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SEMIORDERINGS AND WITT RINGS

THOMAS C. CRAVEN AND TARA L. SMITH

For a Pythagorean field F with semiordering Q and associated preordering T, it
is shown that the Witt ring WT(F) is isomorphic to the Witt ring W(K) where
if is a closure of F with respect to Q. For an arbitrary preordering T, it is shown
how the covering number of T relates to the construction of WT{F).

1. INTRODUCTION AND NOTATION

In [5], the first author introduced the concept of an order closed field, a field which
has no proper algebraic extension to which all of its orderings extend uniquely. These
were studied much more deeply in [7] in which a second concept was introduced, that
of a strongly order closed field, a field with the property that it has no proper algebraic
extension to which all of its orderings extend. Among other things, it is shown that for
large classes of fields, the two concepts coincide. It is still an open question whether
every order closed field is strongly order closed. In [7], although the spaces of orderings
are homeomorphic in going to an order closure, no attempt is made to keep the reduced
Witt ring from becoming larger. Indeed, [7, Section 5] explores the reasons that this is
impossible when one deals with the entire set of orderings of a field. In the present paper
we are able to obtain control over the growth of the reduced Witt ring by restricting
attention to the orderings over certain types of preordering.

The work here depends strongly on the use of semiorderings of a field.

DEFINITION: A semiordering on a field F is a subset Q of F satisfying 1
eQ, QU-Q = F, Qn-Q = {0}, Q + QCQ,and F2Q = Q.

Thus a semiordering is more general than an ordering in that it need not be
closed under multiplication. A semiordering which is not an ordering is called a proper
semiordering. The concept of a semiordering first occurs in work of Baer [1]. Semiorder-
ings have had a major place in the theory of formally real fields since their use in
quadratic form theory by Prestel [20] and subsequent work by Becker and Kopping [3].
An excellent source of general information on semiorderings can be found in a survey by
Lam [15]. More recent uses are found in [21] and [14]. They also show up in applica-
tions to division algebras, where a Baer ordering is just a generalisation of semiordering

Received 6th November, 2002
The second author was upported in part by the Tcift Memorial Fund of the University of Cincinnati.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 SA2.00+0.00.

329

https://doi.org/10.1017/S0004972700033797 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033797


330 T.C. Craven and T.L. Smith [2]

to the situation of a division ring with a nontrivial involution (see [8]). Following [20]
and [15], we write Yp for the topological space of all semiorderings and Xp for the
subspace of orderings, where the topology is given by the Harrison subbasis. This is
defined as the collection of all subsets of the form

(1) H(a) = {QeYF\a€Q} (a <E F).

We allow our orderings, semiorderings, et cetera to contain zero, but sometimes we need
to eliminate zero from a set. In general, for any subset S C F, we write 5 for 5 \ {0}.

We follow Efrat and Haran [11] in defining a field F with semiordering Q to
be semireal closed if Q does not extend to any algebraic extension of F and to be
quadratically semireal closed if Q does not extend to any quadratic extension of F.

We extend this to say that, given an arbitrary semiordered field (F, Q), an extension
(K, Q) is a semireal closure (respectively quadratic semireal closure) of F if K is
contained in the algebraic (respectively quadratic) closure of F, Q n F = Q and Q

does not extend to any algebraic (respectively quadratic) extension of K. There is a
subtlety here that is not readily apparent. This is not the same as saying that (K, Q)

is semireal closed (respectively, quadratically semireal closed) with Q D F = Q. As an
example, take F — Q((x)), the field of Laurent series over the rationals, and let Q

be its ordering in which x is positive. Then a semireal closure of F will be the real
closed field L equal to the compositum Q • Q((x)) (x1/", n = 2,3,4, . . . ) , where Q is a
real closure of Q. Inside this field, we have F' = Q(%/2) ((#)) which has four orderings
and four proper semiorderings. (For the construction, see [20, Theorems 7.8, 7.9].) Let
Q' be one of the proper semiorderings of F' that restricts to Q. Then (F',Q') has a
semireal closure (AT, Q) inside L which has four orderings and is a semireal closed field
extending (F, Q), but is not a semireal closure of (F, Q) since Q will extend further
even though Q will not.

For any field F, we denote the algebraic closure by F and the quadratic closure
by Fq. We shall begin by proving the existence of semireal closures, but first we state
one of the few theorems in the literature on extending semiorderings.

THEOREM 1 . 1 . ([20, Theorems 1.24, 1.26], [4, 2.16-2.18].) Let F be a Beld

and let K be an extension of F. A semiordering Q of F extends to K if and only if
n

for every a i , . . . ,an £ Q, the quadratic form X)a»x? nas no nontrivial zeros in K. If
l

[K : F] is odd, then Q always extends to K. If K = F{s/a), then Q extends to K if

and only if aQ C Q.

THEOREM 1 .2 . Let (F, Q) be a semiordered Beld. Then there exist a semireal

closure and a quadratic semireal closure of (F, Q).
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PROOF: We do the semireal closure case. The quadratic case is done by replacing
the algebraic closure F by the quadratic closure. Consider the collection of all subfields
of F to which Q extends. For any chain Fa of such subfields, the union is again a field

n

to which Q extends by Theorem 1.1 since any equation 5Za«xi = 0 depends on only
l

finitely many of the subfields. Thus Zorn's Lemma guarantees a maximal element of
our class of subfields, which is a semireal closure by definition. D

PREORDERINGS ASSOCIATED WITH SEMIORDERINGS

A preordering of a field F is a proper subset T C F satisfying F2 C.T, T + T C T
and T • T C T. A preordering is always equal to the intersection of the set of orderings
containing it [15, Theorem 1.6]. We write

(2) YT = {Q&YF\TQCQ}

for the space of all semiorderings associated with a given preordering T and XT for
the subspace of all orderings in Yr, the topology being inherited from YF (see (1)).
Because of the multiplicative structure of orderings, the set XT can be written as
XT = {P & XF \ T C P}. Note that the spaces YF and XF occur by taking T
as the preordering of all sums of squares in F. We think of the reduced Witt ring
WredC-F) as a subring of the ring of continuous functions G(XF,Z), where Z has the
discrete topology. To develop a local version of the work in [7], we work only with
the set XT for a preordering T associated with a given semiordering. By restricting
functions from XF to XT, we obtain a quotient ring WT(F) of the reduced Witt ring
WTed(F) [15? Section 1]. One of our major goals is to find an extension field K of
F such that the canonical homomorphism Wred(F) —> W(K) induces an isomorphism
WT(F) = W(K). In the next section we are able to do this for certain preorderings by
using quadratic semireal closures.

DEFINITION: Let S be any subset of YF, that is, any collection of semiorderings
of the field F. Following [11], we say that the semiorderings in 5 form a cover of the
preordering

T = { a € F | aQ C Q for all Q € S }.

Efrat and Haran note that for any preordering T, the set of all P e XT form a cover
of T and define the covering number en (T) to be the minimum size of a cover for
T. We shall use the notation Ts for the preordering above associated with S, writing
TQ if 5 — {Q}- Other than in exceptional cases, such as a SAP preordering or an
archimedean ordering, a minimal cover uses proper semiorderings.
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2. QUADRATIC SEMIREAL CLOSURES FOR PYTHAGOREAN FIELDS

For an inclusion of fields F C K, the image of the induced ring homomorphism
W(F) -¥ W(K) is generally of great interest, but also often difficult to compute. Given
a formally real field F, constructing a pythagorean algebraic extension to which a given
set of orderings extends uniquely is quite complicated, and it is also very difficult to
control what happens to the Witt ring (see, for example, [7, Section 5]). We now
investigate the role of quadratic semireal closures in this endeavor.

It turns out that we can actually construct quadratic semireal closures of a
pythagorean semiordered field (F, Q) by using valuation theory. Let T be the pre-
ordering TQ = {a e F \ aQ C Q}. We follow Lam [15, Chapter 3] in writing
AT = Yl{A(p) I p ^ XF, P D T}, where A{P) is the canonical valuation ring
associated with the ordering P determined by archimedean classes [15, Theorem 2.6].
The ring AT is a valuation ring associated to some valuation v on F and v is fully
compatible with T (that is, 1 +mv CT, where m, is the maximal ideal of AT).

THEOREM 2 . 1 . Let (F, Q) be a semiordered pythagorean field and let T, v, AT,

mv be as above. The 2-henselisation F of F with respect to v is a quadratic semireal

closure of (F, Q). Furthermore, WT(F) ^W(F).

PROOF: First note that the space of orderings is the proper one: Restriction of
orderings (or semiorderings) from F to F is a homeomorphism [20, Lemma 8.2], [15,
Proposition 3.17]. The semiordering Q is compatible with v in the strong sense that
a G Q, v(a) < v(b) implies that a - b G Q: Indeed, we have a-b = a(l - a~1b) where
a G Q, 1 - a~1b G 1 + mv C T, whence a - b G Q. Let Q be the extension of Q to F.

By [11, Lemma 4.2], we shall be finished if we can show that the preordering covered by
Q is F2. Let x € F be such that xQ = Q. Since a 2-henselian extension is immediate,
the value groups and residue fields are the same for v on F and its unique extension
to F. Thus we can find an element z G F with v(z) — v(x), so that x — uz, where
u is a unit in AT. Furthermore, since the residue fields are the same, the unit u has
the form UQ{\ + m) where UQ G F and m is in the extended maximal ideal. But the
2-henselian property implies, by Hensel's lemma for quadratics, that 1 + m is a square
in F. Thus we have x — uozy2 for some y G F and UQZ G F. This gives xQ — UQZQ,

so that uozQ CQDF = Q. By definition uoz G T. By [15, Theorem 3.18], T extends
uniquely to T — f\P, where P ranges over all orderings of F, hence T = F2 since F

is pythagorean. But then x — u§zy2 €T • F2 = T = F2 as desired.

For the final statement, first note that we have F2 n F = T, since each ordering
over T extends uniquely to F [15, Theorem 3.18], and F • F2 — F, the latter by the
argument above for x G F, but ignoring the condition xQ C Q. From this we obtain
F/f ^ F/(F2nF) ^ (F • F2)/F2 =* F/F2, and thus the inclusion of F in F induces
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an isomorphism WT(F) ^ W(F). D

We next show that for a pythagorean field, all quadratic semireal closures arise as
above.

PROPOSITION 2 . 2 . Let (K,Q) be a semiordered pythagorean Geld with
quadratic semireal closure [K, Q). Let v be the valuation associated with T — TQ
as above.

(1) There exists a maximal immediate extension L of K inside K.
(2) If Lo is an immediate quadratic extension of L, then KL0 is an imme-

diate quadratic extension of K.
(3) L is a 2-henselisation of K with respect to v.
(4) L is a quadratic semireal closure of (K, Q), so L — K.

PROOF: (1) is an easy application of Zorn's lemma.
(2) Consider an immediate quadratic extension Lo = L(y/a). We must show that

K(y/a) is an immediate extension of K. Write v also for any extension of v. By
hypothesis, L(y/a)v = Lv C Kv, so Kv = K(y/a)v and hence the residue degree

.~ = 1. Also, v(y/a) € TL, we have v{^fa) G F~, so the ramification index

(3) Let Lo be any immediate quadratic extension of L. The semiordering Q
extends to KL0 since the extension is immediate [20, Lemma 8.2]. But this contradicts
the quadratically semireal closed property of {K, Q). It follows that L must be a 2-
henselisation of K with respect to the valuation v ([12, Section 26]).

(4) By Theorem 2.1, the field L is quadratically semireal closed with respect to
the semiordering induced by Q, so L — K. D

From the previous two results, we immediately obtain our main theorem.

THEOREM 2 . 3 . Let {F, Q) be a semiordered pythagorean field and let (K, Q)
be a quadratic semireal closure. Let T be the preordering covered by Q. Then WT(F)
^W(K).

As a corollary of the comments prior to Theorem 2.1 on valuation rings, we have
the following, which generalises Brocker's Trivialisation Theorem for fans [15, Theo-
rem 12.6] to a much larger class of preorderings.

COROLLARY 2 . 4 . Let T be a preordering on a field F which is not an ordering

and which has covering number one. Then there exists a nontrivial valuation on F

which is fully compatible with T.

Theorem 2.3 applies only to preorderings with covering number one. However, a
field extension can always be made to lower the covering number (while increasing the
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number of orderings and the size of the Witt ring, but in a very predictable way). To
prove this, we make use of the following theorem of Prestel.

THEOREM 2 . 5 . ([20, Lemma 7.5, Lemma 7.7, Theorem 7.8].) Let v be a real
valuation on a Geld F with value group T, maximal ideal m^, units Uv and residue class
Seld Fv, and let s: F —» F be a semisection of v. There is a one-to-one correspondence
between the set of semiorderings Q of F compatible with v and the set

{<P | <P: F/2F -> YFv } x { a \ a: F/2F -> {±1}, a(0) = 1 },

given as follows: A semiordering Q induces mappings ?PQ and OQ such that

(3) CTQ(7)S(7) € Q, V7 € I\ and b + m« e *PQ(T") <=> ^ ( 7 ) ^ ( 7 ) 6 Q, V6 e Uv,

and mappings a and ^J induce a semiordering Q by

(4) o6Q<=>14Tr
s[v(a))

PROPOSITI ON 2 . 6 . Given a Geld F with preordering T, there exists a henselian

extension K of F with residue class field F and with extension T' of T such that

en (V) = 1 andT = TK2.

PROOF: Let {Si \ i € / } be a cover for T. Form an extension field of iterated
Laurent series K = F((xa: a G A)) , where the index set A is chosen so large that there

exists an injection (f of I into B = < F| xOj. | otj 6 A >. Without loss of generality,

we may assume that the empty product 1 is in the image of ip, say <p(io) = 1. (To
make sense of the iterated Laurent series, one should well-order the set A and adjoin
one indeterminate at a time, taking unions for limit ordinals.) Now K has a natural
henselian valuation v with residue class field F and value group F satisfying

(5) |F/2F| = \2A\ > \B\ > \I\.

Note that any element of K can be written in the form ay2b, where a € Uv, y € K

and b € B, since B serves as a set of representatives for all values modulo squares.
Define a subset Q of K by

Q = { ay2b \y&K, beB, aeUv, with a£~Sb},

where we define
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The set Q is a semiordering by Theorem 2.5. We claim that Q covers T", the pre-
ordering of K defined to be the intersection of all orderings of K extending those of
T. Indeed, let ay2b e TQ; that is, ay2bQ = Q. By Theorem 2.5, u 6 S i <=3> uab
e abQ = Q. Therefore, aSi = Sb, which can occur only if b = 1. Thus we have
aQ = Q, we have aSbi = Sy for all b' G B. Since { S 6 ' } ; , / 6 B = {"Si}»e/ covers T , we
obtain a eT. Therefore a € T • K2 C V. Furthermore, since all elements of T K2

have the form ay2 with a £ Uv and sums of such elements again have this form, we
obtain V = T • K2. D

We see from the proof above that if |7| (the covering number of T) is finite and of
2-power order, then we can have equality in (5). More generally, we have the following
corollary.

COROLLARY 2 . 7 . Given any pythagorean Geld F with preordering T, there
exists an extension Geld K of F which is quadratically semireal closed and such that
W(K) is isomorphic to a group ring WT(F)[G], where G is an elementary Abelian
2-group whose size depends on the covering number of T. If en (T) is finite, then
\G\ = 2" with n ^ log2cn(T) su&ces.

PROOF: Let F', T" be as given in Proposition 2.6. Since F is pythagorean and the
extension is henselian, the field F' is also pythagorean. From (5) we obtain the bound
\A\ = n ^ log2cn(T) for the number of indeterminates that suffices. Let Q' be a
semiordering which covers T'. We have WTt(F') = WT(F)[G] essentially by a theorem
of Springer (see [16, Section 5.7]). Now apply Theorem 2.3 to (F',Q') to obtain K. D

3. WITT RING COMPUTATIONS

In this section we translate the concept of covering number into the language of
Witt rings, and give an effective means of calculating covering numbers for Witt rings of
elementary type. All work is done in the category of reduced Witt rings. In particular,
the nilradical is zero. The construction which gives all the finitely generated rings in
this category is described prior to Proposition 3.4 (in which one would take the group A
to be finite). Although we are freely using the language of fields in this section, it is not
difficult to show that all definitions and concepts are valid in the category of abstract
Witt rings (of finite chain length), and thus also in the category of abstract spaces of
orderings. The abstract situation will be explored further in a subsequent paper.

Recall that for T a preordering on a field F, the chain length of T, cl (T), can be
defined in terms of elements represented by binary T-forms, that is, forms in WT(F)
[15, Section 8]. In particular, cl(T) is the supremum of all integers k for which there
exists a chain

1, a0) C DT(1, ai)C-.-C DT(l, ak).

https://doi.org/10.1017/S0004972700033797 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033797


336 T.C. Craven and T.L. Smith [8]

We define the chain length of a reduced Witt ring R to be cl (R) = cl (T), where R
= WT(F) , when it is finite. The lemma below follows directly from [17, Theorem 4.2.1].

LEMMA 3 . 1 . Let W(F) be a Witt ring and T a preordering on F.

(1) cl (T) = 1 if and only if T is an ordering, if and only if WT(F) = Z.
(2) T is a fan if and only if cl(T) < 2. Furthermore, cl(T) = 2 if and only

if WT(F) = Z[A], A a nontrivial elementary Abelian 2-group.

(3) If WT{F) =* Rr x • • • x Rn, where each Ri has finite chain length, then

(4) If WT{F) = R[A], where A is an elementary Abelian 2-group and R is
a reduced Witt ring with cl(R) ^ 2, then cl(WT(F)) - cl(R).

The chain length can also be computed (when it is finite) directly from WT{F),

using the correspondence between the structure of WT(F) and IT, the involution
subgroup of the W-group Qp corresponding to T, as described in [9] and [18]. We
refer the reader to [19] for the definition of a W-group. Recall that IT is a closed
subgroup of the W-group, generated by involutions (none of which are in the Prattini
subgroup $(GF)), with the property that T is precisely the set of elements in F whose
square roots are fixed by IT- These groups all lie in the category of pro-2-groups
of exponent at most 4, and with squares central. Free products of W-groups in this
category correspond to direct products of Witt rings (in the category of Witt rings), and
semidirect products correspond to group ring constructions. The connection between
the structure of IT and cl (T) is given in [9, Theorem 4.2]. This is the W-group analog
to [11, Lemma 2.1]. In particular, cl(T) = CI(IT), where for G a pro-2-group, cl(G)
is as defined in [11, Section 2].

We next show that the covering number of a preordering is also a Galois-theoretic
property. While the proof given below is essentially analogous to [11, Theorem 5.1],
note that the result is stronger, in that we are showing this to be true for any preordering
in any field, not just for the set of squares in a Pythagorean field.

THEOREM 3 . 2 . Let T, T" be preorderings on Gelds F, F' respectively, and let

I, I' be corresponding involution subgroups in Qp and QF> respectively. If I = I',

then en (T) = en ( I " ) .

PROOF: We need to show that any cover of T can be detected using only properties
of X. Kummer theory and the definition of I give a canonical isomorphism F/t
S Hl{t) = Hom(X,Z/2Z). As in [11, proof of Theorem 5.1], we let tp be the image
of the class of —1 under this isomorphism. Suppose that T has a cover S{,i € I. This
can be expressed in terms of Hl(T) and ip by translating the conditions that each Si
is a semiordering containing T, and that f| {x € F \ xSi C Si} = T, into conditions

t6/
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only involving H1 (X) and rp. It is the fact that each Si must contain T that allows us
to work with I instead of F/(£F2) in the translation below.

Following [11, proof of Theorem 5.1], for each i € I, we let A{ be the subset of
flrl(X) corresponding to the set of T-cosets of F contained in Si. (Note that each 5j is
a union of T-cosets.) The condition that 1 6 Si is translated as 0 € Ai. That SiC\-Si
= {0} and Si U -Si = F is expressed as Hl(T) = AiO(ip + Ai). To express the
condition that every (non-empty) sum of finitely many non-zero elements of Si is
non-zero uses the representation of the Witt-Grothendieck ring of T-forms in terms
of generators and relations: WT(F) = Z[Hl(T)]/J, where J is the ideal generated
by all formal sums (in the group ring) a + b - c - d such that a,b,c,d € H1^), a
+ b = c + d in i?x(X), and a U b = c U d in H2(X), the second cohomology group.
(That these are the appropriate relations for J follows from [9, Theorem 3.3] or [10].)
Using Witt 's decomposition theorem ([15, Corollary 1.21]), the condition that sums of
nonzero elements in Si be nonzero is equivalent to the condition that for any o i , . . . ,an

6 Ai, the formal sum <n + • • • + an in Z[H 1(I)] is not congruent to any formal sum
bi + ••• + bn-2 + 0 + ip modulo J. It now follows from [2, Section 2, Kor. to Satz 6]
that ip can be identified in H1^!) as being the only continuous homomorphism whose
kernel contains no element of order 2 outside its Frattini subgroup. (This is essentially
because T extends to F{Ja) as long as a ^ — T. Therefore, such an extension is real,
and the corresponding subgroup of the W-group will contain nontrivial involutions.)
Thus the statement that each Si is a semiordering containing T can be satisfied group
theoretically in 1.

It remains to express, in terms of the group I, the condition that Si,i € / , cover
T. But this can be expressed as Si,i £ I, cover T if and only if f| {a e HX{T) \
a + Ai = Ai}={0}. i€I D

Since the covering number of a field (or in general any preordering) of finite chain
length depends only on the isomorphism type of the corresponding reduced Witt ring,
we can then make the following definition of the covering number of a reduced Witt ring,
which is the Witt ring analogue to the definition of covering number of the absolute
pro-2 Galois group of a field.

DEFINITION 3.3: Let F be a formally real field and let T be a preordering of finite
chain length. We define the covering number of WT(F) to be cn(WT(F)) = en (T). In
particular, cn(Wte<i(F)) =cn(F).

It is well known (see [6, 16]) that reduced Witt rings of finite chain length can
be constructed recursively through the operations of direct product (in the category of
reduced Witt rings) and group ring construction - that is, the reduced Witt rings of
finite chain length are precisely the collection TZ of (isomorphism types of) rings such
that
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(1) Zett,
(2) if Rlf...,Rm e H, then Ri x • • • x Rm e 71 (where x denotes direct

product in the category of Witt rings), and
(3) if R € 7Z and if A is an elementary Abelian 2-group, then R[A] £ H.

Also, we have the isomorphisms Z x Z = Z[Z/2Z] and (Z[Ax])[A2] = Z[Ai x A2].
Other than these two isomorphisms and the obvious fact that the rings Ri in a direct
product construction can be permuted, the construction of a given isomorphism type
of reduced Witt ring of finite chain length is unique.

A reduced Witt ring will be called decomposable if it can be written as R\ x R2

where Ri and i?2 are reduced Witt rings, and otherwise it will be called indecomposable.
The next proposition follows immediately from [16, Corollary 6.25].

PROPOSITION 3 . 4 . Let R^Z be a reduced Witt ring of finite chain length.

(1) Tiere exists an elementary Abelian 2-group A (possibly trivial) together
with indecomposable reduced Witt rings R\,..., Rm, 2 ^ m < oo, such
that R 2* (# ! x • • • x Rm)[A]. Moreover, cl (i?i), . . . , cl (R^) < cl (R).

(2) This presentation of R is unique up to a permutation of Ri,..., Rm.
(3) R is indecomposable if and only if A ̂  {1} in (1).

We now describe an effective method for calculating en (R) for a reduced Witt ring
of finite chain length. This is the Witt ring version of [11, Propositions 5.6, 5.7].

PROPOSITION 3 . 5 . Let R be a reduced Witt ring of finite chain length.

(1) IfR^RiX-xRm, then en (R) = en (Ri) + • • • + en (Rm).

(2) IfR = R'[A], then

en (R) = -

2,

' i{ 'A| < °° and

1, if |A| = oo.

A straightforward translation exercise now allows one to determine en (R) for re-
duced Witt rings R of finite chain length. As in the final table of [11], we can easily
write down the reduced Witt rings corresponding to pythagorean fields with a limited
number of square classes, and determine their covering numbers. Those with covering
number one correspond to semireal closed fields. This table is given in the Appendix
for up to 32 square classes. Determining the covering number of a formally real field
which is not pythagorean from the structure of its Witt ring is similarly straightforward.
By Theorem 3.2 above, one simply needs to determine its reduced Witt ring and then
compute the covering number for this.
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4. CONNECTIONS WITH STRONGLY ORDER CLOSED FIELDS

We have demonstrated that we can control the growth of the reduced Witt ring
under special algebraic extensions by restricting ourselves to the orderings over a pre-
ordering with covering number one. This is in contrast to the work in [7], where the
entire space of orderings was used and order closed and strongly order closed fields
were investigated. (See the introduction to this paper for definitions.) In this section,
we look at some connections between the notions of semireal closed and strongly order
closed. In [7, Theorem 2.1] it is shown that a field F being strongly order closed is
equivalent to F being Pythagorean and having the property that every polynomial in
F[x] of odd degree has a root in F. In comparison, we have

PROPOSITION 4 . 1 . A field F is semireal closed if and only if it is quadratically
semireal closed and every polynomial in F[x] of odd degree has a root in F.

PROOF: It is shown in [11, Lemma 4.1] that a field is semireal closed if and only
if it is quadratically semireal closed and its absolute Galois group is a pro-2 group.
Since this latter condition is equivalent to the field having no odd degree extensions,
the result follows. 0

Prom this, we easily obtain the fact that the semireal closed fields which we have
been studying here are strongly order closed, and in particular, are order closed.

PROPOSITION 4 . 2 . Every semireal closed Held is strongly order closed.

PROOF: We know that any semireal closed field is Pythagorean. From Proposition
4.1, we know that it has no odd degree extensions, and thus every minimal extension
is quadratic. By [7, Theorem 2.1], it is strongly order closed. D

COROLLARY 4 . 3 .

(1) Every semireal closed Geld is an intersection of real closed fields.

(2) Every quadratically semireal closed field is an intersection of Euclidean
fields.

PROOF: (1) By Proposition 4.2, all semireal closed fields are strongly order closed.
It is clear that a strongly order closed field is order closed, and such fields are known
to be equal to the intersections of all their real closures inside a fixed algebraic closure
[7, Theorem 2.9].

(2) is rather trivial, in that every pythagorean field is, in fact, an intersection of
Euclidean fields. This is easy to see; just take K to be the intersection of all Euclidean
closures of a pythagorean field F. Then K/F is a 2-extension. But adjoining any
square root to F must kill at least one ordering. Since all orderings of F extend to K,
we must have K = F. D
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APPENDIX: TABLE OF REDUCED WITT RINGS WITH A SMALL NUMBER OF

SQUARE CLASSES

The notation in the following table is as follows: Zn denotes the additive group of
Z/nZ; following [11, p. 75], Dn denotes the free pro-2 product of n copies of Z2; the
operations in the Galois group column are described in [11] and in more detail in [13];
the operations in the W-group column are denned in [18]; the notation in the Witt
ring column is defined in [16]. In each case, the operations are defined within a specific
category. For example, the direct product in the category of Witt rings is not the same
as in the category of rings.

No. of
sq. els.

2

4

8

8

16

16

16

16

32

32

32

32

32

32

32

32

Pro-2 Galois group
GF{2)

Z 2 x £>2

D3

Z\ x D2

(Z2 x D2) * £>i
Z2 x D3

D4

Z\ x D3

Z\ x £>2

Z2 x ((Z2 x D2) *Di)
Z2 x D4

(Z\ x D2) * Di
(Z2 x D2) * D2

(Z2 x D3) * £>!
D5

W-group
GF

Z2

Z2 * Z2 = Z4 x Z2

Z4 x (Z2 * Z2)
Z2 * Z2 * Z2

. Z4 x (Z4 x (Z2 * Z2))
Z2 * (Z4 » (Z2 * Z2))
Z4 x (Z2 • Z2 * Z2)

Z2 * Z2 * Z2 * Z2

Z4 x (Z4 x (Z2 * Z2 * Z2))
Z4 x (Z4 x (Z4 x (Z2 * Z2)))
Z4 x ((Z4 x (Z2 * Z2)) * Z2)

Z4 x (Z2 * Z2 * Z2 * Z2)
(Z4 x (Z4 x (Z2 * Z2))) * Z2

(Z4 x (Z2 • Z2)) * (Z2 • Z2)
(Z4 x (Z2 * Z2 * Z2)) * Z2

z2 * z2 * z2 * z2 * z2

Witt ring
W(F)

Z

Z[x)
Z[x,y]

Z x Z[x]
Z[x, y, z]

ZxZ[x,y]
£. [XI

Z[x] x Z[y]
(ZxZ[x])[y,z\

Z[x, y, z, w]
{ZxZ[x,y])[z}
(Z[x] x Z[y))[z]
ZxZ[x,y,z]
Z[x,y)xZ[z)
Z x (Z3[x])

Z x Z[x] x Z[y]

cover,
num.

1

2

1

3
1

2

2

4

1

1
1

2

2

3

3

5
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