is observed for lower modes when increasing
Λ and is a useful relation to determine the Gaussian width for the ‘witch of Agnesi’
profile. It is less useful, however, for calculations with realistic topography, which is
characterised by many different topographic length scales.

As illustrated in figure 3(b), the numerical solution reproduces the analytical one
well as long as conversion rates are higher than 0.001 W m−1. Deviations from the
analytical solution by more than 10 % are found for modes higher than (15, 17, 9, 4),
i.e. the critical wavenumber is κcrit = (0.75, 0.80, 0.46, 0.23) km−1 for Λ =
(2.5,5,10,20) km. The corresponding conversion rates amount to Can= (0.001,1.34×
10−5, 1.45 × 10−4, 6.32 × 10−4) W m−1 and are hence much lower than the total
energy conversion into the lower modes with κ < κcrit. In conclusion, the new method
based on circular patches and using the standard settings defined above accounts well
for the bulk of the energy converted into baroclinic tides at a one-dimensional ridge.

If there is more than one ridge, wave interference may significantly change the total
conversion (e.g. Karimpour et al. 2017; Zhang et al. 2017). In order to illustrate how
the new method can capture this and to shed light on the relevance of the parameter
rG, we consider a double ridge system defined as

h(x)=
h0

1+
(x+ x0/2)2

Λ2

+
h0

1+
(x− x0/2)2

Λ2

, (4.6)
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FIGURE 4. Analytical and numerical energy conversion per unit length in the y-direction
(see (4.2) and (4.4), respectively) into modes 1–5 for a double ridge system of two ‘witch
of Agnesi’ peaks in the x-direction as defined in (4.6). The stratification is assumed to
be constant, using κm = m × 0.1 km−1, rG = 20/κm and Λ = 5 km. The other parameter
settings are the same as for the single ridge and constant stratification.

that is, two ‘witch of Agnesi’ ridges with a peak separation distance x0. The analytical
solution for the conversion rate is given by (4.2) with the Fourier-transformed
topography adjusted to

h̃(κm)= 2 cos
(x0

2
κm

)
h0Λπe−|κm|Λ. (4.7)

Figure 4 shows the total conversion into the first five internal tide modes with κm =

m × 0.1 km−1. The internal tides interfere constructively or destructively, depending
on peak separation distance, which leads to an oscillating behaviour. The agreement
between the numerical and analytical solutions decreases as the distance between the
ridge peaks is increased. For very large ridge distances, the numerical solution is
equal to twice the conversion of one isolated ridge (i.e. (4.1) – note the factor of two
difference between (4.1) and (4.6) for x0 = 0). Focusing on the conversion maxima
obtained for x0 = 2nπ/κm, n = 0, 1, 2, 3 . . . , the numerical solution reproduces the
analytical one for the different individual modes within 10 % as long as x0 < rG (not
shown). The parameter rG can thus be thought of as representing the correlation length
scale of internal tides: only the interaction between waves generated by topographic
features located within a distance rG from each other is taken into account. In
consequence, calculations for more complex topography should use sufficiently large
patch radii and a patch centre distance dxc and dyc smaller than rG in order to
correctly represent the effect of wave interference on conversion rate estimates.

5. Energy conversion for a region of realistic topography
In order to determine suitable numerical parameter settings for realistic topography,

we choose a region of interesting topography that involves no land points and is
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large enough to incorporate a reasonable number of circular patches for a variety
of parameters: spanning 30.85–55.83◦W and 10.83–35.83◦N, it covers an area of
2.78 × 103 km in latitudinal and 2.55 × 103 km in longitudinal direction (at the
centre at approximately 23◦N) over the Mid-Atlantic Ridge (MAR). In order to avoid
boundary effects, the domain is on all sides extended by approximately 500 km, in
which the bathymetric height is tapered by a sin2 function to the average value at the
respective side, and another approximately 900 km of this constant average (refer to
figure 8 for an illustration of the topography, where much of the surrounding taper
was cropped). The topographic elevation was taken from Becker et al. (2009) with
a resolution of 30 arcsec, which corresponds to 0.93 km at the equator. Within each
patch, the topography is now tapered towards the average topography hi,j over the
patch, instead of towards zero, by multiplication with a Gaussian. That is, (3.7) is
replaced by

hi,j(r)= (h(r)− hi,j)e−|r−ri,j|
2/2r2

G . (5.1)

We set f = 6 × 10−5 s−1 and reduce nφ to nφ = nr to save computational time. This
step is justified by the observation that, in various test cases, this reduced angular
resolution leads to conversion rates within 0.01 % (0.001 %) for constant (variable)
stratification from the results obtained for nφ= 2πnr. All the other parameters are kept
as before, i.e. the tidal velocity is U = (0.04, 0) m s−1, the mean seawater density
is ρ0 = 1040 kg m−3 and the tidal frequency corresponds to that of the M2-tide,
ω = 1.4 × 10−4 s−1. Owing to the lack of an analytical reference solution, suitable
numerical parameters are determined by successively increasing their values until the
total energy conversion saturates. This form of convergence test is made possible by
the tapering of the topography at the boundary of the region.

Figure 5 shows these sensitivity studies both for constant and for vertically variable
stratification. Here, the total energy conversion into one vertical mode is considered,
that is, we take the sum of (4.4) over all j = 1, . . . , nyc and multiply by the corre-
sponding dyc:

Cnum =

nyc∑
j=1

dyc

nxc∑
i=1

dxc

nφ∑
k=0

Di,j(φk) dφ. (5.2)

Note that here dxc is a function of j, as it varies with latitude. In the first case, we
set N = 9.02× 10−4 s−1 with κ = κ1 = 0.1 km−1 and the reference settings fl = 2.75,
fκ = 25 and fp = 1.25 (that is, nxc = nyc = 29 or Op = 0.5). In the second case, we
use the N-profile from 25◦N, 43◦W (see figure 3b) and show the convergence of the
numerical solution for κ = κ2 ≈ 0.1 km−1 with reference settings of fl = 2.75, fκ = 25
and fp=1.25 (that is, nxc=nyc=28 or Op=0.5). The influence of variable stratification
is evident, with lower total energy conversion rates observed in the scenario with N=
N(z) due to the differences mainly in ζm.

The smallest variations are seen when varying the patch overlap, which almost
disappear for fp = rG/dxc higher than unity. For increasing fl and fκ , the total
conversion smoothly increases until it saturates for fl > 2.5 and fκ > 25. These
threshold values are confirmed in simulations with fκ = 15 as the reference value
(figure 5b,c). Setting fκ = 15 rather than fκ = 25 reduces the patch radius from
724 km to 434 km (from 688 km to 413 km for constant stratification), but gives
a total conversion already within 3 % of the asymptotic value shown in figure 5(a).
While larger patches imply larger correlation length scales rG, they also render the
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Total energy conversion over MAR (18-68 W, 1 S-48 N)
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FIGURE 5. Sensitivity analysis of the total energy conversion (see (5.2)) over the MAR
at 18◦–68◦W and 1◦ S–48◦N for (top) constant stratification with N= 9.02× 10−4 s−1 and
κ=κ1=0.1 km−1 and (bottom) variable stratification with the N-profile from 25◦N, 43◦W
and κ = κ2 ≈ 0.1 km−1. Refer to the main text for details. One parameter is varied at a
time, while the other two are kept constant. The reference settings are fp= 1.25, fl= 2.75
and fκ = 25 or fκ = 15. Note the different y-axis scalings.

assumption of constant tidal velocity and horizontal wavenumber within the patch less
realistic. Moreover, the spatial structure of the energy flux is best resolved for smaller
patch sizes, i.e. smaller values of fκ . This is illustrated in figure 6, where the zonally
integrated energy flux density is shown as a function of latitude, demonstrating that
increasing the patch radius effectively smooths this field. Consequently, there is
a trade-off between angular and spatial resolution of the energy flux. Choosing a
larger value of fκ leads to a higher number of angular modes nφ and hence a better
resolution of the direction of the energy flux at each individual patch centre. At the
same time, this leads to a coarser spatial resolution of the energy flux. This trade-off
and the fact that, in the real ocean, sources of different length scales abound, render
it difficult to decide on a universal value for fκ . Since the focus of this study is
on the evaluation of our new method, we set fκ = 25; for realistic applications, a
smaller value appears more appropriate. It is reassuring to see that even for half of
our standard value the total conversion is close to the saturation result (figure 5a).

The reference settings determined in this sensitivity analysis can be further evaluated
in a comparison with the total conversion rate calculated by following the approach
of Falahat et al. (2014b). This is essentially a comparison between the right-hand
side of (2.13), the basis of (2.27) which was used by Falahat et al. (2014b), and the
left-hand side of (2.13), on which our direction resolving method is based. We exactly
follow the method of Falahat et al. (2014b) and calculate the conversion rate at each
topography grid point, i.e. at a resolution of 1/120◦. Two calculations are performed:
first, the Bessel function in the integral is truncated after 13 zero crossings, then after
14. The conversion rate at the specific topography point is taken as the average of
these two results. The sum of all conversion rates (positive and occasionally negative)
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FIGURE 6. Zonally integrated flux density (see (4.4)) as a function of latitudinal distance
across the domain of realistic topography shown (without much of the surrounding taper)
in figure 8 for two different choices of fκ . The dashed lines mark the region of untapered
topography, and the dashed-dotted lines mark the border between constant and tapered
topography. The results are shown for κ2 ≈ 0.1 km−1 with the same settings as described
in the caption of figure 5 for variable stratification. The insets show the energy flux F
at the patch centre circled in red in figure 8, scaled by its respective maximum in this
specific patch, for these two cases, where colours correspond to those in the legend and
zero degrees is eastward. Note that only the total conversion in the entire area is expected
to converge for ever larger numerical parameters, while the directional variation of the
energy flux in a specific patch is not.

in the entire MAR domain amounts to C= 1.1647× 1010 W for constant stratification
and to C = 2.1883 × 108 W for variable stratification. The corresponding results
using our method equal C= 1.0224× 1010 W and C= 1.7641× 108 W, respectively,
i.e. 88 % and 81 % of the results following the approach of Falahat et al. (2014b).
Considering that both methods rely on setting a correlation length scale – in the form
of fκ for our approach and the number of zero crossings of the Bessel function for
that of Falahat et al. (2014b) – and remain somewhat sensitive to that choice, an
agreement within 10–20 % seems acceptable. A more detailed comparison is presented
in figure 7, where the spatial distribution of the conversion is shown. Following the
approach of Falahat et al. (2014b) (figure 7b), the conversion field has a much higher
resolution than that based on the patch method (figure 7a) and consequently reveals
much more detail of the spatial variability. But it also features a large number of
negative values, which is impracticable when the conversion field is to be used as a
source function in internal wave models. One possibility to obtain a positive definite
field is to average the conversion onto a coarser grid, e.g. the patch centre grid. The
resultant conversion field (figure 7c) is in reasonable agreement with that obtained
using the patch method, but some negative values remain (marked white in the figure).
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FIGURE 7. The conversion to the mode-2 M2-tide in the region of untapered realistic
topography (i.e. within the red lines in figure 8) calculated (a) using the new, patch-based
method following (2.17), (b) using the approach of Falahat et al. (2014b) following (2.16),
and (c) as in (b) but averaged over the same horizontal grid as in (a), with white colours
denoting negative values. The parameter settings are the same as in the previous figure
for variable stratification, i.e. κ = κ2 ≈ 0.1 km−1, fκ = 25, fl = 2.75 and fp = 1.25. Further
details on the set-up and parameter choices are given at the beginning of this section.

Another possibility is to smooth the conversion field (not shown). Using rG= 262 km
as a smoothing length scale, the agreement with figure 7(a) is very good but the
conversion field still becomes negative occasionally, while using a smoothing scale
of rp = 724 km results in a positive definite conversion field, but also in an overly
smooth one, with very little spatial variation left. This emphasises an important
advantage of the patch-based method: while previous approaches like that of Falahat
et al. (2014b) require some a posteriori treatment of the conversion field before it
can be used as an internal wave source function, involving some ad hoc choices
of smoothing or averaging length scales, the patch method provides a ready-to-use
positive definite conversion field because it includes this averaging in a systematic
way, relating the corresponding length scale to the local internal tide wavenumber.

The directional energy flux density for this realistic topography is presented in
figure 8 for the mode-3 internal tide with κ3 = 0.14 km−1. The inset in the top right
corner illustrates that, at each patch centre, the energy flux density is shown in a polar
coordinate frame, in which both the direction (eastward corresponds to an angle of
φ = 0) and the magnitude (i.e. the distance along the radial axis) can be represented.
If the energy flux density were the same in all directions, this manner of presentation
would show a circle at the patch centre in question. Circles, however, are observed
at no location; on the contrary, in many patches the energy flux occurs mainly in
one direction. This underlines the necessity to explicitly model these variations of the
energy flux direction in order to realistically implement the tidal forcing in internal
gravity wave models. Based on the sensitivity study shown in figure 5, the numerical
parameters are set to fp = 1.25, fκ = 25 and fl = 2.75. The Gaussian width hence
amounts to 185 km and the total patch radius to 509 km. With a zonal tidal ellipse
with U = (4, 0) cm s−1, the energy flux is somewhat larger west of the MAR than
east of it, especially near the southern and northern boundaries of the domain. In
the northwestern corner of the domain, sharp topography gradients lead to very high
conversion rates, but this is at least to some degree an artefact of the tapering.

Figure 9 illustrates how these results are influenced by the direction of the
barotropic tidal currents. At a given location over the MAR (26◦N, 45◦W; the
corresponding patch centre is denoted by a red circle in figure 8), the direction
of the energy flux in the first four baroclinic wave modes is shown for eastward,
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FIGURE 8. Energy conversion for variable stratification and realistic topography. At each
patch centre, the energy flux density D (see (3.8)), scaled by the maximum energy flux
observed in the patch circled in red, is shown as a function of angle as illustrated in the
polar coordinate plot inset in the top right corner. The magnitude of D is represented by
the distance from the coordinate system’s centre along the radial axis, which produces a
circle for patches in which the energy flux is the same in all directions. The underlying
topography is represented in colour, with red lines delimiting the untapered topography at
the centre of the domain (the resolution of the topography input used in the calculations is
15 times higher in each dimension than in this figure). Note that the 900 km of constant
topography, which were added on each side of the tapered topography to ensure a smooth
decrease of the conversion rates at the boundaries, was cropped here for clarity. The
stratification is assumed to be horizontally constant, taking the same vertical profile from
25◦N, 43◦W as used before, and we use U= (4,0) cm s−1, f =6×10−5 s−1 and nφ=551.
The energy conversion is shown for the mode-3 internal wave with κ3=0.14 km−1, setting
fκ = 25, fl= 2.75 and fp= 1.25 (nxc= nyc= 39 or Op= 0.5). The red circle at 23◦N, 43◦W
identifies the patch whose energy flux is shown in the polar coordinate plot and which is
analysed in more detail in figure 9.

northward and northeastward orientations of the tidal ellipse. For modes 1, 3 and
4, the sensitivity study to the parameter fκ was repeated, showing that, for mode 1,
fκ should be reduced to fκ = 13, while for modes 3 and 4, the previous setting of
fκ = 25 is suitable, too. For mode 5 (not shown) the corresponding threshold value
was also determined as fκ = 25, which suggests that this numerical parameter indeed
converges towards a common value for all but the first mode.

The orientation of the tidal ellipse influences both the magnitude and the direction
of the energy conversion density. The lowest conversion rates are observed for zonal
and the highest for meridional orientation, respectively. This can be attributed to the
orientation of the bottom topography in this patch: at locations where the topography
is predominantly zonal (e.g. in the northwestern corner of the domain), the energy

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.9


400 F. Pollmann, J. Nycander, C. Eden and D. Olbers

E NE N NW W SW S SE E
Uy

Uxy

Ux

0Co
nv

er
sio

n 
(W

 m
-

2 )

1

2

3

4

5

6
(÷ 10-3) Mode 3

E NE N NW W SW S SE E
Uy

Uxy

Ux

0

1

2

3

4

5

6
(÷ 10-3) Mode 4

E NE N NW W SW S SE E
Uy

Uxy

Ux

0Co
nv

er
sio

n 
(W

 m
-

2 )

0.5
1.0
1.5
2.0
2.5
3.0
3.5

(÷ 10-5)(a) (b)

(c) (d)

Mode 1

Direction of energy conversion (23 N, 43 W)

E NE N NW W SW S SE E
Uy

Uxy

Ux

0

1

2

3

4

5

6
(÷ 10-3) Mode 2

FIGURE 9. Effect of tidal velocity on energy conversion. The energy conversion density
D (see (3.8)) at a patch centred on the MAR (23◦N, 43◦W, denoted by a red circle in
figure 8) is shown as a function of direction for the first four modes. For each mode, the
tidal velocity is varied between Ux = (u, 0), Uy = (0, u) and Uxy = (u/

√
2, u/
√

2) with
u= 4 cm s−1. To differentiate between these three velocity scenarios, a vertical offset of
1.5× 10−5 W m−2 (mode 1) or 2× 10−3 W m−2 (modes 2–4) is introduced. Note also the
different y-axis scaling for mode 1. The other parameter settings are as in the previous
figure except for the Gaussian width, which was set to fκ = (13, 25, 25, 25) for modes 1
to 4, which are characterised by wavenumbers κ = (0.046, 0.095, 0.135, 0.178) km−1.

conversion is much higher for meridional than for zonal flow and peaks in the
direction of the tidal flow (not shown). In the patch analysed in figure 9, there are
strong signals also in directions other than that of the tidal flow, highlighting the
complexity of the topography in that area. In any event, there is no energy flux in
the direction orthogonal to that of the tidal flow.

6. Summary and conclusions
A new method to calculate both the magnitude and direction of tidally forced

internal gravity waves is presented. The main difference from previously applied
schemes is that the energy conversion is derived from the far-field energy flux
instead of an integral over the sources. This offers the noteworthy advantage that the
conversion rate is positive definite, in contrast to integrating over the energy sources,
which can produce negative values (e.g. Zilberman et al. 2009; Falahat et al. 2014b).
Negative conversion rates can be attributed to the influence of remote internal tides
(e.g. Kurapov et al. 2003; Kelly & Nash 2010) and are thus not unrealistic, but
nevertheless present a problem when using the conversion rate estimates as external
source in internal wave models used, for example, to parametrise mixing – Falahat
et al. (2014b), for example, had to average their results over some area to obtain
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positive values (see also figure 7). The underlying assumptions of this semi-analytical
method, based on the vertical-mode treatment of LSY02, involve, for example, that
the source regions should be bounded (to allow the application of the radiation
condition) and that the tidal velocity be constant, which do not hold for global
calculations using realistic bathymetry. In consequence, the method is implemented
by considering individual, overlapping circular patches, in which the topography is
multiplied by a Gaussian centred at the circle’s centre in order to smoothly decrease
the influence of the remote topography. The energy flux from each patch is then
calculated by computing the Fourier spectrum of the topography within the patch.

This approach introduces some numerical parameters: the size of the patches,
the size of the Gaussian and the extent to which neighbouring patches overlap.
Convergence tests based on idealised and realistic topography permit the identification
of suitable parameter settings, showing that the patch radius should be at least 2.5
times the Gaussian standard deviation rG, which itself should be slightly larger than
the patch centre spacing dxc. For mode numbers higher than one, the parameter fκ
(the product of rG and the wavenumber κ) should be around 25.

The choice of the Gaussian width rG relative to the wavenumber is the most
difficult one. The effect of multiplying the topography with a Gaussian is that
coherent interaction such as wave interference is neglected on length scales larger
than rG. In the ocean, factors such as nonlinear effects or inhomogeneities caused
by eddies impede coherent interaction over large distances (e.g. Olbers 1983), and,
ideally, the size of the Gaussian rG should reflect this correlation length scale. The
natural correlation scale, which possibly varies in both space and time, is, however,
too poorly understood to be of practical use for the numerical parameter choices.
Instead, we performed test simulations with increasing rG until the total energy
conversion saturated. There is however a trade-off between numerical convergence
and the applicability of the assumption that wavenumber and tidal velocity can be
considered constant within each patch. For realistic applications, a smaller value than
the one chosen in this study, which focuses on the evaluation of the new method,
might be more appropriate; it is therefore reassuring to see that already half of our
standard setting of fκ = 25 produces acceptable conversion rates. The sensitivity tests
performed in this study serve as a rough guideline for the choice of this numerical
parameter, but it seems that such tests would have to be repeated for different regions
of the global ocean, depending on the details of the topography and the stratification.

The effects of natural decorrelation could also be accounted for by including a linear
damping in (2.10) instead of considering circular patches of limited size. This might
be physically more appealing, but implies that the total flux decreases exponentially
away from the sources, so that the far-field expression cannot be used and integration
over the energy sources remains as the only possibility to calculate the conversion. In
consequence, linear damping is no real alternative for the present purpose.

Another source of uncertainty stemming from the application of linear theory is
the inherent assumption of subcritical topography. In the global ocean, however,
some regions are characterised by supercritical slopes and the results obtained from
linear theory are hence biased (see e.g. Holloway & Merrifield (1999), Nycander
(2006), Pétrélis, Llewellyn Smith & Young (2006) and Garrett & Kunze (2007), and
references therein, for descriptions of how the criticality of topographic slopes affects
internal wave generation). The conversion rate in the subcritical domain is known to
scale quadratically with the steepness parameter

ε =
|∇h|
α
= |∇h|

(
N2

B −ω
2

ω2 − f 2

)1/2

, (6.1)
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where α is the slope of the tidal beam and ε < 1 characterises the subcritical regime
(e.g. Khatiwala 2003). The dependence in the supercritical regime is not known, but
numerical and analytical studies suggest that the conversion rate saturates for ε > 1
(Khatiwala 2003; Nycander 2006; Balmforth & Peacock 2009), so that the application
of linear theory to supercritical topography possibly overestimates the conversion rates.
In consequence, Melet et al. (2013) proposed to correct for supercriticality by dividing
the conversion rates by ε2 wherever ε was larger than unity. Following this approach,
we calculate the steepness parameter on the fine topographic grid (1/120◦ resolution),
approximating the gradients by forward differences. If, in a 1.75◦ circle around
each patch centre point (corresponding approximately to the Gaussian width for the
scenario depicted in figure 8), at least 1 % (2 %) of the steepness parameter estimates
exceed a value of unity, the correction proposed by Melet et al. (2013) is applied.
The correction factor is calculated as the squared average of all steepness parameter
estimates in the 1.75◦ circle in question that exceed unity. This correction is only
implemented for untapered topography and affects 77 (17) out of the 319 patches
depicted in figure 8. The total conversion rate in the entire domain is decreased
by around 6 % (1 %). Since the majority of topography taken into account for the
computation of the energy conversion shown in figure 8 is subcritical – less than 1 %
of all the steepness parameter values are larger than unity – the uncertainty due to
the application of linear theory to supercritical slopes is in this case, at least based on
the simple approach by Melet et al. (2013), very small. In other areas of the global
ocean or in a global integral, however, this uncertainty might be more prominent
(both Nycander (2005) and Falahat et al. (2014b) find that approximately half of the
energy conversion into internal tides stems from supercritical slopes).

The applicability of linear theory also requires that the vertical topographic scales
be small compared to the depth of the water column and that the tidal excursion
U0/(ωL) be small. Owing to the interplay of many different topographic scales (not all
of which are necessarily resolved by the topography product used) on the real ocean
floor, it is not straightforward to determine a single representative length scale. Since
we use a fixed tidal velocity amplitude of 0.04 m s−1 and a tidal frequency of ω =
1.4×10−4 s−1, the smallness of the tidal excursion parameter requires that topographic
length scales be larger than 285 m. Because topographic features of length scale Λ
most efficiently force internal tides of comparable wavelength (LSY02), this criterion
translates into requiring that wavenumbers be smaller than 22 km−1, which is fulfilled
in the scenarios discussed here.

Finally, it has to be noted that the resolution of the topography grid (SRTM30_PLUS;
Becker et al. 2009) is artificially high in many parts of the deep ocean, where only
satellite data with an average resolution of 10 km are available and have been
interpolated onto the much finer SRTM30_PLUS grid. In consequence, small-scale
roughness, typically in the form of abyssal hills, is not resolved and the associated
energy conversion is not accounted for (see e.g. Carter et al. (2008) and Zilberman
et al. (2009) for how topographic smoothing decreases conversion rates). Blending
the SRTM30_PLUS dataset with the abyssal hill spectral model proposed by Goff &
Jordan (1988), Melet et al. (2013) estimated that, globally, the typically unresolved
seafloor roughness leads to an additional 0.1 TW of energy conversion into the
internal tide field. This amounts to roughly 10 % of the energy conversion due to
the topography resolved in standard products such as SRTM30_PLUS; calculations
based on the latter alone hence capture the bulk of the global energy conversion but
underestimate it slightly. As Melet et al. (2013) found this fraction to vary regionally,
global calculations of internal tide generation as well as subsequent breaking and
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mixing might rely on including a spectral model like that of Goff & Jordan (1988)
for the small-scale roughness (e.g. Goff & Arbic 2010; Li & Mei 2014; Guo &
Holmes-Cerfon 2016), noting, however, that such models involve further uncertainties
themselves.

The proposed method with the standard settings identified in the scenarios tested
here yields results in very good agreement with analytical solutions for idealised
test cases. This motivates the application to realistic ocean bathymetry (recognising,
however, the caveats discussed above). The results for the North Atlantic (see figure 8)
underline that the magnitude of the energy flux varies substantially with direction.
Klymak, Legg & Pinkel (2010) observe that modes with eigenspeeds higher than
that of the tidal velocity (modes 1–66 in the scenario in figure 8) radiate away from
their generation site and contribute to the remote mixing in the ocean’s interior,
whose vertical distribution significantly impacts the ocean’s state and dynamics
(Samelson 1998; Zhang, Schmitt & Huang 1999; Melet et al. 2013). It is therefore
crucial for the consistency and reliability of ocean general circulation models to take
the direction of the tidally generated internal gravity waves into account in internal
wave-based mixing parametrisations. Naturally, the next step will be the application of
the method presented here to global ocean bathymetry with realistic and horizontally
variable tidal velocities and stratification to produce a database that can serve as an
input for internal gravity wave models such as IWAM (Müller & Natarov 2003) or
IDEMIX (Olbers & Eden 2013).
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Appendix A
This section illustrates the relation between the physical, time-dependent form

of the forced wave equation and its formulation in complex notation, providing an
interpretation of (2.13). The wave equation for a field variable θ(x, y, t) including a
source ψ is given by

1
c2

∂2θ

∂t2
−∇

2θ =−ψ. (A 1)

An energy conservation equation can be derived via multiplication by ∂θ/∂t:

∂

∂t

[
1

2c2

(
∂θ

∂t

)2

+
1
2
(∇θ)2

]
=∇ ·

(
∂θ

∂t
∇θ

)
−ψ

∂θ

∂t
. (A 2)

From (A 2), the energy flux F and the total energy conversion C can be identified:

F=−
∂θ

∂t
∇θ, (A 3)
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C=−
∫
ψ
∂θ

∂t
dx dy. (A 4)

In complex notation, assuming a fixed frequency, the field variables are written as

θ(r, t)=Re{Θ(r)e−iωt
}, (A 5)

ψ(r, t)=Re{Ψ (r)e−iωt
}, (A 6)

where Θ and Ψ are complex amplitudes. Using these expressions in (A 3) and (A 4),
the energy flux and conversion become

〈F〉 =
ω

2
Im{Θ∗∇Θ}, (A 7)

〈C〉 =
ω

2

∫
Im{ΨΘ∗} dx dy, (A 8)

exploiting the relation 〈ab〉=0.5 Re{AB∗} for a=Re{Ae−iωt
} and b=Re{Be−iωt

}, where
angle brackets denote the average over a period and the star the complex conjugate.

Inserting the complex expressions for the field variables, (A 5) and (A 6), into the
forced wave equation, (A 1), yields

∇
2Θ + κ2Θ =Ψ , (A 9)

with κ2
=ω2/c2. This shows that (A 9) is associated with an energy flux of the form

(A 7) and an energy generation of the form (A 8). These energy expressions also
contain a multiplicative coefficient that cannot be determined from the considerations
above, and depends on the specific physical application. Equation (A 1) arises in
many different physical situations.

Appendix B
Using the asymptotic expression for the Hankel transform in (2.19) gives

P(r)≈
1
4

√
2
π

∫
1

√
κ|r− r′|

ei(κ|r−r′|−π/4)σ0(r′) dx′ dy′. (B 1)

When the origin of the coordinate system is at the centre of the source distribution,
|r′| � |r| and

|r− r′| ≈ r−
r
r
· r′ +O

(
r′2

r

)
. (B 2)

Following (B 2), the factor (κ|r − r′|)−1/2 is approximated as (κr)−1/2, while in the
phase of the exponential, the terms O(r′2/r) are neglected. For accuracy to order
unity, this requires κr′2/r � 1, i.e. r/r′ � κr′, so that for an increasing number of
wavelengths across the source region, the energy flux must be evaluated further and
further away from it for the far-field expression to be valid.

Far away from the sources, (B 1) is hence approximated as

P(r)≈
1
4

√
2

πκr
ei(κr−π/4)

∫
e−iκ(r·r′)/rσ0(r′) dx′ dy′. (B 3)
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The integral in (B 3) can be identified as the Fourier transform of the source field

σ̃0(k)=
∫

e−ik·r′σ0(r′) dx′ dy′ (B 4)

evaluated at wavenumber κ r̂. In consequence, using the far-field approximation of
the Hankel transform allows us to express the pressure field in terms of the Fourier
transform of the source field:

P(r)≈
1
4

√
2

πκr
ei(κr−π/4)σ̃0(κ r̂). (B 5)
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