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Abstract

In this paper we give an extension of the results of the generalized waiting time problem
given by EI-Desouky and Hussen (1990). An urn contains m types of balls of unequal
numbers, and balls are drawn with replacement until first duplication. In the case of finite
memory of order k, let ni be the number of type i, i = I, 2, ... , m. The probability of
success Pi = n, / N, i = 1, 2, ... , m, where n; is a positive integer and N = L~l ni.
Let Ym.k be the number of drawings required until first duplication. We obtain some
new expressions of the probability function, in terms of Stirling numbers, symmetric
polynomials, and generalized harmonic numbers. Moreover, some special cases are
investigated. Finally, some important new combinatorial identities are obtained.

Keywords: Stirling number; generating function; waiting time; symmetric polynomial;
harmonic number

2010 Mathematics Subject Classification: Primary 60C05; 05AIO
Secondary 05A19; IIB73; I IC08

1. Introduction

An urn contains m distinguishable balls which are sampled one at a time with replacement.
The sampling is continued until the first duplication. Let Ym be the number of drawings
required. This problem, which was solved by McCabe [10], is a special case of the problem
of the waiting time until first duplication with finite memory of order k of the preceding balls
drawn. Let Ym.k be the number of draws required when there are m different balls in the urn and
there is finite memory of order k. The distribution of Ym,k was found by Arnold [1]. EI-Desouky
and Hussen [8] derived the following two cases.

Case 1. We generalize McCabe [10] as follows. Suppose that we have an urn containing m
types of balls with n, the number of balls of type i, i = 1, 2, ... ,m. Assume that balls are
sampled one at a time with replacement and the sampling is continued until the first duplication
(Le. until a ball of the same type has been drawn twice) and Ym is the number of drawings
performed.

Remark 1. Case 1 can be considered as a special case of the problem of the waiting time until
first duplication with finite memory of order k. In this case sampling is continued until a ball
is drawn to duplicate one of the k immediately preceding balls (one of each type) drawn. For
example, when k = 1, sampling stops only when two successive drawings yield a ball of the
same type.
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Case 2. LetYm,k be the number of draws required when there are m types of balls of unequal
numbers and there is a finite memory of order k, which can be considered as a generalization
of Arnold's problem [1]. It is clear that Ym is identical with Ym,m and if k > m, then Ym,k also
has the same distribution as Ym.m-

In this paper we give an extension of the results given in [8]. Hence we have the following
theorem.

Theorem 1. Suppose that Pi = n, / N, N = L~l n, is the probability that a ball of type i is
drawn. The probability JP>(Ym.m > j) is given by

j ., i

JP>(~ .) - '"" J. (l)j-i '"" n ()m,m > ] - L.J -:r - Z:: k k k, Pk/ m ,
i=O I. kl +k2+...+ki=J 1 2··· , 1=1

(1)

where Pk(m) = Lr=l (Pi)k.

Proof. The exponential generating function of JP>(Ym.m > j), j = 1, 2, ... , m is given by
(see [8])

m tJ m (m) ( m )LIP'(Ym,m > j)~ = n(1 + Pit) = exp Inn(1 + Pit) = exp LinO + Pit) , (2)
j=o ] i=1 i=1 i=1

since In(1 + Pit) = L~1 (_l)k-l «Pit)k I k), Ipitl < 1 implies that ItI < IIPi and 0 :s Pi :s
1, we have

m t j m (00 ( .t)k) (00 (_I)k-l m )
LIP'(Ym,m > j)~ = exp L L(-ll-1T = exp L k tk L(Pi)k ·
j=O ] i=1 k=l k=1 i=1

(3)

Let Er=1(Pi)k = Pk(m); hence,

~Tm(V .)t j
_ (~(_l)k-l () k) _ L~o(L~I[(-l)k-l/k]tkpk(m»i

L....J Jr lm,m > ] 0' -exp L....J k Pk m t - Of •

j=o ] ° k=1 l.

Using the Cauchy rule of the product of a series, we obtain

(

00 (_I)k-l )i i (00 (_I)kj-l )
L k Pk(m)t

k = n L k. Pk/m)t
kj

k=1 j=1 kj=1 }

00 (-l)j-i i .
= L L nPk/(m)t);

kl k2 ... k;
i-! kl+k2+···+k;=j 1=1

therefore,

m t j
00 1 00 (-l)j-i ( i ) .

LIP'(Ym,m > j)~ = L 7fL L k k k. nPk/(m) t l

j=O J. i=O l. j=i k, +k2+...+k;=j I 2··· I 1=1

00 j 1 (-I)j-i ( i ) .

=LLi! L klk2 ... ki nPk/(m) t
l

.
j=O i=O kl+k2+···+k;=j 1=1

Equating the coefficients of t j on both sides, we obtain (I).
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Remark 2. From [8, Equation (2.3)] and (I), we have the following new identity:

. j 1. 1 i

sn(m, m - j) = N} L -=-;(-1)' L IT pk,(m),
l. kvk: ... k;

;=0 kt+k2+···+k;=j 1=1

983

where Sn(m, k) is the generalized Stirling number of the first kind associated with the real
numbers nl, n2, ... , nm defined by (see [4], [5], and [7])

m

(x - nl)(x - n2)··· (x - nm) = LSn(m, k)xk.

k=O

2. Some special cases

In what follows we discuss some special cases.

2.1. Case 1

Theorem 2. Ifni = i, k = m, the probability function JP>(Ym,m > j) is given by

j j! (-I)j-i i k, (m + 1)
JP>(~ > J.) = "'"' - "'"' IT "'"' r! S(k r)

m.m LJi! LJ Njklk2 ... ki LJ r- r+l'
i=O kl+k2+···+ki=j 1=1 r=1

where S(k, r) are the Stirling numbers ofthe second kind defined by (see [4J)

n

x n = LS(n,i)(x)i'
;=0

(4)

where (x); = nt:J(x -1).

Proof Ifni = i, Pi = i l N, i = 1,2, ... , m, and N = L~=li = m(m + 1)/2. From (3),
we have

m t j (00 (_I)k-l m )
L lP'(Ym,m > j)~ = exp L Nkk t

k
L i

k
,

j=O J k=1 i=1

since L~=1 i k = L;=1 S(k, r)(;:II)r! (see [2] and [12, p. 199]), we have

m t j (00 k (m+I)(-l)k-l )
LJP>(Ym,m>j)-:y=exp LLr!S(k,r) k tk

j=O J. k=1 r=1 r + 1 N k

00 1(00 k (m + I) (_I)k-l k)i
= L -=-; LLr!S(k,r) k t .

i=O l. k=1 r=1 r + 1 N k

Using the Cauchy rule of the product of a series, we obtain

(
00 k (1) ( l)k-l )i
LLr!S(k,r) m+ - k t k

k=1 r=1 r + 1 N k
. k·'(00 1 (m+I)(_I)kr+l)=IT "'"'Lr!S(kj,r) k. tkj;

LJ r+l Nlk·j=1 kj=1 r=1 }
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therefore,
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m t jL JP>(Ym.m > j)--=t
j=O J.

00 1 00 (-I)j-i (i k[ (m+l)).
= Li!L L Niktk2 ... ki OLr!S(kt,r) r+l t

J

i=O j=i kl+k2+···+ki=j [=1 r=1

00 j 1 (-I)j-i (i k[ (m + 1)) .
=LL-:r L Nikk k. nLrlS(kt,r) +1 t

l
.

l. 1 2··· I r
j=O i=O kt+k2+···+ki=j [=1 r=1

Equating the coefficients of t j on both sides, we obtain (4).

2.2. Case 2

Theorem 3. Let n; = n, k = m, the probability function P(Ym.m > j) is given by

(5)

this is in agreement with [1].

Proof Setting n, = n, i = 1,2, ... ,m, i.e. there are an equal number of balls from each
type, then Pi = nfnm = 11m. From (3), we have

m tj (00 (_I)k-l m (l)k )
~JP>(Ym.m > j) j! = exp L k ?= m t

k

l=O k=1 1=1

(

00 (_I)k-l(t)k)
=exp m L -

k=l k m

= exp(mln(l + ~))

=(l+~)m

=t (~)(~rti.

Equating the coefficients of t j on both sides yields (5).

3. The asymptotic distribution of Ym,m

From (2) and using the first approximation In(1 + Pit) ::: Pit, where Pi ~ 0 as m ~ 00,

we have

'tJP>(Ym,m > j) t~ ~ exp('t Pit) = exp(r) = f t~;
j=O J. i=1 j=O J.

hence, for every j ~ 1, limm~oo JP>(Ym,m > j) = 1.
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4. The distribution of Ym,k via a symmetric polynomial

In this section we give a closed formula for the distribution of Ym.k by using the elementary
symmetric polynomial for different cases. In the case of finite memory of order k, let Ym.k be
the number of drawings required and Pi = ti; / N, i = 1, 2, ... , m.

Theorem 4. Ifk = m, 1 ~ j ~ m, then

m+l
IE( V ) ,"",., «m) . (m»)

Im,m = L...J J. a j - 1 - Jaj ,

j=2

m+I (m+I )2
) ,"", .. {(m) . (m)} ,"",. (m) . (m)

var(Ym,m = L...J JJ! aj _ I - Jaj - ~ J! (aj _ I - Jaj ) ,
j=2 j=2

where aJm)(PI, P2, ... , Pm) is the elementary symmetric polynomial, defined in [9J, by

ajm) := ajm) (PI, P2, ... , Pm) = L Pi) Pi2 ... Pij'
l~il <i2<···<ij~m

and ajm) =Ofor j > m or j < O.

Proof Since

JP>(Ym,m > j) = JP>(the first j balls are all distinct, one of each type)

_ ., (m)( )-J.aj PI,P2,···,Pm,

then the probability function of Ym,m is

JP>(Ym,m = j) = JP>(Ym,m > j - 1) - JP>(Ym,m > j)

= (j - I)! (aj~i - jaJm»), j = 2,3, ... , m + 1.

Hence, the mean of Ym,m is

m+I

lE(Ym,m) = L jJP>(Ym,m = j)
j=2
m+l

= L j(j - I)! (aJ~~ - jaJm»)
j=2
m+I

=L j! (aj~{ - jajm»).
j=2

This yields (6).
Equation (7) can be derived easily using (6) and the fact that

var(Ym,m) = IE«Ym,m)2) - (lE(Ym,m))2,

and
m+I m+I

IE«Y )2) _ ~ .2TIJ>(y _.) _ ~ .. , {(m) • (m)}m.m - L..J J ir m.m - J - L..J JJ. a j _ 1 - Jaj .
j=2 j=2

(6)

(7)
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Note that there is another expression for the mean which is given by

00 m

lE(Ym,m) = LJP>(Ym,m > j) = Lj!aJm)
j=O )=0

(Note that aJm) = 0 for j > m).

Theorem 5. If k < m, the probability P(Ym.k > j) is given by

I
.'(m)J.a) ,

P(~ k > j) = (k + l)a(m) ))-(k+l)
m, k+l (k + 1)' a(m)

(m) . k+l'ak

j=1,2, ... ,k+l,

j > k + 1.
(8)

Proof. For 1 .s j .s k + 1,

TIl>(V ·)·f (m)
1.[ Im,k > J =J.aj , j = 1, 2, ... , k + 1.

If j > k + 1, then the conditional probability JP>(Ym,k = j I Ym,k > j - 1) is equal to
P[jth ball drawn has one of k different types (those of the preceding k balls)], so that

P(Ym,k = j I Ym,k > j - 1) = JP>(Ym,k = k + 1 I Ym,k > k)

JP>(Ym,k = k+ 1)
=

JP>(Ym,k > k)

k! aim) - (k + I)! ai~{
=

k!aim
)

Thus,
JP>(Ym,k > j I Ym,k > j - 1) = 1 - JP>(Ym,k = j I Ym,k > j - 1)

k! aim) - (k + I)! ai~{
= 1 - --------

k!aim
)

(k + I)! ai~~

k!aim
)

Hence,
1P'(Ym,k > j) = 1P'(Ym,k > j I Ym,k > j - 1)1P'(Ym,k > j - 1)

(k + 1)' a(m)
= . k+l ]P>(~ >. _ 1)(m) m,k ]

k!ak

( k + l ) ! al~~ ) 2 .
= (m) JP>(Ym,k > J - 2).

k! «:
By repeated application of this result, we obtain

(
(k + I)! a(m) )1

JP>(Ym,k > j) = (m)k+l JP>(Ym,k > j -I).
k!ak
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Putting j -1 = k + 1, we have

(

(k + l)a(m) )j-(k+l)
JP(Ym,k > j) = aim) HI JP(Ym,k > k + 1).

This yields (8).

From Theorem 5 we have the following corollary.

Corollary 1. The probability function ofYm.k is given by

987

j=2, ... ,k+1,

1P'(Ym,k = j)

I
(j - I)! (aj~~ - jajm»),

= (k + l)a(m)r (a(m) - (k + l)a(m) )
(k + l)'a(m) k+l k k+l J. > k + 1.

. k+l (m) (m)'ak ak

4.1. Special cases

We derive another proof, using the elementary symmetric polynomials, of Arnold's results
[1, Equation (5)] as follows.

Theorem 6. Let n, = n, k < m, the probability P(Ym,k > j) is given by (see [1])

{

(m)j
--., j=1,2, ... ,k+l,

lP'(Ym,k > j) = (m
1

J_ _kr: (m)k+l (9)
j > k + 1.

m mk+1 '

Proof Setting n, = n, i = 1,2, ... , m, then Pi = nfnm = 11m; hence,

(m) (m)(11 1) (m)(I)j
aj (PI,P2"."Pm)=aj m'm""'m = j m '

by substitution in (8), for j = 1, 2, ... , k + 1, then

P(Ym.k > j) = j! at) = j! (;) (~Y= (:~j.

For j > k + 1, we have

. . (k + I)! ai~{ (m)k+l mk k
1P'(Ym,k > J I Ym,k > J - 1) = (m) = m k+1 (m)k = 1 - m

k!ak

1P'(Ym,k > j) =

This yields (9).

Theorem 7. Ifni = i, i = 1,2, ... , m, k < m, then

j! .
Nj (-I)J s(m + I,m - j + 1), 1::s i z: k + 1,

(
(k + l)s(m + 1, m - k»)j-(k+l)

stm + 1, m - k + 1)

(k + I)! .
x . (-I)J s(m + l , m - k ), j>k+l,

NJ

(10)
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where s(m, k) are the Stirling numbers ofthe first kind, defined by (see [5Jand [11J)

n-l n

(x)n =n(x - i) = Ls(n, i tx':
i=O i=O

Proof. Setting n, = i, i = 1,2, ... , m, then Pi = i ]N, N = m(m + 1)/2; hence,

(m) (m)( 12m)
G j (Pt, P2, ... , Pm) = G j N' N'···' N

1 (m)
=-.a

J
, (l,2,···,m)

NJ
1 '= Nj(-I)Js(m+l,m-j+I),

since ajm) (1, 2, ... , m) = (-I)j s(m+ 1, m - j +1); see [5, Equation (5i), p. 214]. Substituting
into (8), we obtain (10).

Note that for all the previous cases the mean lE(Ym,k) = L~oJP>(Ym,k > j) can be easily
obtained.

5. A new expression of JP>(Ym,m > j)

Finally, we obtain a new expression of the probability JP>(Ym,m > j) in terms of the
generalized harmonic number.

Theorem 8. The probability JP>(Ym,m > j) is given by

where Hm(k; a) is the generalized harmonic number defined by

n 1
Hn(k;a) = L-k'

r=l (a r )

where a = (at, ... , an); see [3J and [6J.

Proof. From (3), letting Pi = I/ai, we have

m t j (00 (_I)k-l m ( 1 )k)
LJP>(Ym,m > D>: = exp L tk L -

J! k a,
j=O k=l ;=1

(
00 (_I)k-l )

= exp L k Hm(k; a)t
k

k=l
L~o(L~l [(_l)k-l / k]Hm(k; a)tk)r

=
r!
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Using the Cauchy rule of the product of a series, this leads to

Equating the coefficients of t j on both sides, we obtain (11).

Remark 3. From [8, Equation (2.3)] and (11), we have the following new identity:

989

This identity provides us with a connection between the generalized Stirling number and the
generalized harmonic number.
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