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Fourier Spaces and Completely Isometric
Representations of Arens
Product Algebras

Ross Stokke

Abstract. Motivated by the deûnition of a semigroup compactiûcation of a locally compact group
and a large collection of examples, we introduce the notion of an (operator) homogeneous le� dual
Banach algebra (HLDBA) over a (completely contractive) Banach algebra A. We prove a Gelfand-
type representation theorem showing that every HLDBA over A has a concrete realization as an
(operator) homogeneous le� Arens product algebra: the dual of a subspace of A∗ with a compatible
(matrix) norm and a type of le� Arens product ◻. Examples include all le� Arens product algebras
over A, but also, when A is the group algebra of a locally compact group, the dual of its Fourier
algebra. Beginning with any (completely) contractive (operator) A-module action Q on a space
X, we introduce the (operator) Fourier space (FQ(A∗), ∥ ⋅ ∥Q) and prove that (FQ(A∗)∗ , ◻) is
the unique (operator) HLDBA over A for which there is a weak∗-continuous completely isometric
representation as completely bounded operators on X∗ extending the dual module representation.
Applying our theory to several examples of (completely contractive) Banach algebras A andmodule
operations, we provide new characterizations of familiar HLDBAs over A and we recover, and o�en
extend, some (completely) isometric representation theorems concerning these HLDBAs.

1 Introduction

Many of the most well-studied and basic objects associated with a locally compact
groupG,more generally a locally compact quantum group, are introverted subspaces
of L1(G)∗ = L∞(G) and their dual spaces under an Arens product: examples in-
clude the introverted space of continuous functions vanishing at inûnity, C0(G) (its
dual with Arens product is the measure algebra M(G) with convolution product);
the introverted space of continuous almost periodic functions on G, AP(G); the in-
troverted space of continuous Eberlein functions on G, E(G); the introverted space
of continuous weakly almost periodic functions on G,WAP(G); the le� introverted
space of le� uniformly continuous functions on G, LUC(G); and L∞(G). A small
sample of papers inwhich the duals of these and other spaces are studied as le�Arens
product algebras is [1, 8, 11, 13, 15, 16, 18, 19,21].

In general, if S(A∗) is a closed le� introverted subspace of the dual space A∗ of a
Banach algebra A, then,with its le�Arens product ◻ ,A = S(A∗)∗ is a Banach algebra
such that

Received by the editors September 5, 2017; revisedMay 3, 2018.
Published electronically August 23, 2018.
_is research was partially supported by an NSERC grant.
AMS subject classiûcation: 47L10, 43A20, 43A30, 46H15, 46H25, 47L25.
Keywords: Banach algebra, operator space, Arens product, group algebra, Fourier algebra.

Canad. J. Math. Vol. 71 (3), 2019 pp. 717–747

https://doi.org/10.4153/CJM-2018-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-023-5


R. Stokke

(i) multiplication is separately weak∗-continuous with respect to every ûxed right
variable and weak∗-dense “topological centre" Zt(A) ; and

(ii) there is a continuous homomorphism ηA∶A→ A mapping into Zt(A) such that
(iii) the image of the unit ball of A under ηA is weak∗-dense in the unit ball of A.

We call A = S(A∗)∗ a le� Arens product algebra over A. In [23] we called a pair
(A, ηA) a le� dual Banach algebra (LDBA) over Awhen A is a Banach algebra and a
dual space such that properties (i), (ii), and (iii) are satisûed. Motivated by the fun-
damental theorem from semigroup compactiûcation theory stating that every right
topological semigroup compactiûcation of a locally compact group is aGelfand com-
pactiûcation, we proved that, up to equivalence, every LDBA over A is a le� Arens
product algebra over A [23,_eorem 3.3].

In addition to the class of examples provided by the le� Arens product algebras
over A, the readerwill likely be aware of several examples of pairs (A, ηA)whereA is
a Banach algebra and a dual Banach space such that properties (i), (ii), and a weaker
version of statement (iii)

(iii′) the image of A under ηA is weak∗-dense in A

are satisûed. For instance, if A is any involutive Banach algebra and ηA∶A → B(H)
is a ∗-representation of A on a Hilbert spaceH, letting A denote the von Neumann
subalgebra of B(H) generated by ηA(A), the pair (A, ηA) satisûes properties (i), (ii),
and (iii′). We will call any such pair (A, ηA) a homogeneous le� dual Banach algebra
(HLDBA) over A.

Our Gelfand-type representation theorem [23] suggests that any HLDBA over A
looks something like a le� Arens product algebra, and in Section 3 we introduce
the notion of a le� introverted homogeneous subspace of A∗, (S(A∗), ∥ ⋅ ∥S) and an
Arens-type product ◻ on S(A∗)∗ such that the pair (S(A∗)∗ , ηS) is an HLDBA over
A, where ηS is deûned by ⟨ηS(a), ϕ⟩ = ⟨ϕ, a⟩. We call S(A∗)∗ a homogeneous le�
Arens product algebra over A and we prove a new Gelfand-type representation the-
orem stating that every HLDBA over A is equivalent to a homogeneous le� Arens
product algebra over A. By introducing a notion of subdirect product for HLDBAs
over A, we also show that with respect to a natural ordering ≤, the partially ordered
set (HLD(A), ≤) of all HLDBAs over A is a complete lattice. _e notion of subdirect
product in the category of semigroup compactiûcations is known to provide an eõ-
cient method of constructing universal semigroup compactiûcations [4]. _e results
in Section 3 are proved in the setting of operator spaces.
A particular example of a le� introverted homogeneous subspace of L1(G)∗ is

(A(G), ∥ ⋅ ∥A), the Fourier algebra of G with its Fourier norm. _us, (A(G)∗ , ηA)
with the Arens-type product ◻ deûned in Section 3 is an example of an HLDBA over
L1(G). In this case, we can identify A(G)∗ with VN(G), the von Neumann subalge-
bra of B(L2(G)) generated by the le� regular representation {λ2 , L2(G)} of L1(G).
In fact, the identifying map Φ∶A(G)∗ → VN(G) is a weak∗-continuous isometric
algebra isomorphism with respect to ◻ such that Φ ○ ηA = λ2. In the language of this
paper, (A(G)∗ , ηA) and (VN(G), λ2) are equivalent HLDBAs over L1(G), and Φ is
a weak∗-continuous isometric representation of the Banach algebra (A(G)∗ , ◻) on
L2(G). _e pair (A(G)∗ , ηA) is one ofmany known examples of an HLDBA over A
that can be isometrically represented as an algebra of operators on a Banach space E.
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_emain constructions and results of this paper are found in Section 4. Beginning
with a completely contractive Banach algebra A and a completely contractive right
operator A-module action Q∶X × A → X, in Section 4.1 we construct the operator
Fourier space FQ(A∗) together with an associated operator spacematrix norm ∥ ⋅ ∥Q
such that (FQ(A∗), ∥ ⋅ ∥Q) is an operator le� introverted homogeneous subspace of
A∗ and (FQ(A∗)∗ , ◻) has a weak∗-continuous completely isometric representation
as completely bounded mappings on X∗. We characterize (FQ(A∗)∗ , ηQ) as the
uniqueHLDBA over Awith this property. Within the complete lattice (HLD(A), ≤),
we characterize (FQ(A∗)∗ , ηQ) as theminimum HLDBA over A with a weak∗-con-
tinuous completely contractive representation in CB(X∗) that extends the dual A-
module action on X∗ determined by Q. In Section 4.2, we introduce the correspond-
ing construction of the Fourier space Fq(A∗) and Fourier norm ∥ ⋅ ∥q in the category
of Banach spaces.

In Section 5, the theory developed in Sections 3 and 4 is applied to diòerentmodule
operations X × A→ X. We provide new characterizations of some well-studied (op-
erator) homogeneous le� Arens product algebras over A and we recover, and o�en
extend, some familiar results concerning weak∗-continuous (completely) isometric
representations of these Banach algebras:

● WhenA is an involutive Banach algebra and {π,H} is a∗-representation ofAon
aHilbert spaceH, in Section 5.1 we introduce the Fourier space (Fπ(A∗), ∥ ⋅ ∥π) and
show that (Fπ(A∗), ◻) is aW∗-algebra that can be identiûedwithVNπ , the vonNeu-
mann subalgebra of B(H) generated by π, via a weak∗-continuous isometric ∗-iso-
morphism that extends π. When A = L1(G) and {π,H} is a continuous unitary rep-
resentation of G, (Fπ(A∗), ∥ ⋅ ∥π) is the Arsac–Eymard Fourier space (Aπ , ∥ ⋅ ∥B(G)),
where ∥ ⋅ ∥B(G) is the Fourier–Stieltjes algebra norm. Taking {π,H} = {λ2 , L2(G)},
Fπ(A∗) is thus the Fourier algebra A(G) and we recover the identiûcation of A(G)∗
with VN(G) and, further, we are able to identify the product on VN(G) with ◻ .

● In Section 5.2,we recover the Figà-Talamanca–Herz spaces Ap(G) and the iden-
tiûcation of Ap(G)∗ with the operator subalgebra PMp′(G) of B(Lp′(G)), the alge-
bra of p′-pseudomeasures.

● Given a completely contractive Banach algebra A with a contractive right ap-
proximate identity, in Section 5.3 we recognize LUC(A∗), the le� introverted sub-
space of A∗ comprised of le� uniformly continuous functionals on A, as the Fourier
space FQ(A∗) associated with the right module action Q of A on itself. _is allows
us to identify the completely contractive Banach algebra (LUC(A∗)∗ , ◻) with the
weak∗-closed subalgebra CBA(A∗) of completely bounded right A-modulemaps on
A∗ via a weak∗-homeomorphic completely isometric algebra isomorphism. _is in-
cludes results thatwere pioneered by Curtis and Figà-Talamanca [6], Lau [15,16], and
extended in [13, 19], for various examples of A.

● By recognizing LUC(G)∗ as the Fourier space FQ(L1(G)∗) associated with a
natural L1(G)-module action on the trace class operators on L2(G), in Section 5.4
we recover a result ofM.Neufang that provides a completely isometric representation
of LUC(G)∗ as completely bounded mappings on B(L2(G)) [17, 18]. Moreover, we
show that LUC(G)∗ is characterized within the set (up to equivalence) of HLDBAs
over A by the existence of such a representation.
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2 Preliminary Definitions and Results

Let A be a (completely contractive) Banach algebra. If X is a Banach space, we will
o�en use the notation x, x∗, and x∗∗ for elements in X, the dual X∗, and the bidual
X∗∗ without explanation; an element a or b will always belong to the Banach algebra
A. By a (right, le�, or bi-) A-module we will mean a Banach A-module. A right
A-module X is essential if the closed linear span of X ⋅A is all of X and X is neo-unital
when X = X ⋅ A. By the Cohen Factorization _eorem [14, _eorem 32.22], when A
has a right bounded approximate identity, the two concepts are the same. When X is
a right (le�) A-module, its dual space X∗ becomes a dual le� (right) A-module with
products given by ⟨a ⋅ x∗ , x⟩ = ⟨x∗ , x ⋅ a⟩, (⟨x∗ ⋅ a, x⟩ = ⟨x∗ , a ⋅ x⟩). In particular, A∗
will always be viewed as a dual Banach A-module with respect to the operations

⟨a ⋅ ϕ, b⟩ = ⟨ϕ, ba⟩ and ⟨ϕ ⋅ a, b⟩ = ⟨ϕ, ab⟩ for ϕ ∈ A∗ .

Unless the codomain is a scalar ûeld, all maps between normed linear spaces are as-
sumed to be linear and (norm) continuous.

We denote the operator space projective tensor product [10, Chapter 7] of operator
spaces X and Y by X⊗̂Y and we use the notation X ⊗γ Y to denote a Banach space
projective tensor product. To aid the reader, we will typically use upper-case script,
P,Q, to denotemaps employed when working in the category of operator spaces and
lower-case script, p, q, when working in the category of Banach spaces.

When working in the category of operator spaces, we will o�en use the abbre-
viations c.b. in place of completely bounded and c.c. in place of completely contrac-
tive/complete contraction. All undeûned concepts from the theory of operator spaces
can be found in [10,20].

Let m∶X × Y → Z∶ (x , y) ↦ x ⋅ y be a bounded bilinear map. _e (ûrst) Arens
transpose of m is the bounded bilinear map m′∶ Z∗ × X → Y∗∶ (z∗ , x) ↦ z∗ ⋅ x,
where ⟨m′(z∗ , x), y⟩ = ⟨z∗ ,m(x , y)⟩ or ⟨z∗ ⋅ x , y⟩ = ⟨z∗ , x ⋅ y⟩ [1]. _e second Arens
transpose ofm is the bounded bilinear map m2∶Y ×Z∗ → X∗∶ (y, z∗)↦ y ⋅ z∗,where
⟨m2(y, z∗), x⟩ = ⟨z∗ ,m(x , y)⟩ or ⟨y ⋅z∗ , x⟩ = ⟨z∗ , x ⋅ y⟩. More information about m2,
and its relation with m′, can be found in [23].

We will o�en use the following readily veriûed facts. _e short argument found
on [10, p. 309] can be used to prove the ûrst statement and the second statement is
established in the proof of [10, Proposition 7.1.2].

Lemma 2.1 Let X,Y , and Z be operator spaces,m∶X×Y → Z a completely contractive
bilinear map. _en the following statements hold:
(i) m′ and m2 are completely contractive;
(ii) for x ∈ X, the map mx ∶Y → Z deûned by mx(y) = m(x , y) is c.b., with

∥mx∥cb ≤ ∥x∥.

Suppose that A is a Banach algebra with a contractive right approximate identity
and X is a contractive right Banach A-module via (x , a) ↦ x ⋅ a. _en the Co-
hen Factorization _eorem [14, _eorem 32.22], implies that Z = X ⋅ A is a closed
A-submodule of X and, moreover, Z∥ ⋅ ∥<1 ⊆ X∥ ⋅ ∥≤1 ⋅ A∥ ⋅ ∥≤1 ⊆ Z∥ ⋅ ∥≤1. (Taking z ∈ Z
with ∥z∥ < 1, δ = 1 − ∥z∥ > 0. _en z = x ⋅ a, where ∥x − z∥ ≤ δ, hence ∥x∥ ≤ 1, and

720

https://doi.org/10.4153/CJM-2018-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-023-5


Completely Isometric Representations of Arens Product Algebras

∥a∥ ≤ d = 1.) We now state an operator space version of this result, due to P. J. Cohen,
on the factorization ofmodules.

Lemma 2.2 Suppose that A is a c.c. Banach algebra with a contractive right approxi-
mate identity and X is a c.c. right operator A-module via (x , a)↦ x ⋅ a. _en Z = X ⋅A
is a closed A-submodule of X and for each positive integer n,

Mn(Z)∥ ⋅ ∥<1 ⊆ {[xk , l ⋅ a] ∶ [xk , l ] ∈ Mn(X)∥ ⋅ ∥≤1 , a ∈ A∥ ⋅ ∥≤1} ⊆ Mn(Z)∥ ⋅ ∥≤1 .

Proof As in the preceding paragraph, Z = X ⋅A is a closed A-submodule of X. Since
(x , a)↦ x ⋅a is a c.c., ([xk , l ], a)↦ [xk , l ] ⋅a ∶= [xk , l ⋅a] deûnes a contractive A-mod-
ule action on Mn(X). So by observing that Mn(X) ⋅ A = Mn(X ⋅ A), one sees that
the corollary follows from the phrasing of the Cohen Factorization_eoremprovided
above.

3 Arens Product Algebras and Introverted Homogeneous Spaces

Let A be a (completely contractive) Banach algebra. _e following deûnition is moti-
vated by the deûnition on [21, p. 106].

Deûnition 3.1 A pair (S(A∗), ∥ ⋅ ∥S), where S(A∗) is a linear subspace of A∗ and
∥ ⋅ ∥S is a complete (operator spacematrix) normonS(A∗),will be called an (operator)
le� homogeneous subspace of A∗ when the following two conditions are satisûed:
(i) the embedding S(A∗)↪ A∗ is a (complete) contraction;
(ii) S(A∗) is a right A-submodule of A∗ such that S(A∗) is a (completely) contrac-

tive right (operator) A-module with respect to ∥ ⋅ ∥S, i.e.,

(3.1) S(A∗) × A→ S(A∗)

is a (complete) contraction.
Observe that the ûrst Arens transposemap of (3.1),

(3.2) S(A∗)∗ × S(A∗)Ð→ A∗∶ (µ, ϕ)z→ µ ◻ ϕ, ⟨µ ◻ ϕ, a⟩ = ⟨µ, ϕ ⋅ a⟩

is also (completely) contractive by Lemma 2.1. We will say that (S(A∗), ∥ ⋅ ∥S) is (op-
erator) le� introverted if
(iii) the range of themap described in (3.2) is contained in S(A∗) and,moreover,

(3.3) S(A∗)∗ × S(A∗)Ð→ S(A∗)∶ (µ, ϕ)z→ µ ◻ ϕ

is (completely) contractivewith respect to ∥ ⋅ ∥S and the associated dual operator
space structure, which we will also denote by ∥ ⋅ ∥S, on S(A∗)∗.

(Operator) right introverted homogeneous subspaces of A∗ are similarly deûned.

Note that a homogeneous subspace of A∗ will o�en fail to be closed in A∗. When
∥ ⋅ ∥S is the dual (operator space matrix) subspace norm ∥ ⋅ ∥A∗ on a closed subspace
S(A∗) of A∗, our deûnition of a le� introverted homogeneous space agrees with the
the usual deûnition of a le� introverted subspace of A∗ [8, 11]. _e statement of the
next proposition includes the introduction of some notation and terminology.
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Proposition 3.2 Let (S(A∗), ∥ ⋅ ∥S) be a (operator) le� introverted homogeneous sub-
space of A∗.
(i) (S(A∗)∗ , ∥ ⋅ ∥S , ◻) is a (c.c.) Banach algebra with respect to the ûrst Arens prod-

uct ◻ ∶S(A∗)∗ × S(A∗)∗ → S(A∗)∗∶ (µ, ν) ↦ µ ◻ ν deûned by ⟨µ ◻ ν, ϕ⟩ =
⟨µ, ν ◻ ϕ⟩, and themap ηS∶A→ S(A∗)∗ deûned by ⟨ηS(a), ϕ⟩S∗−S = ⟨ϕ, a⟩A∗−A
is a (c.c.) homomorphism with weak∗-dense range in S(A∗)∗. Moreover, for each
ν ∈ S(A∗)∗ and a ∈ A, the maps µ ↦ µ ◻ ν and µ ↦ ηS(a) ◻ µ are wk∗-wk∗
continuous on S(A∗)∗.

(ii) Let ES(A∗) denote the ∥ ⋅ ∥A∗-closure of S(A∗) in A∗. _en (ES(A∗), ∥ ⋅ ∥A∗) is
a (operator) le� introverted subspace of A∗ and the embedding S(A∗)↪ ES(A∗)
is a (complete) contraction.

(iii) Let (T(A∗), ∥ ⋅ ∥T) be another (operator) le� introverted homogeneous subspace
of A∗. _en S(A∗) ⊆ T(A∗) as a (complete) contraction if and only if there is a
wk∗-continuous (complete) contraction Φ∶T(A∗)∗ → S(A∗)∗ such that Φ○ηT =
ηS; the operator Φ is necessarily a wk∗-dense range homomorphism.

Proof We will provide the operator space version of the proof.
(i) Being the ûrst Arens transpose of the map (3.3), ◻ is c.c. and bilinear. Asso-

ciativity is readily established from the deûnition (and follows the same calculations
used to establish associativity of ◻ on A∗∗ [§2.6] [7]). Observe that ηS = ι∗ ○̂ where
̂∶A↪ A∗∗ is the canonical embedding and ι∶S(A∗) ↪ A∗. Since both ̂ and Φ = ι∗
havewk∗-dense range andΦ iswk∗-continuous, ηS also haswk∗-dense range and, as
a composition of complete contractions, ηS is c.c. It is easy to check directly that ηS
is a homomorphism (or note that botĥ and, using (iii), Φ are homomorphisms).

(ii) It is obvious that ES(A∗), the ∥ ⋅ ∥A∗-closure of the A-submodule S(A∗) of A∗,
satisûes both properties of an operator le� homogeneous subspace of A∗. It follows
that ◻ ∶ES(A∗)∗ × ES(A∗) → A∗ is c.c., so we only need to establish that µ ◻ ϕ ∈
ES(A∗)whenever µ ∈ ES(A∗)∗ and ϕ ∈ ES(A∗). To see this, let (ϕn) be a sequence in
S(A∗) such that ∥ϕn−ϕ∥A∗ → 0. _en ∥µ ◻ϕn−µ ◻ϕ∥A∗ → 0 aswell. Since ι∶S(A∗)↪
ES(A∗) is a (complete) contraction, ι∗(µ) ∈ S(A∗)∗ and, from our assumption that
S(A∗) is le� introverted, µ ◻ ϕn = ι∗(µ) ◻ ϕn ∈ S(A∗) for each n. Hence, µ ◻ ϕ ∈
ES(A∗), as needed.

(iii) If the identity embedding ι∶ (S(A∗), ∥ ⋅ ∥S) ↪ (T(A∗), ∥ ⋅ ∥T) is a c.c., then it
is easy to check that its dual map Φ = ι∗ has all of the desired properties. Conversely,
ifΦ∶T(A∗)∗ → S(A∗)∗ is awk∗-continuous complete contraction such that Φ○ηT =
ηS, then its predual map Φ∗∶S(A∗)↪ T(A∗) is the identity embedding.

When (S(A∗)∗ , ◻) is a (operator) le� introverted homogeneous subspace of A∗,
we will refer to (S(A∗)∗ , ◻) as a (operator) homogeneous le� Arens product algebra
over A; as in [23], we will call (S(A∗)∗ , ◻) a (operator) le� Arens product algebra over
Awhen ∥ ⋅ ∥S = ∥ ⋅ ∥A∗ .

Deûnition 3.3 LetA be a (c.c.)Banach algebrawith a ûxed (operator space) predual
A∗. _e pair (A, ηA)will be called a (operator) homogeneous le� dual Banach algebra
((operator) HLDBA) over A if,
(i) for each ν ∈ A, µ ↦ µν∶A→ A is wk∗-wk∗ continuous; and
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(ii) ηA∶A→ Zt(A) is a (completely) contractive homomorphismwithweak∗-dense
range in A, where

Zt(A) = {µ ∈ A∶ ν z→ µν is wk∗-wk∗ continuous on A}
is the topological centre of A.

If, further, ηA(A∥ ⋅ ∥≤1) is weak∗-dense in A∥ ⋅ ∥≤1, then (A, ηA) is called an LDBA
over A [23].

Observe that A∗ is a le� A-submodule of A∗, Zt(A) is a norm-closed subalgebra
of A and, viewing A as a le� Zt(A)-module via multiplication, A∗ is a closed right
Zt(A)-submodule of the dual module A∗. If (A, ηA) and (B, ηB) are (operator)
HLDBAs over A, we will write (A, ηA) ≥ (B, ηB) if there is a wk∗-wk∗ continuous
(complete) contraction Φ∶A→B such that Φ ○ ηA = ηB, and we call Φ a homomor-
phism of (operator) HLDBAs over A. We call Φ an isomorphism of (operator) HLB-
DAs over A when it can be chosen to be a surjective (completely) isometric isomor-
phism; in this case we write (A, ηA) ≅ (B, ηB) and say that (A, ηA) and (B, ηB)
are equivalent.

Observe that on any set of (operator) HLDBAs over A, ≅ is an equivalence rela-
tion, ≤ is transitive, our deûnition of (A, ηA) ≥ (B, ηB) is consistent with [23, Def-
inition 3.2], and the intertwining map Φ is, as in the LDBA situation, necessarily a
weak∗-dense range homomorphism. However, when (B, ηB) is not an LDBA over
A, Φ may fail to be a surjection.

To see this, let G be an inûnite locally compact group, λL1(G)∶ L1(G)→ B(L2(G))
the le� regular representation of L1(G), VN(G) the von Neumann subalgebra of
B(L2(G)) generated by λL1(G). _en (VN(G), λL1(G)) is an example of an HLDBA
over L1(G) that is not an LDBA (over L1(G)). Since C0(G), the continuous functions
on G that vanish at inûnity, is a closed introverted subspace of L∞(G) = L1(G)∗,
(M(G), ηC0) is an LDBA over L1(G). Letting ι denote the identity embedding of the
Fourier algebra A(G) into C0(G), Φ = ι∗∶M(G) → VN(G) is a weak∗-continuous
contraction such that Φ ○ ηC0 = λL1(G); hence (M(G), ηC0) ≥ (VN(G), λL1(G). Note
however that Φ is the le� regular representation λM(G) ofM(G),which is not surjec-
tive. Examples of this type are examined in greater generality in Sections 4 and 5.

_eGelfand representation theorem shows that every right topological semigroup
compactiûcation of a locally compact group is a Gelfand compactifation and, anal-
ogously, [23, _eorem 3.3] showed that every LDBA over A is a le� Arens product
algebra over A (and conversely), thus providing an abstract characterization of the
le� Arens product algebras. By Proposition 3.2, every (operator) homogeneous le�
Arens product algebra over A is a (operator) HLDBA over A. We now establish the
converse.

_eorem 3.4 Every (operator) HLDBA over A is equivalent to a unique (operator)
homogeneous le� Arens product algebra over A.

Proof Let (A, ηA) be an HLDBA over A. Let S(A∗) be the linear subspace η∗A(Â∗)
of A∗ and consider the surjection Φ∗ ∶= η∗A○̂∶A∗ → S(A∗),wherê∶A∗ → A∗ is the
canonical embedding. Observe that Φ∗ is also injective because ηA has weak∗-dense
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image inA andA separatespoints inA∗. We can therefore deûne a complete (operator
space matrix) norm ∥ ⋅ ∥S on S(A∗) so that Φ∗ is a (complete) isometry. _e map
Φ ∶= (Φ∗)∗∶S(A∗)∗ → A is then a weak∗-continuous (complete) isometry such that
Φ○ηS = ηA. In the operator space situation,we now show that (S(A∗), ∥ ⋅ ∥S) satisûes
the three axioms of Deûnition 3.1.

(i) Let ϕ = (Φ∗)n(ψ) ∈ Mn(S(A∗)), where ψ = [ψ i , j] ∈ Mn(A∗). Observe that
Φ∗ = η∗A ○̂ is a complete contraction when viewed as amap of A∗ into A∗, so

∥ϕ∥A∗ = ∥(Φ∗)n(ψ)∥A∗ ≤ ∥ψ∥A∗ = ∥ϕ∥S .

(ii) For a ∈ A and ψ ∈ A∗, ψ ⋅ ηA(a) ∈ A∗ since A∗ is a right Zt(A)-submodule of
A∗. Moreover, a calculation shows thatΦ∗(ψ) ⋅a = Φ∗(ψ ⋅ηA(a)), so S(A∗) is a right
A-submodule of A∗. To see that this module action is a c.c. with respect to ∥ ⋅ ∥S, let
ϕ = (Φ∗)r(ψ) ∈ Mr(S(A∗)), where ψ = [ψ i , j] ∈ Mr(A∗), and a = [ak , l ] ∈ Mr(A).
SinceΦ∗ is a complete isometry, A∗ is a c.c. dual operatorA-module and ηA is a c.c.,
we obtain

∥[ϕ i , j ⋅ ak , l ]∥S
= ∥[Φ∗(ψ i , j ⋅ ηA(ak , l))]∥S

= ∥[ψ i , j ⋅ ηA(ak , l)]∥A∗

≤ ∥[ψ i , j]∥A∗
∥[ηA(ak , l)]∥A

≤ ∥ψ∥A∗∥[ak , l ]∥ A
= ∥ϕ∥S∥a∥A

as needed.
(iii) For µ ∈ S(A∗)∗ andψ ∈ A∗,Φ(µ)⋅ψ ∈ A∗ and the calculation from the second

paragraph of the proof of [23,_eorem. 3.3] shows that µ ◻ Φ∗(ψ) = Φ∗(Φ(µ) ⋅ ψ),
which belongs toS(A∗). SinceΦ∗ andΦ are complete isometries, and the le�A-mod-
ule action on A∗ is a c.c., an argument similar to the one used above to establish
condition (ii) shows that S(A∗)∗ × S(A∗) → S(A∗)∶ (µ, ϕ) ↦ µ ◻ ϕ is a complete
contraction.

Hence, (S(A∗)∗ , ηS) is an operator homogeneous le� Arens product algebra over
A and (A, ηA) ≅ (S(A∗)∗ , ηS). To establish uniqueness, suppose that (T(A∗), ∥ ⋅ ∥T)
is anyoperator le� introvertedhomogeneous subspaceofA∗ such that (S(A∗)∗ , ηS) ≅
(T(A∗)∗ , ηT). Let Ψ∶S(A∗)∗ → T(A∗)∗ be a weak∗-continuous complete isometry
such that Ψ ○ηS = ηT . _en, as noted in the proof of Proposition 3.2 (iii), the predual
map Ψ∗∶T(A∗) → S(A∗) is the identity embedding. Hence, T(A∗) = S(A∗) and,
since Ψ∗ is a complete isometry, thematrix norms ∥ ⋅ ∥T and ∥ ⋅ ∥S are equal.

Given a (operator) HLDBA (A, ηA) over A, we let (SA(A∗), ∥ ⋅ ∥SA
) be the (oper-

ator) le� introverted homogeneous subspace of A∗ such that

(A, ηA) ≅ (SA(A∗)∗ , ηSA
).

Observe that by_eorem 3.4 we can now, up to equivalence, view the class of all (op-
erator) HLDBAs over A as a set, denotedHLD(A), and (HLD(A), ≤) is a partially
ordered set.

Corollary 3.5 Let (A, ηA) and (B, ηB) be (operator) HLDBAs over A. _en

(B, ηB) ≤ (A, ηA)
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if and only ifSB(A∗) ⊆ SA(A∗) and the embeddingSB(A∗)↪ SA(A∗) is a (complete)
contraction.

Proof Since (B, ηB) ≤ (A, ηA) exactly when (SB(A∗)∗ , ηSB
) ≤ (SA(A∗)∗ , ηSA

),
this is an immediate consequence of Proposition 3.2 (iii).

Remark 3.6 Given any (operator) HLDBA (A, ηA) over A, we observe that

(ESA
(A∗)∗ , ηE)

is theminimum LDBA (B, ηB) over A such that (A, ηA) ≤ (B, ηB). _is is a con-
sequence of Proposition 3.2, Corollary 3.5, and [23,_eorem. 3.3].

_e author showed that (LD(A), ≤) is a complete lattice by using the representa-
tion theorem for LDBAs [23,_eorem 3.3]. However, it is not obvious that _eorem
3.4 can be used in a similar way to prove that (HLD(A), ≤) is a complete lattice.
With this in mind, andmotivated by the corresponding notion found in the theory of
semigroup compactiûcations [4],we now introduce the construction of the subdirect
product of a set of (operator) HLDBAs. Although we will focus our discussion on
operator HLDBAs, it will be clear that the construction also works in the category of
Banach spaces.

Let {(Ai , η i) ∶ i ∈ I} be a collection of operator HLDBAs over A. Let ∏i∈I Ai =
ℓ∞ −⊕i∈I Ai be the product operator space [10, §3.1], [20, §2.6]

∥µ∥Mn = sup
i∈I

∥[µk , l(i)]∥Mn(Ai)
for µ = [µk , l ] = [(µk , l(i))i∈I] ∈ Mn(∏

i∈I
Ai).

_en∏i∈I Ai is the dual operator space of ℓ1 −⊕(Ai)∗ [20, §2.6.1], and with respect
to the product deûned by µν = (µ i)i∈I(ν i)i∈I = (µ iν i)i∈I , one can check that∏i∈I Ai
is a c.c. Banach algebra.
Deûne η∨∶A→∏i∈I Ai by η∨(a) = (η i(a))i∈I , and letA∨ denote theweak∗-clos-

ure of η∨(A) in ∏i∈I Ai . Since each η i is a homomorphism, so is η∨. For any a ∈
Mn(A),

∥(η∨)n(a)∥ = ∥[η∨(ak , l)]∥ = ∥[(η i(ak , l))i∈I]∥
= sup

i∈I
∥(η i)n(a)∥Mn(Ai) ≤ ∥a∥

since each η i is a complete contraction; hence, η∨ is a complete contraction.
Observe that Pj ∶∏i∈I Ai → A j ∶ (µ i)i∈I ↦ µ j is a weak∗-continuous completely

contractive homomorphism, so for each j ∈ I, Pjµα → Pjµ weak∗ in A j whenever
µα → µ weak∗ in ∏i∈I Ai . Moreover, it is easy to see that the converse of this last
statementholdswhen thenet (µα) is bounded in∏i∈I Ai . Hence, a boundedmapping
Φ∶ E∗ → ∏i∈I Ai is weak∗-continuous on the unit ball of the dual Banach space E∗,
and is therefore weak∗-continuous on all of E∗ if and only if Pj ○ Φ is weak∗-con-
tinuous on E∗ for each j ∈ I.

Since each operator HLDBA (Ai , η i) satisûesDeûnition 3.3 (i) and (ii) , it follows
from these observations that for each ν ∈∏i∈I Ai and a ∈ A, themaps

(3.4) µ z→ µν and ν z→ η∨(a)ν
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are weak∗ continuous on ∏i∈I Ai . From this we see that A∨ is a c.c. Banach subal-
gebra of ∏i∈I Ai : for µ, ν ∈ A∨, if µ = w∗-limη∨(aγ) and ν = w∗-limη∨(bδ), then
for each γ, η∨(aγ)ν = w∗-limδη∨(aγ)η∨(bδ) = w∗-limδη∨(aγbδ) belongs to A∨,
whence µν = w∗-limγη∨(aγ)ν ∈ A∨. As aweak∗-closed subspace of the dual operator
space∏i∈I Ai , A∨ with its subspace operator space structure is itself a dual operator
space [20, Proposition 2.4.2], and the weak∗-topology on A∨ agrees with the relative
weak∗-topology inherited from∏i∈I Ai . Since themaps (3.4) are weak∗-continuous
on∏i∈I Ai , they are also weak∗-continuous on A∨.

We have established that (A∨ , η∨) is an operatorHLDBA over A. We call (A∨ , η∨)
the subdirect product of {(Ai , η i) ∶ i ∈ I}.

_eorem 3.7 _e subdirect product (A∨ , η∨) is the supremum of {(Ai , η i) ∶ i ∈ I}
in (HLD(A), ≤). Hence, (HLD(A), ≤) is a complete lattice with maximum element
equal to A∗∗ andminimum element equal to the trivial Banach algebra.

Proof Let Π j denote the restriction of Pj to A∨. Since Pj is weak∗-continuous and
a c.c., so is Π j . Moreover, Π j ○ η∨ = η j , so (A∨ , η∨) ≥ (A j , η j). Suppose now that
(B, ηB) is an operator HLDBA over A such that for each i ∈ I, (B, ηB) ≥ (Ai , η i).
Let Φ i ∶B→ Ai be a weak∗-continuous c.c. such that Φ i ○ ηB = η i and deûne

Φ∶BÐ→ ∏
i∈I

Ai by Φ(µ) = (Φ i(µ))i∈I .

Since each Φ i is a c.c., the justiûcation given above to show that η∨ is a c.c. shows that
Φ is a c.c. as well. For each j ∈ I, Pj ○ Φ = Φ j is weak∗-continuous, which, as noted
above, implies that Φ is weak∗-continuous on B. Since Φ ○ ηB = η∨, weak∗-density
of ηB(A) in B implies that Φ(B) is contained in

η∨(A)
wk∗

= A∨ .

Hence, (B, ηB) ≥ (A∨ , η∨). _e inûmum of {(Ai , η i) ∶ i ∈ I} in (HLD(A), ≤) is
the supremum of the nonempty set of all lower bounds of {(Ai , η i) ∶ i ∈ I}.

_e fundamental existence theorem for universal P-compactiûcations of locally
compact groups [4,_eorem 3.4] demonstrates the importance of subdirect products
in the construction ofuniversal semigroup P-compactiûcations. We call an (operator)
HLDBA (A, ηA) over A a P-extension of A if (A, ηA) has the property P of (operator)
HLDBAs, and say that (A, ηA) is a (or the, up to equivalence) universal P-extension
of A if, further, (B, ηB) ≤ (A, ηA)whenever (B, ηB) is a P-extension of A. It seems
worth noting that as a corollary to_eorems 3.4 and 3.7we have the following version
of [4,_eorem 3.4] for (operator) HLDBAs.

Corollary 3.8 Let P be a property of (operator) HLDBAs over A such P is invariant
under isomorphisms of (operator) HLDBAs.
(i) If P is invariant under subdirect products, then A has a universal P-extension.
(ii) If A has a universal P-extension and P is invariant under homomorphisms of (op-

erator) HLDBAs over A, then P is invariant under subdirect products.
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Proof (i) Let (A∨ , η∨) be the subdirect product of the set P of all (operator) homo-
geneous le�Arens product algebras (S(A∗)∗ , ηS) over A forwhich (S(A∗)∗ , ηS) is a
P-extension of A. By hypothesis (A∨ , η∨) is a P-extension of A, and if (A, ηA) is any
P-extension of A, then by _eorem 3.4 (A, ηA) is equivalent to some (S(A∗)∗ , ηS)
in P. By _eorem 3.7, (A, ηA) ≤ (A∨ , η∨), so (A∨ , η∨) is the universal P-extension
of A.

(ii) Let (B, ηB) be the universal P-extension ofAand let (A∨ , η∨) be the subdirect
product of a set {(Ai , η i) ∶ i ∈ I} of P-extensions of A. For each i ∈ I, (B, ηB) ≥
(Ai , η i), so (B, ηB) ≥ (A∨ , η∨) by _eorem 3.7; by hypothesis (A∨ , η∨) is a P-ex-
tension of A.

4 The Fourier Spaces FQ(A∗) and Fq(A∗)
Given any (completely contractive) Banach algebra A and any (completely) contrac-
tive right (operator) A-module action q∶X × A → X (Q∶X × A → X), we will now
introduce the associated (operator) Fourier space Fq(A∗) (FQ(A∗)). Since showing
that FQ(A∗) is an operator le� introverted homogeneous subspace of A∗ involves
more work than establishing the corresponding statement for Fq(A∗), we will begin
by focussing on the operator space situation.

4.1 The Operator Fourier Space FQ(A∗)

_roughout this subsection, A is a c.c. Banach algebra and X is a c.c. right operator
A-module through the action Q∶X × A→ X∶ (x , a)↦ x ⋅ a. By Lemma 2.1,

Q′∶X∗ × X Ð→ A∗∶ (x∗ , x)z→ x∗ ⋅ x ,

where ⟨x∗ ⋅ x , a⟩ = ⟨x∗ , x ⋅ a⟩ is also c.c.; thus, Q′ induces a complete contraction

P∶X∗⊗̂X Ð→ A∗∶ x∗ ⊗ x z→ x∗ ⋅ x .

Since X is a c.c. right operator A-module and X∗ is a c.c. le� operator (dual) A-mod-
ule, the operator space projective tensor product X∗⊗̂X becomes a c.c. operator
A-bimodule in canonical fashion (cf. [7,_eorem 2.6.4]) and P is anA-bimodulemap.
Hence, the kernel N of P is a closed A-submodule of X∗⊗̂X and the map PN deter-
mined by the commuting diagram

X∗⊗̂X/N PN // A∗

X∗⊗̂X

ΠN

OO

P

66

is also a c.c. A-bimodulemap into the dual A-bimodule A∗. Let

FQ(A∗) ∶= P(X∗⊗̂X) = PN(X∗⊗̂X/N)

and give FQ(A∗) the quotient operator space matrix norm, ∥ ⋅ ∥Q , inherited from
X∗⊗̂X/N through the linear isomorphism PN . _us, for ϕ = [ϕ i , j] ∈ Mn(FQ(A∗)),

(4.1) ∥ϕ∥Q = inf{∥ξ∥∧ ∶ ξ = [ξ i , j] ∈ Mn(X∗⊗̂X) and Pn(ξ) = ϕ} .
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We will call FQ(A∗) the operator Fourier space associated with Q and ∥ ⋅ ∥Q is its
Fourier operator spacematrix norm.

_eorem 4.1 _e pair (FQ(A∗), ∥ ⋅ ∥Q) is an operator le� introverted homogeneous
subspace of A∗.

Proof We will show that the three axioms of Deûnition 3.1 are satisûed.
(i) Let ϕ = [ϕ i , j] ∈ Mn(FQ(A∗)), say ϕ = [P(ξ i , j)] = Pn(ξ). Since P∶X∗⊗̂X → A∗

is a c.c. map, ∥ϕ∥A∗ = ∥Pn(ξ)]∥A∗ ≤ ∥ξ∥∧. Hence, ∥ϕ∥A∗ ≤ ∥ϕ∥Q follows from formula
(4.1).

(ii) Since N is a closed A-submodule of X∗⊗̂X, it is easy to check and will be well
known that X∗⊗̂X/N is also a c.c. operator A-bimodule. As PN is a completely iso-
metric A-bimodule isomorphism of X∗⊗̂X/N onto FQ(A∗), property (ii) is obvious.

(iii) From (ii), FQ(A∗) × A → FQ(A∗) is a c.c. and therefore so is its ûrst Arens
transpose

(4.2) ◻ A∗ ∶FQ(A∗)∗ × FQ(A∗)Ð→ A∗∶ (µ, ϕ)z→ µ ◻ ϕ.

To establish (iii),wemust ûrst show that ◻ A∗ maps intoFQ(A∗). To this end, observe
that Q′∶X∗ × X → FQ(A∗) is c.c. since P = PN ○ΠN ∶X∗⊗̂X → FQ(A∗) is a c.c. map.
Hence

(4.3) Ψ = Q′′∶FQ(A∗)∗ × X∗ Ð→ X∗∶ (µ, x∗)z→ µ ⋅ x∗ , ⟨µ ⋅ x∗ , x⟩ = ⟨µ, x∗ ⋅ x⟩,
is also completely contractive. Fixing µ ∈ FQ(A∗)∗, Ψµ(x∗) ∶= Ψ(µ, x∗) deûnes a
c.b. map on X∗ with ∥Ψµ∥cb ≤ ∥µ∥, whence Ψµ ⊗ idX ∶X∗⊗̂X → X∗⊗̂X is also c.b.We
claim that for any ϕ = P(ξ) ∈ FQ(A∗), µ ◻ ϕ = P ○ (Ψµ ⊗ idX)(ξ) ∈ FQ(A∗). Since
both ξ ↦ µ ◻ P(ξ) and P ○ (Ψµ ⊗ idX) are continuous linear maps of X∗⊗̂X into A∗,
using (4.2) and the continuity of P when viewed as amap into either FQ(A∗) or A∗,
it suõces to establish the claim for ξ = x∗ ⊗ x. To see this, observe that

⟨µ ◻ (x∗ ⋅ x) , a⟩A∗−A = ⟨µ , (x∗ ⋅ x) ⋅ a⟩F∗Q−FQ = ⟨µ , x∗ ⋅ (x ⋅ a)⟩F∗Q−FQ(4.4)

= ⟨µ ⋅ x∗ , x ⋅ a⟩X∗−X = ⟨(µ ⋅ x∗) ⋅ x , a⟩A∗−A,

so µ ◻ ϕ = µ ◻ P(ξ) = µ ◻ (x∗ ⋅ x) = (µ ⋅ x∗) ⋅ x = P(Ψµ ⊗ idX(ξ)) ∈ FQ(A∗) as
needed.
Finally, we will show that ◻ ∶FQ(A∗)∗ × FQ(A∗) → FQ(A∗) is c.c. with respect

to ∥ ⋅ ∥Q . Let Ψ̃∶FQ(A∗)∗⊗̂X∗ → X∗ and ◻̃ A∗ ∶FQ(A∗)∗⊗̂FQ(A∗) → A∗ be the c.c.
linearization mappings of Ψ and ◻ A∗ respectively. From (i), each of the maps in the
diagram

FQ(A∗)∗⊗̂(X∗⊗̂X)

id⊗P

��

T
≅

// (FQ(A∗)∗⊗̂X∗)⊗̂X Ψ̃⊗idX // X∗⊗̂X

P
��

FQ(A∗)� _
ι
��

FQ(A∗)∗⊗̂FQ(A∗)
◻̃
∗

A // A∗
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is a c.c. Moreover, it follows from (4.4) that the diagram commutes on elementary
tensors µ⊗(x∗⊗ x) and therefore commutes on all of FQ(A∗)∗⊗̂(X∗⊗̂X). _us, for
(µ, ξ) ∈ FQ(A∗)∗ × (X∗⊗̂X), µ ◻ Pξ ∈ FQ(A∗), and

µ ◻ Pξ = ◻̃ A∗ ○ (id⊗P)(µ ⊗ ξ) = P ○ (Ψ̃ ⊗ idX) ○ T(µ ⊗ ξ).
Let r and s be positive integers, and consider

◻ r;s ∶Mr(FQ(A∗)∗) ×Ms(FQ(A∗))Ð→ Mr×s(FQ(A∗)).
Let µ = [µ i , j] ∈ Mr(FQ(A∗)∗), ϕ = [ϕk , l ] ∈ Ms(FQ(A∗)), and take any ξ = [ξk , l ] ∈
Ms(X∗⊗̂X) such that Ps ξ = ϕ. _en

∥ ◻ r;s (µ, ϕ)∥Q = ∥[µ i , j ◻ Pξk , l ]∥Q = ∥Pr×s ○ (Ψ̃ ⊗ idX)r×s ○ Tr×s[µ i , j ⊗ ξk , l ]∥Q

≤ ∥[µ i , j ⊗ ξk , l ]∥
∧
= ∥µ ⊗ ξ∥∧ = ∥µ∥∥ξ∥∧ .

_e formula (4.1) now yields ∥ ◻ r;s (µ, ϕ)∥Q ≤ ∥µ∥∥ϕ∥Q . Hence, ◻ is a complete
contraction.

Hence, the Fourier dual (FQ(A∗)∗ , ◻) is an operator homogeneous le� Arens
product algebra over A. We will denote the embedding homomorphism

ηFQ ∶AÐ→ FQ(A∗)∗

by ηQ . We begin our study of FQ(A∗)∗ by showing that it can be identiûed with
a weak∗-closed subalgebra of CB(X∗), where the weak∗-topology on CB(X∗) is, as
usual, deûned through its canonical identiûcationwith (X∗⊗̂X)∗ [10, Corollary 7.1.5].

_e le� dual A-module action on X∗, Q2∶A× X∗ → X∗ (as deûned in Section 2),
is a c.c. map, so ΓQ ∶A→ CB(X∗),where ΓQ(a)(x∗) = a ⋅ x∗, deûnes a representation
of A on X∗ such that ∥ΓQ(a)∥cb ≤ ∥a∥. Let

MQ = ΓQ(A)
wk∗

⪯ CB(X∗)
be theweak∗-closed operator subalgebra of CB(X∗) generated by ΓQ . As noted in the
proof of_eorem 4.1 (see (4.3)), Ψ∶FQ(A∗)∗ × X∗ → X∗∶ (µ, x∗) ↦ µ ⋅ x∗ is a com-
pletely contractive bilinearmap. It follows that Γ̆Q mapsFQ(A∗)∗ intoCB(X∗)where
Γ̆Q(µ)(x∗) = µ ⋅ x∗ and ∥Γ̆Q(µ)∥cb ≤ ∥µ∥. We now observe that Γ̆Q is a weak∗-con-
tinuous completely isometric extension of ΓQ to a representation of FQ(A∗)∗ as c.b.
operators on X∗.

_eorem 4.2 _e following statements hold.
(i) _e bilinear map FQ(A∗)∗ × X∗ → X∗∶ (µ, x∗) ↦ µ ⋅ x∗, where ⟨µ ⋅ x∗ , x⟩ =

⟨µ , x∗ ⋅ x⟩ deûnes a c.c. le� operator FQ(A∗)∗-module action on X∗ such that for
each x∗ ∈ X∗ µ ↦ µ ⋅ x∗∶X∗ → X∗ is weak∗-continuous and ηQ(a) ⋅ x∗ = a ⋅ x∗.

(ii) _e map Γ̆Q ∶FQ(A∗)∗ → CB(X∗) is a weak∗-continuous completely isometric
algebra isomorphism of FQ(A∗)∗ onto MQ such that Γ̆Q ○ ηQ = ΓQ .

Proof (i)We have already observed that the bilinear map (µ, x∗)↦ µ ⋅ x∗ is a com-
plete contraction. For µ, ν ∈ FQ(A∗)∗,
⟨(µ ◻ ν) ⋅x∗ , x⟩ = ⟨µ ◻ ν , x∗ ⋅x⟩ = ⟨µ , ν ◻ (x∗ ⋅x)⟩ = ⟨µ , (ν ⋅x∗) ⋅x⟩ = ⟨µ ⋅(ν ⋅x∗) , x⟩,
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where we have used the calculation (4.4). Also,

⟨ηQ(a) ⋅ x∗ , x⟩ = ⟨ηQ(a) , x∗ ⋅ x⟩ = ⟨x∗ ⋅ x , a⟩ = ⟨x∗ , x ⋅ a⟩ = ⟨a ⋅ x∗ , x⟩.

(ii) From our deûnition of ∥ ⋅ ∥Q , P∶X∗⊗̂X → FQ(A∗) is a complete quotient map,
so P∗∶FQ(A∗)∗ → (X∗⊗̂X)∗ is a weak∗-continuous complete isometry, as is the
canonical mapping λ∶ (X∗⊗̂X)∗ → CB(X∗). For µ ∈ FQ(A∗)∗,

⟨λ ○ P∗(µ)(x∗) , x⟩ = ⟨P∗(µ) , x∗ ⊗ x⟩ = ⟨µ , x∗ ⋅ x⟩ = ⟨µ ⋅ x∗ , x⟩,

so Γ̆Q = λ ○ P∗ is a weak∗-continuous complete isometry of FQ(A∗)∗ into CB(X∗).
Frompart (i), Γ̆Q is an algebra isomorphism and Γ̆Q ○ηQ = ΓQ . Since Γ̆Q isweak∗-con-
tinuous with norm-closed range, its range is also weak∗-closed in CB(X∗) [5, _e-
orem VI.1.10]. As ΓQ(A) = Γ̆Q(ηQ(A)), we can conclude that MQ is contained in
range(Γ̆Q). By Proposition 3.2, ηQ has weak∗-dense range in FQ(A∗)∗. _e contain-
ment of range(Γ̆Q) in MQ follows because Γ̆Q isweak∗-continuous and Γ̆Q ○ηQ = ΓQ .

Corollary 4.3 We can identify the c.c. Banach algebra (FQ(A∗)∗ , ◻) with the
weak∗-closed operator subalgebra MQ of CB(X∗) via a weak∗-homeomorphic com-
pletely isometric algebra isomorphism MQ → FQ(A∗)∗∶T ↦ µT satisfying

⟨µT , x∗ ⋅ x⟩ = ⟨Tx∗ , x⟩.

Proposition 4.4 Let T ∈ CB(X∗) and consider the following statements:
(i) T ∈ MQ ;
(ii) there is a c.b. linearmapΛT ∶FQ(A∗)→ FQ(A∗) such thatΛT(x∗ ⋅x) = (Tx∗)⋅x

and ∥ΛT∥cb ≤ ∥T∥cb;
(iii) there is a bounded linear map ΛT ∶FQ(A∗) → FQ(A∗) such that ΛT(x∗ ⋅ x) =

(Tx∗) ⋅ x.
_en (i) implies (ii) implies (iii), and (iii) implies (i) whenever A has a bounded ap-
proximate identity for X, e.g., when A has a right bounded approximate identity and
X is essential. Moreover, when T ∈ MQ , ΛT(ϕ) = µT ◻ ϕ and ΛT = (RT)∗, where
RT ∶MQ → MQ ∶ S ↦ ST .

Proof Suppose that T ∈ MQ . By Lemma 2.1, themap

ΛT ∶FQ(A∗)Ð→ FQ(A∗)∶ ϕ z→ µT ◻ ϕ

is c.b. with ∥ΛT∥cb ≤ ∥µT∥ = ∥T∥cb. Observe that

⟨ΛT(x∗ ⋅ x) , a⟩ = ⟨µT ◻ (x∗ ⋅ x) , a⟩ = ⟨µT , (x∗ ⋅ x) ⋅ a⟩ = ⟨µT , x∗ ⋅ (x ⋅ a)⟩
= ⟨Tx∗ , x ⋅ a⟩ = ⟨(Tx∗) ⋅ x , a⟩,

so ΛT(x∗ ⋅ x) = (Tx∗) ⋅ x. Also, Λ∗

T ∶MQ → MQ and for S ∈ MQ , ϕ ∈ FQ(A∗),

⟨Λ∗

T(S) , ϕ⟩ = ⟨µS , µT ◻ ϕ⟩ = ⟨µS ◻ µT , ϕ⟩ = ⟨µST , ϕ⟩ = ⟨ST , ϕ⟩,

so Λ∗

T(S) = ST = RT(S). _is establishes the ûrst implication and (ii) implies (iii) is
trivial.
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Assuming that (iii) holds and (e i) is a bounded approximate identity for the right
A-module X, let µ be a weak∗-limit point of the net (Λ∗

T(ηQ(e i))) in FQ(A∗)∗; we
can assume that Λ∗

T(ηQ(e i))→ µ weak∗ in FQ(A∗)∗. _en

⟨Γ̆Q(µ)(x∗) , x⟩ = ⟨µ ⋅ x∗ , x⟩ = ⟨µ , x∗ ⋅ x⟩
= lim⟨Λ∗

T(ηQ(e i)) , x∗ ⋅ x⟩ = lim⟨ηQ(e i) , (Tx∗) ⋅ x⟩
= lim⟨(Tx∗) ⋅ x , e i⟩ = lim⟨Tx∗ , x ⋅ e i⟩
= ⟨Tx∗ , x⟩.

Hence, T = Γ̆Q(µ) belongs to MQ .

Let EQ(A∗) denote the ∥ ⋅ ∥A∗-closure of FQ(A∗) in A∗: EQ(A∗) = EFQ (A∗).
_en by Remark 3.6, the Eberlein space associated with Q, (EQ(A∗), ∥ ⋅ ∥A∗) is an
operator le� introverted subspace of A∗ such that (FQ(A∗)∗ , ηQ) ≤ (EQ(A∗)∗ , ηE).
Moreover, (EQ(A∗)∗ , ηE) is theminimum LDBA over Awith this property.

Remark 4.5 (i) Observe that the operator Fourier space FQ(A∗) is the ∥ ⋅ ∥Q-
closed linear span of X∗ ⋅ X = {x∗ ⋅ x ∶ x∗ ∈ X∗ , x ∈ X} and EQ(A∗) is the ∥ ⋅ ∥A∗-
closed linear span of X∗ ⋅ X. Indeed, since P∶X∗⊗̂X → FQ(A∗) is ∥ ⋅ ∥Q-continuous
and span{X∗ ⋅ X} = P(X∗ ⊗ X), this easily follows from the deûnitions.

(ii) When X is an essential c.c. right operator A-module, FQ(A∗) and EQ(A∗)
are contained in LUC(A∗), the ∥ ⋅ ∥A∗-closed linear span of A∗ ⋅ A. Indeed, as noted
in [23, Example 4.3(b)], x∗ ⋅ (x ⋅ a) = (x∗ ⋅ x) ⋅ a ∈ A∗ ⋅ A, so this follows from
(i). In particular, suppose that G is a locally compact group and X is a right Banach
G-module, and X is therefore a neo-unital right Banach L1(G)-module through the
action deûned by the weak integral x ⋅ f = ∫ x ⋅ s f (s) ds. Assuming that this L1(G)-
module action is c.c., FQ(L1(G)∗) and EQ(L1(G)∗) are contained in LUC(G) and,
as observed in Section 4.3 of [23], in this case x∗ ⋅ x ∈ LUC(G) is given by

(x∗ ⋅ x)(s) = ⟨x∗ , x ⋅ s⟩ (s ∈ G).
(iii) Suppose that (T(A∗), ∥ ⋅ ∥T) is anoperator le� introvertedhomogeneous sub-

space of A∗ such that (FQ(A∗)∗ , ηQ) ≤ (T(A∗)∗ , ηT). _en

(4.5) ΓT ∶T(A∗)∗ → CB(X∗) given by ⟨ΓT(µ)(x∗) , x⟩ = ⟨µ , x∗ ⋅ x⟩
deûnes a c.c. weak∗-continuous representation of T(A∗)∗ on X∗ such that

ΓT ○ ηT(a)(x∗) = a ⋅ x∗ .
To see this, observe that Φ∶T(A∗)∗ → FQ(A∗)∗, the dual of the embedding map
FQ(A∗)↪ T(A∗), is aweak∗-continuous c.c. homomorphism such that Φ○ηT = ηQ
and Γ̆Q○Φ = ΓT (seeCorollary 3.5 andProposition 3.2 (iii)). SinceFQ(A∗)↪ EQ(A∗)
has dense range,Φ∶EQ(A∗)∗ → FQ(A∗)∗ is amonomorphism, and therefore Γ̆Q ○Φ
is one-to-one. _us, (4.5) determines a faithful c.c. weak∗-continuous representa-
tion of EQ(A∗)∗ on X∗. If X is an essential right Banach A-module through Q,
then, as noted in (ii), (FQ(A∗)∗ , ηQ) ≤ (LUC(A∗)∗ , ηLUC), so (4.5) determines a
c.c. weak∗-continuous representation, ΓLUC, of LUC(A∗)∗ on X∗ in this case.

Moreover, if X is an essential L1(G)-module and Θ∶M(G) ↪ LUC(G)∗ is the
canonical embedding given by ⟨Θ(µ) , f ⟩ = ∫ f dµ, then (ΓLUC ○Θ)(µ)(x∗) = µ ⋅x∗,
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the usual le� dual module action ofM(G) on X∗. _at is, ΓLUC extends the usual le�
dual M(G)-module action on X∗ to aweak∗-continuousmodule action of LUC(G)∗
on X∗; a diòerent justiûcation of this statement can be found in [23].

_eorem 4.6 _e following statements hold.
(i) In (HLD(A), ≤) [(LD(A), ≤)], (FQ(A∗)∗ , ηQ) [(EQ(A∗)∗ , ηE)] is themin-

imum operator HLDBA [LDBA] (A, ηA) over A for which there is a c.c. weak∗-con-
tinuous representation ΓA∶A→ CB(X∗) extending ΓQ in the sense that ΓA ○ ηA = ΓQ .

(ii) (FQ(A∗)∗ , ηQ) [(EQ(A∗)∗ , ηE)] is the unique operator HLDBA [LDBA] over
A for which there is a completely isometric [c.c. faithful] weak∗-continuous representa-
tion ΓA∶A→ CB(X∗) such that ΓA ○ ηA = ΓQ .

Proof (i) By _eorem 4.2, (FQ(A∗)∗ , ηQ) has this property. Suppose that (A, ηA)
is an operator HLDBA over Awith this property. Assumingwithout loss of generality
that (A, ηA) is an operator homogeneous le� Arens product algebra (S(A∗)∗ , ηS)
over A (_eorem 3.4), let ΓS∶S(A∗)∗ → CB(X∗) be a weak∗-continuous c.c. repre-
sentation of S(A∗)∗ such that ΓS ○ ηS = ΓQ . Letting σ ∶X∗⊗̂X → S(A∗) be the c.c.
predual map of ΓS, we have

⟨σ(x∗ ⊗ x) , a⟩A∗−A = ⟨ηS(a) , σ(x∗ ⊗ x)⟩ = ⟨ΓS ○ ηS(a) , x∗ ⊗ x⟩
= ⟨ΓQ(a)(x∗) , x⟩ = ⟨x∗ ⋅ x , a⟩A∗−A.

Hence, σ ∶X∗⊗̂X → S(A∗)∶ x∗ ⊗ x ↦ x∗ ⋅ x; since idS∶S(A∗) ↪ A∗ is also a c.c. (see
Deûnition 3.1) we obtain P = idS ○σ ∶X∗⊗̂X → A∗. Hence, FQ(A∗) = P(X∗⊗̂X) ⊆
S(A∗), N = ker P = ker σ , and we obtain a c.c. σN ∶X∗⊗̂X/N → S(A∗); thus,

σN ○ P−1
N ∶FQ(A∗)→ S(A∗)

is a c.c.A calculation shows that σN ○P−1
N is the identity embeddingFQ(A∗)↪ S(A∗),

so (FQ(A∗)∗ , ηQ) ≤ (S(A∗)∗ , ηS) by Corollary 3.5.
As noted in Remark 4.5 (iii), (EQ(A∗)∗ , ηE) satisûes the desired property. If

(A, ηA) ≅ (S(A∗)∗ , ηS)
is an LDBA over A satisfying this property, then (FQ(A∗)∗ , ηQ) ≤ (S(A∗)∗ , ηS)
by the case above, and therefore FQ(A∗) ⊆ S(A∗) by Corollary 3.5. Since S(A∗)
is a closed subspace of A∗, EQ(A∗) ⊆ S(A∗) and it follows that (EQ(A∗)∗ , ηE) ≤
(S(A∗)∗ , ηS), using [23, Corollary 3.5].

(ii) By_eorem4.2, Γ̆Q is a completely isometric representation of FQ(A∗)∗ map-
ping weak∗-homeomorphically onto MQ , from which it follows that (MQ , ΓQ) is an
operator HLDBA over A and (FQ(A∗)∗ , ηQ) ≅ (MQ , ΓQ). If (A, ηA) is any operator
HLDBA over A for which there exists a weak∗-continuous completely isometric rep-
resentation ΓA∶A→ CB(X∗) such that ΓA ○ ηA = ΓQ , then the argument provided in
the last paragraph of the proof of_eorem 4.2 shows that ΓA maps onto MQ . Hence
(A, ηA) ≅ (MQ , ΓQ) as well, so (A, ηA) ≅ (FQ(A∗)∗ , ηQ).

In Remark 4.5 (iii), we observed that (EQ(A∗)∗ , ηE) has a weak∗-continuous c.c.
faithful representation ΓE on X∗ such that ΓE ○ηE = ΓQ . If (A, ηA) ≅ (S(A∗)∗ , ηS) is
any LDBA over Awith a weak∗-continuous c.c. faithful representation ΓS∶S(A∗)∗ →
CB(X∗) such that ΓS ○ ηS = ΓQ , then (EQ(A∗)∗ , ηE) ≤ (S(A∗)∗ , ηS) by (i). _is
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means that EQ(A∗) ⊆ S(A∗) and, letting ι denote the associated embedding map,
Φ = ι∗∶S(A∗)∗ → EQ(A∗)∗ satisûes Φ ○ ηS = ηE. Since ΓE ○ Φ ○ ηS = ΓE ○ ηE =
ΓQ = ΓS ○ ηS, weak∗-density of ηS(A) in S(A∗)∗ implies that ΓE ○Φ = ΓS. Hence, Φ
is injective and, as noted in [23, Deûnition 3.2], Φ is necessarily surjective; therefore
ι maps onto S(A∗). _us, EQ(A∗) = S(A∗), as needed.

Observe that for each a ∈ A, ΓQ(a)(x∗) = a⋅x∗ is aweak∗-continuous c.b. operator
on X∗, i.e., observe that Γ̆Q ○ ηQ = ΓQ maps A into CBσ(X∗).

Corollary 4.7 Let (A, ηA) be an operatorHLDBA [LDBA] over A forwhich there is a
completely isometric [c.c. faithful] weak∗-continuous representation ΓA∶A → CB(X∗)
such that ΓA○ηA mapsA intoCBσ(X∗). _en there is a c.c. right operatorA-module ac-
tion Q∶X × A → X such that ΓA ○ ηA = ΓQ and (A, ηA) ≅ (FQ(A∗)∗ , ηQ)
[≅ (EQ(A∗)∗ , ηE)].

Proof Since ΓA ○ ηA ∈ CB(A,CB(X∗)) is a c.c. homomorphism, X∗ is a c.c. le�
operator A-module through

γ∶A× X∗ Ð→ X∗∶ (a, x∗)z→ a ⋅ x∗ ∶= ΓA ○ ηA(a)(x∗)

[10, Proposition 7.12]. For each a ∈ A, let Q( ⋅ , a)∶X → X∶ x ↦ x ⋅a denote the predual
map of theweak∗-continuous map γ(a, ⋅ ) on X∗. _en ⟨a ⋅ x∗ , x⟩ = ⟨x∗ , x ⋅ a⟩, from
which it follows that x ⋅ (ab) = (x ⋅ a) ⋅ b. Observe that

γ2∶X∗ × X∗∗ z→ A∗ and γ22∶X∗∗ × A∗∗ Ð→ X∗∗

are c.c. bilinear (by Lemma 2.1) and γ22(x̂ , â) = Q(x , a)∧. It follows that X is a c.c.
right operator A-module through Q such that γ is the associated le� dual module
action on X∗. Since ΓA○ηA(a)(x∗) = a ⋅x∗ = ΓQ(a)(x∗), (A, ηA) ≅ (FQ(A∗)∗ , ηQ)
[≅ (EQ(A∗)∗ , ηE)] by _eorem 4.6.

Remark 4.8 It follows from Corollary 4.7 that several commonly studied operator
HLDBAs over A can be recognized as (FQ(A∗)∗ , ηQ) or (EQ(A∗)∗ , ηE) for some
module action Q. We discuss some speciûc examples in the next section. More-
over, if (A, ηA) is an operator LDBA over A for which there is a completely isometric
weak∗-continuous representation ΓA∶A → CB(X∗) such that ΓA ○ ηA(A) is con-
tained in CBσ(X∗), then there is a c.c. right operator A-module action Q on X such
that ΓA○ηA = ΓQ , (A, ηA) ≅ (EQ(A∗)∗ , ηE) ≅ (FQ(A∗)∗ , ηQ) and, byCorollary 3.5,
FQ(A∗) = EQ(A∗) = SA(A∗) with equality of thematrix norms ∥ ⋅ ∥Q and ∥ ⋅ ∥A∗ on
this common space

It will be useful for us to be able directly to determine when FQ(A∗) = EQ(A∗)
and ∥ ⋅ ∥Q = ∥ ⋅ ∥A∗ without employing Corollary 4.7 together with pre-existing the-
ory. In the following proposition, ι denotes the c.c. embedding FQ(A∗) ↪ EQ(A∗)
and Φ ∶= ι∗∶EQ(A∗)∗ → FQ(A∗)∗ is the weak∗-continuous c.c. weak∗-dense range
homomorphism such that Φ ○ ηE = ηQ .

Proposition 4.9 _e following statements are equivalent.

733

https://doi.org/10.4153/CJM-2018-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-023-5


R. Stokke

(i) FQ(A∗) = EQ(A∗) and the matrix norms ∥ ⋅ ∥Q and ∥ ⋅ ∥A∗ are equal on this
common space.

(ii) Φ∶EQ(A∗)∗ → FQ(A∗)∗ is a complete isometry;.
(iii) For each positive integer n and each µ ∈ Mn(EQ(A∗)∗), ∥Φn(µ)∥Q ≥ ∥µ∥A∗ .
_ese three equivalent conditions hold whenever

Sn = {[x∗i , j ⋅ xk , l ] ∶ [x∗i , j] ∈ Mr(X∗)∥ ⋅ ∥≤1 , [xk , l ] ∈ Ms(X)∥ ⋅ ∥≤1 and rs = n}

is ∥ ⋅ ∥A∗-dense in Mn(EQ(A∗))∥ ⋅ ∥≤1 for each positive integer n.

Proof _at (i) implies (ii) is obvious, as is the equivalence of statements (ii) and
(iii), since Φ is a c.c. Suppose that Φ = ι∗ is a complete isometry. _en ι has closed
dense range in EQ(A∗) and it follows that FQ(A∗) = EQ(A∗). By the open mapping
theorem, the norms ∥ ⋅ ∥Q and ∥ ⋅ ∥A∗ are equivalent on this set, i.e., on M1(EQ(A∗)),
so the sets FQ(A∗)∗ and EQ(A∗)∗ are also one and the same. Hence, Φ = ι∗ is the
identity mapping of EQ(A∗)∗ onto FQ(A∗)∗. As Φ is a complete isometry, so is ι =
Φ∗∣FQ(A∗), which establishes the ûnal implication (ii) implies (i).
Assuming that Sn is ∥ ⋅ ∥A∗-dense in Mn(EQ(A∗))∥ ⋅ ∥≤1, we will now show that

condition (iii) holds. To see this, ûrst note that Sn is contained in Mn(FQ(A∗))∥ ⋅ ∥Q≤1
since, as observed in the proof of _eorem 4.1, Q′∶X∗ × X → FQ(A∗) is a c.c. with
respect to ∥ ⋅ ∥Q . Taking µ = [µe , f ] ∈ Mn(EQ(A∗)∗), this observation and our hy-
pothesis give

∥Φn(µ)∥Q = sup{∥[⟨Φ(µe , f ) , ϕu ,v⟩F∗Q−FQ ]∥ ∶ [ϕu ,v] ∈ Mn(FQ(A∗))∥ ⋅ ∥Q≤1}

= sup{∥[⟨µe , f , ϕu ,v⟩E∗Q−EQ ]∥ ∶ [ϕu ,v] ∈ Mn(FQ(A∗))∥ ⋅ ∥Q≤1}

≥ sup{∥[⟨µe , f , x∗i , j ⋅ xk , l ⟩E∗Q−EQ ]∥ ∶ [x∗i , j ⋅ xk , l ] ∈ Sn}

= sup{∥[⟨µe , f , ϕu ,v⟩E∗Q−EQ ]∥ ∶ [ϕu ,v] ∈ Mn(EQ(A∗))∥ ⋅ ∥≤1}
= ∥µ∥A∗

as needed.

4.2 The Fourier Space Fq(A∗)

Unless stated otherwise, in this section A is a (not necessarily c.c.) Banach algebra and
X is a contractive right Banach A-module through the action

q∶X × AÐ→ X∶ (x , a)z→ x ⋅ a.
By replacing the operator space projective tensor product ⊗̂ with the Banach space
projective tensor product ⊗γ and dropping the words operator, complete and com-
pletely, we obtain the Fourier space Fq(A∗) and its Fourier norm ∥ ⋅ ∥q :

Fq(A∗) = p(X∗ ⊗γ X) = pN(X∗ ⊗γ X/N),
where p∶X∗⊗γ X → A∗∶ x∗⊗x ↦ x∗ ⋅x is the contractive linearization of q′∶X∗×X →
A∗, N = ker p and ∥ ⋅ ∥q is the Banach space quotient norm inherited from X∗⊗γ X/N
via the A-module isomorphism pN ∶X∗ ⊗γ X/N → Fq(A∗), i.e., for ϕ ∈ Fq(A∗),

(4.6) ∥ϕ∥q = inf{∥ξ∥γ ∶ ξ ∈ X∗ ⊗γ X and p(ξ) = ϕ} .
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In this situation, we have the following familiar-looking descriptions of Fq(A∗)
and ∥ ⋅ ∥q .

Proposition 4.10 _e pair (Fq(A∗), ∥ ⋅ ∥q) is a le� introverted homogeneous subspace
of A∗. If (x∗n) and (xn) are sequences in X∗ and X, respectively, and ∑ ∥x∗n∥∥xn∥ <
∞, then ϕ = ∑ x∗n ⋅ xn belongs to Fq(A∗); σ(A∗ ,A)-convergence of the series implies
∥ ⋅ ∥q-convergence and ∥ ⋅ ∥A∗-convergence. Conversely, if ϕ ∈ Fq(A∗), then there are
sequences (x∗n) in X∗ and (xn) in X such that ∑ ∥x∗n∥∥xn∥ < ∞ and ϕ = ∑ x∗n ⋅ xn ;
moreover, ∥ϕ∥q = inf{∑ ∥x∗n∥∥xn∥ ∶ ϕ = ∑ x∗n ⋅ xn}.

Proof _e ûrst statement follows from (simpler) versions of the arguments used to
establish _eorem 4.1. Recall that ξ ∈ X∗⊗γ X exactly when there are sequences (x∗n)
in X∗ and (xn) in X such that ∑ ∥x∗n∥∥xn∥ < ∞ and ξ = ∑ x∗n ⊗ xn with ∥ξ∥γ equal
to the inûmum of ∑ ∥x∗n∥∥xn∥ taken over all such representations of ξ. Since p is a
contractive surjection onto Fq(A∗), the validity of each remaining statement follows
from (4.6) via routine arguments.

As in Subsection 4.1, the bilinear map Fq(A∗)∗ × X∗ → X∗∶ (µ, x∗) ↦ µ ⋅ x∗ de-
ûned by ⟨µ ⋅ x∗ , x⟩ = ⟨µ , x∗ ⋅ x⟩ is a contractive le� Fq(A∗)∗-module action on X∗.
Let Mq denote theweak∗-closure of Γq(A) in B(X∗),where Γq(a)(x∗) = a ⋅x∗. _en
Γ̆q ∶Fq(A∗)∗ → B(X∗), deûned by Γ̆q(µ)(x∗) = µ ⋅x∗, is aweak∗-continuous isomet-
ric algebra isomorphism of Fq(A∗)∗ onto Mq such that Γ̆q ○ ηq = Γq . In particular,
we have the following proposition.

Proposition 4.11 We can identify the Banach algebra (Fq(A∗)∗ , ◻) with the
weak∗-closed operator subalgebra Mq of B(X∗) via the weak∗-homeomorphic isomet-
ric algebra isomorphism Mq → Fq(A∗)∗∶T ↦ µT deûned by ⟨µT , ∑ x∗n ⋅ xn⟩ =
∑⟨Tx∗n , xn⟩ whenever∑ ∥x∗n∥∥xn∥ <∞.

Letting Eq(A∗) = EFq(A∗), the ∥ ⋅ ∥A∗-closure of Fq(A∗) in A∗, the Eberlein space
associated with q, (Eq(A∗), ∥ ⋅ ∥A∗), is a le� introverted subspace of A∗ by Proposi-
tion 3.2.

Remark 4.12 _e Banach space analogues of the statements found in Remarks 4.5,
_eorem 4.6, Corollary 4.7, Remarks 4.8, and Proposition 4.9 all hold.

Remark 4.13 To close this section, assume again that A is a c.c. Banach algebra, X is
a c.c. right operatorA-module viaQ∶X×A→ X, and let q∶X×A→ X denote the same
module action with the operator space structures of X and A ignored. _en we have
the containments Fq(A∗) ⊆ FQ(A∗) ⊆ EQ(A∗) = Eq(A∗) and, for each ϕ ∈ Fq(A∗),
∥ϕ∥Q ≤ ∥ϕ∥q .

To see this, note that because (FQ(A∗)∗ , ηQ) is an HLDBA over A such that Γ̆Q ,
when viewed as amapping ofFQ(A∗)∗ intoB(X∗), is a contractiveweak∗-continuous
representation such that Γ̆Q ○ηQ = ΓQ = Γq , the Banach space versions of_eorem4.6
and Corollary 3.5 imply that (Fq(A∗), ∥ ⋅ ∥q) is contained in (FQ(A∗), ∥ ⋅ ∥Q) via a
contraction. _e equality EQ(A∗) = Eq(A∗) follows from Remark 4.5 (i) and its
Banach-space counterpart.
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5 Examples

In this ûnal section, we will apply our theory to several speciûc module operations
X ×A→ X, thereby recovering, and o�en extending, results concerning (completely)
isometric representations of familiar Banach algebras associated with A. Moreover,
by applying _eorem 4.6 to these module actions, we obtain new characterizations
of these well-studied Banach algebras. _e identiûcation of some (but not all) of the
spaces studied in this section with FQ(A∗) and EQ(A∗) for some Q could also be
achieved by using pre-existing theory in tandem with Corollary 4.7 and Remark 4.8.
However, a primary goal in this section is to show how our theory can be applied in a
variety of situations to extend and provide new proofs of previously known theorems.

5.1 The Fourier Spaces Fπ(A∗)

_emain objects discussed in this section, Fπ(A∗) and its dual, are new. In the case
that A is the group algebra L1(G) of a locally compact group G and {π,H} is a con-
tinuous unitary representation of G, we recover the Arsac–Fourier spaces Aπ [2].

WhenH is aHilbert space and ξ ∈H,wewillwrite ξ̇when viewing ξ as an element
ofH, the conjugateHilbert space ofH. For B ∈ B(H), observe that Ḃ ∈ B(H) where
Ḃ(ξ̇) = (Bξ)̇, and B ↦ Ḃ is a conjugate-linear isometric∗-isomorphismof B(H) onto
B(H). Hence, Θ

H
(B) ∶= (B∗)̇ = (Ḃ)∗ deûnes a linear isometric anti-homomorphic

∗-isomorphism of B(H) onto B(H).
Let A be a Banach algebra, π∶A → B(H) a contractive representation of A on H.

_en π̇ ∶= Θ
H
○ π∶A → B(H), i.e., π̇(a) ∶= (π(a)∗)̇, is a contractive, linear anti-

homomorphic representation of A on H. _erefore, if for a ∈ A and ξ̇ ∈H, we let
ξ̇ ⋅ a = π̇(a)(ξ̇) = (π(a)∗(ξ))̇ ,

then qπ ∶H×A→H∶ (ξ̇, a)↦ ξ̇ ⋅ a deûnes a contractive right A-module action onH.
Wewill use (Fπ(A∗), ∥ ⋅ ∥π) to denote the associated Fourier space (Fqπ(A∗), ∥ ⋅ ∥qπ).

SinceH can be identiûed with the dual space ofH via the linear isometry

φ∶H →H
∗∶ ξ ↦ φξ

given by ⟨φξ , η̇⟩H∗

−H
= ⟨η̇ ∣ ξ̇⟩

H
= ⟨ξ ∣ η⟩H,we have q′π ∶H×H → A∗∶ (ξ, η̇)↦ φξ ⋅η̇,

where

⟨φξ ⋅ η̇ , a⟩ = ⟨φξ , η̇ ⋅ a⟩H∗

−H
= ⟨η̇ ⋅ a ∣ ξ̇⟩

H

= ⟨(π(a)∗(η))̇ ∣ ξ̇⟩
H
= ⟨ξ ∣ π(a)∗η⟩H

= ⟨π(a)ξ ∣ η⟩H .

Using the coeõcient function notation ξ∗π η(a) = ⟨π(a)ξ ∣ η⟩H (see Arsac [2]when
A = L1(G), with G a locally compact group), we thus have

q′π ∶H ×H Ð→ A∗∶ (ξ, η̇)z→ ξ ∗π η.

In the next theorem we will further assume that A is an involutive Banach algebra
and {π,H} is a ∗-representation of A. (Observe that in this case π̇ is also a ∗-map.)
Of course, a version of this theorem also holds without making these assumptions,
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the main diòerence being that π̆, as deûned below, may not be ∗-map and Fπ(A∗)∗
may fail to be aW∗-algebra.

_eorem 5.1 Let A be an involutive Banach algebra and {π,H} a ∗-representation
of A.

(i) If (ξn), (ηn) are sequences in H and ∑ ∥ξn∥∥ηn∥ < ∞, then ϕ = ∑ ξn ∗π
ηn ∈ Fπ(A∗) with σ(A∗ ,A)-convergence implying ∥ ⋅ ∥π-convergence. Conversely, if
ϕ ∈ Fπ(A∗), then there are sequences (ξn) and (ηn) in H such that∑ ∥ξn∥∥ηn∥ <∞
and ϕ = ∑ ξn ∗π ηn ; moreover, ∥ϕ∥π = inf{∑ ∥ξn∥∥ηn∥ ∶ ϕ = ∑ ξn ∗π ηn}.

(ii) (Fπ(A∗), ∥ ⋅ ∥π) is a le� introverted homogeneous subspace of A∗ closed under
ϕ ↦ ϕ∗, where ϕ∗(a) = ϕ(a∗). Furthermore, (ξ ∗π η)∗ = η ∗π ξ and ϕ ↦ ϕ∗ is
isometric with respect to ∥ ⋅ ∥A∗ and ∥ ⋅ ∥π .

(iii) With respect to the involution deûned by µ∗(ϕ) = µ(ϕ∗), µ ∈ Fπ(A∗)∗, ϕ ∈
Fπ(A∗), (Fπ(A∗)∗ , ◻) is aW∗-algebra, and π̆∶Fπ(A∗)∗ → B(H) given by

⟨π̆(µ)ξ ∣ η⟩H = ⟨µ , ξ ∗π η⟩F∗π−Fπ

is a weak∗-homeomorphic isometric ∗-isomorphism of Fπ(A∗)∗ onto

VNπ = π(A)
wk∗

,

the von Neumann subalgebra of B(H) generated by π on A. Moreover, π̆ ○ ηπ = π,
where ηπ is the canonical homomorphism of A into Fπ(A∗)∗.

(iv) _emapVNπ → Fπ(A∗)∗∶T ↦ µT is aweak∗-homeomorphic isometric ∗-iso-
morphism where ⟨µT , ∑ ξn ∗π ηn⟩F∗π−Fπ = ∑⟨T ξn ∣ ηn⟩H whenever ∑ ξn ∗π ηn ∈
Fπ(A∗) (with∑ ∥ξn∥∥ηn∥ <∞). In particular, VNπ can be identiûed with the dual of
Fπ(A∗).

Proof Part (i) and the statement that (Fπ(A∗), ∥ ⋅ ∥π) is a le� introverted homoge-
neous subspace of A∗ are immediate consequences of Proposition 4.10 and the pre-
ceding discussion. One can quickly verify that (ξ∗π η)∗ = η∗π ξ and ∥ϕ∗∥A∗ ≤ ∥ϕ∥A∗ ;
since (ϕ∗)∗ = ϕ, ∥ϕ∗∥A∗ = ∥ϕ∥A∗ . If ϕ = ∑ ξn ∗π ηn ∈ Fπ(A∗)with∑ ∥ξn∥∥ηn∥ <∞,
then part (i) gives ∑ ηn ∗π ξn ∈ Fπ(A∗) and ϕ∗ = (∑ ξn ∗π ηn)∗ = ∑ ηn ∗π ξn by
∥ ⋅ ∥A∗-continuity of ϕ ↦ ϕ∗. Part (i) now yields ∥ϕ∗∥π ≤ ∥ϕ∥π , which in turn implies
that ∥ϕ∗∥π = ∥ϕ∥π .
By Proposition 3.2, (Fπ(A∗)∗ , ◻) is a Banach algebra and, as noted in the para-

graph preceding Proposition 4.11, Γ̆qπ ∶Fπ(A∗)∗ → Mqπ is a weak∗-homeomorphic
isometric algebra isomorphism onto Mqπ , the weak

∗-closure of Γqπ(A) in B(H∗).
Here

⟨Γ̆qπ(µ)(φξ) , η̇⟩H∗

−H
= ⟨µ ⋅ φξ , η̇⟩H∗

−H
= ⟨µ , ξ ∗π η⟩,

⟨Γqπ(a)(φξ) , η̇⟩H∗

−H
= ⟨a ⋅ φξ , η̇⟩H∗

−H
= ⟨φξ , η̇ ⋅ a⟩H∗

−H
= ⟨π(a)ξ ∣ η⟩H .

Deûne an isometric algebra isomorphism, κ, of B(H∗) onto B(H) by putting κ(B) =
φ−1 ○ B ○ φ. For B ∈ B(H∗) and ξ, η ∈H, we have φκ(B)ξ = φ ○ κ(B)(ξ) = B(φξ), so

⟨κ(B)ξ ∣ η⟩H = ⟨φκ(B)ξ , η̇⟩H∗

−H
= ⟨B(φξ) , η̇⟩H∗

−H
,
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from which it follows that κ is a weak∗-homeomorphism and π = κ ○ Γqπ . Conse-
quently, π̆ ∶= κ○Γ̆qπ ∶Fπ(A∗)∗ → B(H) is aweak∗-continuous isometric isomorphism
mapping Fπ(A∗)∗ onto

κ(Mqπ) = κ(Γqπ(A)
wk∗

) = κ(Γqπ(A))
wk∗

= π(A)
wk∗

= VNπ ,

⟨π̆(µ)ξ ∣ η⟩H = ⟨κ(Γ̆qπ(µ))ξ ∣ η⟩H = ⟨Γ̆qπ(µ)(φξ) , η̇⟩H∗

−H
= ⟨µ , ξ ∗π η⟩,

⟨π̆ ○ ηπ(a)(ξ) ∣ η⟩H = ⟨ηπ(a) , ξ ∗π η⟩ = ⟨π(a)ξ ∣ η⟩H .

Let µ ∈ Fπ(A∗)∗. _en µ∗ ∈ Fπ(A∗)∗ and

⟨π̆(µ∗)ξ ∣ η⟩H = ⟨µ , (ξ ∗π η)∗⟩ = ⟨µ , η ∗π ξ⟩ = ⟨π̆(µ)η ∣ ξ⟩H = ⟨π̆(µ)∗ξ ∣ η⟩H ,

so π̆ is also a ∗-isomorphism onto the von Neumann algebra VNπ . Hence, Fπ(A∗)∗
is aW∗-algebra, which completes the proof of (iii). Part (iv) is a consequence of part
(iii).

Remark 5.2 By _eorem 4.6 and Remark 4.12, (Fπ(A∗)∗ , ηπ) is the minimum
HLDBA in (HLD(A), ≤) [unique HLDBA] (A, ηA) over A for which there is a
weak∗-continuous contractive [isometric] representation ΓA∶A → B(H) such that
ΓA ○ ηA = π.

Suppose now thatG is a locally compact group and {π,H} is a continuous unitary
representation of G. _en {π,H} determines a non-degenerate ∗-representation of
L1(G) through ⟨π( f )ξ ∣ η⟩H = ∫ ⟨π(s)ξ ∣ η⟩H f (s) ds for all f ∈ L1(G) and ξ, η ∈H.
Using the deûnition provided above of ξ ∗π η ∈ L1(G)∗ = L∞(G), we obtain

∫ ξ ∗π η(s) f (s) ds = ⟨ξ ∗π η , f ⟩L∞−L1 = ⟨π( f )ξ ∣ η⟩H = ∫ ⟨π(s)ξ ∣ η⟩H f (s) ds.

In L∞(G), ξ ∗π η therefore equals the continuous coeõcient function s ↦ ⟨π(s)ξ ∣
η⟩H on G, as deûned in [2].
Applying _eorem 5.1 (i) to the ∗-representation {π,H} of L1(G), we see from

[2,_eorem 2.2 (ii) and (iii)] that our Fourier space Fπ(L1(G)∗) is precisely Arsac’s
Fourier space Aπ and our Fourier norm ∥ ⋅ ∥π agrees with the Fourier–Stieltjes al-
gebra norm on B(G) restricted to Aπ . (In particular, when {π,H} is the le� reg-
ular representation {λ2 , L2(G)}, and the universal representation {ωG ,Hω}, of G,
Fπ(L1(G)∗) is, respectively, the Fourier algebra A(G), and the Fourier–Stieltjes alge-
bra B(G).) We also see that the usual identiûcation of VNπ with A∗π is a special case
of the general result described in _eorem 5.1 (iv), which in turn is a special case of
Proposition 4.11. Furthermore,_eorem 5.1 identiûes Aπ as a le� introverted homo-
geneous subspace of L1(G)∗, and the product inVNπ as anArens product over L1(G).

To reduce the length of this paper, we will postpone the detailed study of the
Fourier spaces Fπ(A∗) of an involutive Banach algebra A, and the corresponding
Fourier–Stieltjes spaces, C∗-algebras, von Neumann algebras, and Eberlein spaces to
a subsequent paper.
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5.2 The Figà-Talamanca–Herz Spaces Ap(G)

Let G be a locally compact group, 1 < p < ∞, and let p′ be the conjugate index,
satisfying 1/p + 1/p′ = 1. In this subsection, we will observe that Ap(G) is also an
example of a Fourier spaceFq(L1(G)∗) andwill recover the identiûcation of Ap(G)∗
with the Banach algebra of p′-pseudomeasures, PMp′(G).

Letting {λp , Lp(G)} be the le� regular representation of G on Lp(G) deûned by
λp(s)ξ(t) = ξ(s−1 t) for ξ ∈ Lp(G) and s, t ∈ G, Lp(G) becomes a contractive right
Banach G-module through ξ ⋅ s ∶= λp(s−1)ξ. Hence, as noted in Remarks 4.5 (ii)
and 4.12, deûning q∶ Lp(G) × L1(G) → Lp(G) through the weak integral ξ ⋅ f =
∫ ξ ⋅ s f (s) ds, Lp(G) is a contractive neo-unital right Banach L1(G)-module such
that

q′∶ Lp′(G) × Lp(G)Ð→ LUC(G)∶ (η, ξ)z→ η ⋅ ξ

satisûes η ⋅ ξ(s) = ⟨η , ξ ⋅ s⟩Lp′−Lp = ∫ ξ(st)η̌(t−1) dt = ξ ∗ η̌(s). Let

(Ap(G), ∥ ⋅ ∥Ap) = (Fq(L1(G)∗), ∥ ⋅ ∥q)

and let PMp(G) denote the weak∗-closure in B(Lp(G)) of λp(L1(G)), where λp is
deûned on L1(G) through the weak integral λp( f )ξ = ∫ λp(s)ξ f (s) ds.

Corollary 5.3 Let ϕ ∈ CB(G). _en ϕ ∈ Ap(G) if and only if there are sequences
(ξn) in Lp(G) and (ηn) in Lp′(G) such that ∑ ∥ξn∥p∥ηn∥p′ <∞ and ϕ = ∑ ξn ∗ η̌n
(with pointwise convergence implying ∥ ⋅ ∥Ap and uniform convergence); moreover

∥ϕ∥Ap = inf{∑ ∥ξn∥p∥ηn∥p′ ∶ ϕ =∑ ξn ∗ η̌n} .

Furthermore, ⟨λ̆p′(µ)(η) , ξ⟩Lp′−Lp = ⟨µ , ξ ∗ η̌⟩A∗p−Ap , for η ∈ Lp′(G), ξ ∈ Lp(G),
deûnes a weak∗-homeomorphic isometric algebra isomorphism λ̆p′ of Ap(G)∗ onto
the operator subalgebra PMp′(G) of B(Lp′(G)). _us PMp′(G) and Ap(G)∗ can
be identiûed through the pairing ⟨T , ∑ ξn ∗ η̌n⟩A∗p−Ap = ∑⟨Tηn , ξn⟩Lp′−Lp whenever
∑ ∥ξn∥p∥ηn∥p′ <∞.

Proof _e ûrst statement follows from Proposition 4.10 and the above discussion.
As noted in the paragraph preceding Proposition 4.11,

λ̆p′(∶= Γ̆q)∶Ap(G)∗ → Mq ⊆ B(Lp′(G))

is a weak∗-homeomorphic isometric algebra isomorphism onto Mq , where

⟨λ̆p′(µ)(η) , ξ⟩Lp′−Lp = ⟨µ , η ⋅ ξ⟩A∗p−Ap = ⟨µ , ξ ∗ η̌⟩A∗p−Ap

and Mq is the weak∗-closure of λ̆p′ ○ ηq(L1(G)) in B(Lp′(G)); here, as before, ηq
is the canonical homomorphism mapping L1(G) into Fq(L1(G)∗)∗ = Ap(G)∗. But,
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for f ∈ L1(G), ξ ∈ Lp(G), and η ∈ Lp′(G),
⟨λ̆p′(ηq( f ))(η) , ξ⟩Lp′−Lp = ⟨ηq( f ) , ξ ∗ η̌⟩A∗p−Ap = ⟨ξ ∗ η̌ , f ⟩L∞−L1

= ∫ ∫ ξ(t)η(s−1 t) dt f (s) ds

= ∫ ⟨λp′(s)η , ξ⟩Lp′−Lp f (s) ds

= ⟨λp′( f )η , ξ⟩Lp′−Lp ,

so λ̆p′ ○ ηq = λp′ . Hence, Mq = PMp′(G).

Let ηp denote the canonical homomorphism of L1(G) into Ap(G)∗. Observe
that by _eorem 4.6 and Remark 4.12, (Ap(G)∗ , ηp) is the minimum HLDBA
in (HLD(L1(G)), ≤) [unique HLDBA] (A, ηA) over L1(G) for which there is a
weak∗-continuous contractive [isometric] representation ΓA∶A → B(Lp′(G)) such
that ΓA ○ ηA = λp′ .

5.3 The Space of Left Uniformly Continuous Functionals on A, LUC(A∗)

Given a (c.c.) Banach algebra A, recall that LUC(A∗) is the closed linear span of A∗ ⋅
A, where ⟨a∗ ⋅ a , b⟩ = ⟨a∗ , ab⟩. By recognizing LUC(A∗) as Eq(A∗) = Fq(A∗)
(EQ(A∗) = FQ(A∗)) associated with the right module action of A on itself, with
_eorem 5.5we establish a (completely) isometric identiûcation of the Banach algebra
LUC(A∗)∗ with BA(A∗) (CBA(A∗)), the operator (c.c.) Banach algebra of all (c.b.)
A-module maps on A∗. _is extends each of the corresponding results describing
LUC(A∗)∗ found in [6, 13, 15, 16, 19] for various examples of A. Corollary 5.4 provides
new characterizations of LUC(A∗)∗.

Suppose ûrst that A is a (not necessarily c.c.) Banach algebra with a contractive
right approximate identity. Let X = A, and consider the right A-module action

q∶X × AÐ→ X∶ (x , a)z→ x ⋅ a = xa.
_en q′∶A∗ × A → A∗∶ (a∗ , a) ↦ a∗ ⋅ a, where ⟨a∗ ⋅ a , b⟩ = ⟨a∗ , ab⟩. Hence, in
this case q′ is just the usual right A-module action on A∗. Since A has a contrac-
tive right approximate identity, the Cohen Factorization _eorem (as stated prior to
Corollary 2.2) implies that LUC(A∗) = A∗ ⋅ A and
(5.1) LUC(A∗)∥ ⋅ ∥<1 ⊆ (A∗)∥ ⋅ ∥≤1 ⋅ A∥ ⋅ ∥≤1 ⊆ LUC(A∗)∥ ⋅ ∥≤1 .
As Eq(A∗) is the ∥ ⋅ ∥A∗-closed linear span of X∗ ⋅ X = A∗ ⋅ A, we see that Eq(A∗) =
LUC(A∗) in this case. Moreover, (5.1) implies that S1 = {x∗ ⋅x ∶ ∥x∗∥ ≤ 1 and ∥x∥ ≤ 1}
is ∥ ⋅ ∥-dense in the closed unit ball of Eq(A∗), so LUC(A∗) = Eq(A∗) = Fq(A∗) and
∥ ⋅ ∥A∗ = ∥ ⋅ ∥q (see Remarks 4.12 and Proposition 4.9).

Now suppose further that A is a c.c. Banach algebra with a contractive right ap-
proximate identity. _en X = A is a c.c. right operator A-module via

Q∶X × AÐ→ X∶ (x , a)z→ x ⋅ a = xa.
Letting q denote the samemodule action with the operator space structures of A and
X ignored, the above discussion and Remarks 4.13 give

Fq(A∗) = FQ(A∗) = EQ(A∗) = Eq(A∗) = LUC(A∗).
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Moreover, since Q′∶A∗ × A → A∗∶ (a∗ , a) ↦ a∗ ⋅ a is a c.c. right operator A-module
action on A∗ and EQ(A∗) = A∗ ⋅ A, by Lemma 2.2,

Mn(EQ(A∗))∥ ⋅ ∥<1 ⊆ {[a∗k , l ⋅ a] ∶ [a∗k , l ] ∈ Mn(A∗)∥ ⋅ ∥≤1 , a ∈ A∥ ⋅ ∥≤1}
⊆ Mn(EQ(A∗))∥ ⋅ ∥≤1

for each positive integer n. Since X = A, this implies that Sn , as deûned in Proposition
4.9, is ∥ ⋅ ∥A∗-dense in Mn(EQ(A∗))∥ ⋅ ∥≤1 for each n. Hence, thematrix norms ∥ ⋅ ∥Q
and ∥ ⋅ ∥A∗ are equal on FQ(A∗) = EQ(A∗) = LUC(A∗).
By _eorem 4.2 (i), A∗ is a c.c. le� operator LUC(A∗)∗-module via

LUC(A∗)∗ × A∗ Ð→ A∗∶ (µ, a∗)z→ µ ◻ a∗ ,

where ⟨µ ◻ a∗ , a⟩ = ⟨µ , a∗ ⋅a⟩, using the standardnotation;moreover, ηLUC(a)◻ a∗ =
a ⋅ a∗ is the le� dual A-module action on A∗. Let

Γ∶AÐ→ CB(A∗) and ΓLUC∶LUC(A∗)∗ Ð→ CB(A∗)

be deûned by Γ(a)(a∗) = a ⋅ a∗ and ΓLUC(µ)(a∗) = µ ◻ a∗, and let MLUC denote the
weak∗-closure of Γ(A) in CB(A∗). _en by _eorem 4.2 (ii), ΓLUC is a weak∗-con-
tinuous completely isometric algebra isomorphism of LUC(A∗)∗ onto MLUC such
that ΓLUC ○ ηLUC = Γ.
As an immediate corollary to _eorem 4.6, we obtain the following new charac-

terizations of LUC(A∗)∗.

Corollary 5.4 Let A be a c.c. Banach algebra with a contractive right approximate
identity. _e following statements hold.
(i) (LUC(A∗)∗ , ηLUC) is the minimum operator HLDBA [LDBA] (A, ηA) over A

in (HLD(A), ≤) [(LD(A), ≤)] for which there is a c.c. weak∗-continuous repre-
sentation ΓA∶A→ CB(A∗) such that ΓA ○ ηA = Γ.

(ii) (LUC(A∗)∗ , ηLUC) is the unique operator HLDBA [LDBA] (A, ηA) over A for
which there is a completely isometric [faithful] weak∗-continuous representation
ΓA∶A→ CB(A∗) such that ΓA ○ ηA = Γ.

Let CBA(A∗) denote the c.c. Banach algebra comprised of all c.b. right A-module
maps on A∗; so an operator T in CB(A∗) belongs to CBA(A∗) if T(a∗ ⋅a) = T(a∗) ⋅a
for each a∗ ∈ A∗ and a ∈ A.

_eorem 5.5 Let A be a c.c. Banach algebra with a contractive right approximate
identity. _en we can identify the c.c. Banach algebra (LUC(A∗)∗ , ◻) with the
weak∗-closed operator subalgebra CBA(A∗) of CB(A∗) via the weak∗-homeomorphic
completely isometric algebra isomorphism CBA(A∗) → LUC(A∗)∗∶T ↦ µT deûned
by ⟨µT , a∗ ⋅ a⟩ = ⟨Ta∗ , a⟩.

Proof By Corollary 4.3, MLUC → LUC(A∗)∗∶T ↦ µT satisûes the properties de-
scribed above, so it suõces to show that MLUC = CBA(A∗). To see this, suppose ûrst
that T ∈ MLUC. _en µT ∈ LUC(A∗)∗ and for any b ∈ A,

⟨T(a∗ ⋅ a) , b⟩ = ⟨µT , (a∗ ⋅ a) ⋅ b⟩ = ⟨µT , a∗ ⋅ (ab)⟩ = ⟨Ta∗ , ab⟩ = ⟨(Ta∗) ⋅ a , b⟩.
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Hence, T ∈ CBA(A∗). Assuming that T ∈ CBA(A∗), by Proposition 4.4 we can
establish that T ∈ MLUC by showing that ΛT(a∗ ⋅ a) = (Ta∗) ⋅ a deûnes a bounded
linear mapping of LUC(A∗) into itself. To see this, ûrst note that if a∗ ⋅a = b∗ ⋅b, then

(Ta∗) ⋅ a = T(a∗ ⋅ a) = T(b∗ ⋅ b) = (Tb∗) ⋅ b,
soΛT is awell-deûnedmap. Taking ϕ1 , ϕ2 ∈ LUC(A∗) = A∗⋅A, by [14,_eorem 32.23]
there are elements a∗1 , a∗2 ∈ A∗ and a ∈ A such that ϕ1 = a∗1 ⋅ a and ϕ2 = a∗2 ⋅ a. Hence,
for γ ∈ C,

ΛT(γϕ1 + ϕ2) = ΛT((γa∗1 + a∗2 ) ⋅ a) = T(γa∗1 + a∗2 ) ⋅ a
= γ(Ta∗1 ) ⋅ a + (Ta∗2 ) ⋅ a = γΛT(ϕ1) + ΛT(ϕ2),

showing that ΛT is linear. Finally, observe that

∥ΛT(a∗ ⋅ a)∥ = ∥(Ta∗) ⋅ a∥ ≤ ∥T∥∥a∗∥∥a∥
and, as noted above, S1 = {a∗ ⋅ a ∶ ∥a∗∥ ≤ 1 and ∥a∥ ≤ 1} is ∥ ⋅ ∥A∗-dense in the closed
unit ball of LUC(A∗). Hence, ΛT is bounded, with ∥ΛT∥ ≤ ∥T∥.

Remark 5.6 _e same argument shows that if A is a (not necessarily c.c.) Banach
algebrawith a contractive right approximate identity, thenwe can identify the Banach
algebra LUC(A∗)∗ with BA(A∗), the weak∗-closed operator subalgebra of B(A∗)
comprised of all bounded right A-modulemaps on A∗, via theweak∗-homeomorphic
isometric algebra isomorphism deûned as in _eorem 5.5. _e Banach space version
of Corollary 5.4 also holds.

5.4 Representations of LUC(G)∗ as Completely Bounded Maps on B(H)

_roughout this section,G is a locally compact group and {π,H} is a continuous uni-
tary representation of G. Observe that T(H), the Banach space of trace-class opera-
tors onHwith the trace-class norm ∥ ⋅ ∥2, becomes a right BanachG-module through
the action K ⋅s = π(s−1)Kπ(s), (K ∈ T(H), s ∈ G) (see [3, Lemma 2.1]) and therefore,
as noted in Remark 4.5 (ii), T(H) is a neo-unital right Banach L1(G)-module via

Q∶T(H) × L1(G)Ð→ T(H)∶ (K , f )z→ K ⋅ f = ∫ K ⋅ s f (s) ds.

_roughout the remainder of this section, Q will refer to this module action, s ∈ G,
and, unless stated otherwise, T and K are operators in B(H) = T(H)∗ and T(H),
respectively.

Letting ξ⊗ η∗ denote the rank-one operator (ξ⊗ η∗)(ζ) = ⟨ζ ∣ η⟩ξ onH, observe
that (ξ ⊗ η∗) ⋅ s = (π(s−1)ξ)⊗ (π(s−1)η)∗.

Proposition 5.7 With respect to Q, T(H) is a neo-unital c.c. right operator L1(G)-
module.

Proof Since L1(G) has themax operator space structure,

B(L1(G),CB(T(H))) = CB(L1(G),CB(T(H))) ≅ CB(T(H) × L1(G), T(H))
[10, Sections 3.3 and 7.1]. To establish that Q is a c.c., it therefore suõces to show
that given f in L1(G), Q f (K) = Q(K , f ) is c.b. on T(H) with ∥Q f ∥cb ≤ ∥ f ∥1.
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Equivalently, we will show that the dual map Q∗

f is c.b. on B(H) = T(H)∗ with
∥Q∗

f ∥cb ≤ ∥ f ∥1. To this end, for T ∈ Mn(B(H)) = B(Hn) with ∥T∥ ≤ 1 and ξ, η ∈Hn

with ∥ξ∥, ∥η∥ ≤ 1, we will show that ∣ ⟨(Q∗

f )n(T)ξ ∣ η⟩Hn ∣ ≤ ∥ f ∥1. We have

∣ ⟨(Q∗

f )n(T)ξ ∣ η⟩Hn ∣ = ∣
n

∑
i , j=1

⟨Q∗

f (Ti , j)ξ j ∣ η i⟩H∣ = ∣
n

∑
i , j=1

⟨Q∗

f (Ti , j) , ξ j ⊗ η∗i ⟩B−T ∣

= ∣
n

∑
i , j=1

⟨Ti , j , ∫ (ξ j ⊗ η∗i ) ⋅ s f (s) ds⟩ B−T
∣

= ∣
n

∑
i , j=1
∫ ⟨Ti , j , π(s−1)ξ j ⊗ (π(s−1)η i)∗⟩B−T f (s) ds∣

= ∣∫ (
n

∑
i , j=1

⟨Ti , jπ(s−1)ξ j ∣ π(s−1)η i⟩H) f (s) ds∣

= ∣∫ ⟨[Ti , j](π(s−1)ξ j) j ∣ (π(s−1)η i)i⟩Hn f (s) ds∣

≤ ∫ ∣ ⟨T(π(s−1)ξ j) j ∣ (π(s−1)η i)i⟩Hn ∣ ∣ f (s)∣ ds

≤ ∥ f ∥1 ,

since ∥T∥ ≤ 1, ∥(π(s−1)ξ j) j∥ = ∥ξ∥ ≤ 1 and ∥(π(s−1)η i)i∥ = ∥η∥ ≤ 1.

As noted in Remark 4.5 (ii), FQ(L1(G)∗) and EQ(L1(G)∗) are contained in
LUC(G) and T ⋅K(s) = ⟨T ,K ⋅s⟩B−T . Hence, ifK ∈ T(H) iswritten as K = ∑ ξn⊗η∗n ,
then
(5.2)

T ⋅ K(s) = ⟨⟨T ,
∞

∑
n=1

π(s−1)ξn ⊗ (π(s−1)ηn)∗⟩
B−T

=
∞

∑
n=1

⟨π(s)Tπ(s−1)ξn ∣ ηn⟩H .

Moreover, by Remark 4.5 (iii), µ ↦ Γ(µ) ∈ CB(B(H)), where

⟨Γ(µ)(T) ,K⟩ = ⟨µ , T ⋅ K⟩
deûnes a c.c. weak∗-continuous representation of LUC(G)∗ as c.b. maps on B(H).
If, as in [23, §4.3], we employ the notation ⟨µ , f ⟩LUC∗ − LUC = ∫ f (s) dµ(s), then we
obtain the following formulation of Γ from (5.2):

⟨Γ(µ)(T)ξ ∣ η⟩H = ⟨Γ(µ)(T) , ξ ⊗ η∗⟩ = ⟨µ , T ⋅ (ξ ⊗ η∗)⟩

= ∫ ⟨π(s)Tπ(s−1)ξ , η⟩H dµ(s).

By composing Γ on LUC(G)∗ with the le�-strict–weak∗-continuous completely iso-
metric embedding Θ of M(G) into LUC(G)∗ and noting that the restriction of Θ to
L1(G) is ηLUC, we obtain the c.c. le�-strict–weak∗-continuous representation

ΓM ∶M(G)→ CB(B(H))
given by ⟨ΓM(µ)(T)ξ ∣ η⟩H = ∫ ⟨π(s)Tπ(s−1)ξ ∣ η⟩H dµ(s) of M(G) as c.b. opera-
tors on B(H); here the le�-strict topology on M(G) is takenwith respect to the ideal
L1(G) [22, Lemma 1.2]. Observe that [11, Lemma 5.1 and_eorem 5.2] are contained
in these remarks.
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_e formulation µ ↦ Γ(µ), where

⟨Γ(µ)(T)ξ ∣ η⟩H = ∫ ⟨π(s)Tπ(s−1)ξ ∣ η⟩H dµ(s)

also yields aweak∗-continuous completely isometric representation of FQ(L1(G)∗)∗
and a c.c.weak∗-continuous faithful representation of EQ(L1(G)∗)∗ as c.b. operators
on B(H) (_eorem 4.2 and Remarks 4.5 (iii)). When {π,H} is the le� regular repre-
sentation {λ2 , L2(G)} ofG,wewill now show thatFQ(L1(G)∗) = LUC(G) and, as an
immediate corollary,will thereby recover the completely isometricweak∗-continuous
representation of LUC(G)∗ as c.b. mappings on B(L2(G)) due to Neufang [17,18]. (It
would be interesting to identify and study FQ(L1(G)∗) and EQ(L1(G)∗) for other
continuous unitary representations {π,H} of G.)
For the proof that follows, we note that since L1(G) has a (contractive) bounded

approximate identity, LUC(G) = L∞(G) ⋅ L1(G); moreover, for ϕ ∈ L∞(G) and
f ∈ L1(G), (ϕ ⋅ f )(t) = f̃ ∗ ϕ(t) = ∫ f̃ (s)ϕ(s−1 t) ds where f̃ (s) = ∆(s−1) f (s−1).

_eorem 5.8 Let Q∶T(H) × L1(G)→ T(H) be taken with respect to {λ2 , L2(G)},
and let q be the samemodule action with the operator space structures ignored. _en
(5.3) LUC(G) = EQ(L1(G)∗) = FQ(L1(G)∗) = Fq(L1(G)∗),
thematrix norms ∥ ⋅ ∥Q and ∥ ⋅ ∥L1(G)∗ agree on this common space, and

∥ ⋅ ∥q = ∥ ⋅ ∥L1(G)∗

on LUC(G).

Proof We have already observed that each of the spaces displayed in (5.3) is con-
tained in LUC(G). Let ψ = [ψ i , j] ∈ Mn(EQ(L1(G)∗)) with ∥ψ∥L1(G)∗ < 1. To see
that EQ(L1(G)∗) = FQ(L1(G)∗) and thematrix norms ∥ ⋅ ∥Q and ∥ ⋅ ∥L1(G)∗ agree, by
Proposition 4.9 it suõces to ûnd T = [Ti , j] ∈ Mn(B(H))∥ ⋅ ∥≤1 and K ∈ T(H)∥⋅∥≤1
such that [ψ i , j] = [Ti , j ⋅ K].

Since (ϕ, f ) ↦ ϕ ⋅ f = f̃ ∗ ϕ deûnes a c.c. right operator (dual) L1(G)-module
action on L∞(G), LUC(G) = L∞(G) ⋅ L1(G), and ψ ∈ Mn(LUC(G))∥ ⋅ ∥<1, it follows
from the Cohen Factorization _eorem (Lemma 2.2) that [ψ i , j] = [ϕ i , j ⋅ f ] for some
[ϕ i , j] in Mn(L∞(G))∥ ⋅ ∥≤1 and f ∈ L1(G)∥ ⋅ ∥≤1. _emap L∞(G) → B(H)∶ ϕ ↦ Mϕ̌ ,
where ϕ̌(s) = ϕ(s−1) and Mϕ̌ is themultiplication operator on H = L2(G) by ϕ̌, is a
composition of ∗-isomorphisms of C∗-algebras and is therefore a complete isometry
[10, p. 26]. Letting Ti , j = Mϕ̌ i , j

, we therefore have T = [Ti , j] ∈ Mn(B(H)) with
∥T∥ ≤ 1. Following the proof of [11, _eorem 5.3], we now deûne ξ, η ∈ H by letting
ξ = ∣ f̃ ∣1/2, η(t) = f̃ (t)/∣ f̃ ∣1/2(t) if f̃ (t) /= 0 and η(t) = 0 otherwise. _en K = ξ⊗η∗ ∈
T(H) with ∥K∥1 = ∥ξ∥2∥η∥2 = ∥ f̃ ∥1 = ∥ f ∥1 ≤ 1 and for t ∈ G,

Ti , j ⋅ K(t) = ⟨Ti , jλ2(t−1)ξ ∣ λ2(t−1)η⟩ = ∫ ϕ i , j(s−1)ξ(ts)η(ts) ds

= ∫ ϕ i , j(s−1) f̃ (ts) ds = ∫ f̃ (s)ϕ i , j(s−1 t) ds

= f̃ ∗ ϕ i , j(t) = (ϕ i , j ⋅ f )(t) = ψ i , j(t).
_us, [ψ i , j] = [Ti , j ⋅ K] with ∥T∥ ≤ 1 and ∥K∥1 ≤ 1, as needed.
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Observe that the above argument shows that any ψ ∈ LUC(G) with ∥ψ∥ < 1
can be written as ψ = T ⋅ K ∈ FQ(L1(G)∗) for some T ∈ B(H)∥ ⋅ ∥≤1 and K ∈
T(H)∥ ⋅ ∥≤1. Hence, LUC(G) = FQ(L1(G)∗) = EQ(L1(G)∗) = Eq(L1(G)∗). More-
over, Eq(L1(G)∗) = Fq(L1(G)∗) and ∥ ⋅ ∥q = ∥ ⋅ ∥L1(G)∗ by the Banach space version
of Proposition 4.9 (see Remarks 4.12).

_e following is an immediate corollary to _eorems 5.8 and 4.6. Part (i) was ûrst
proved by Neufang [17, 18]; parts (ii) and (iii) are new.

Corollary 5.9 _e following statements hold.
(i) _emap Γ∶LUC(G)∗ → CB(B(L2(G))) given by

⟨Γ(µ)(T)ξ ∣ η⟩ = ∫ ⟨λ2(s)Tλ2(s−1)ξ ∣ η⟩ dµ(s)

deûnes a completely isometric weak∗-continuous representation of LUC(G)∗ as c.b.
mappings on B(L2(G)).

(ii) (LUC(G)∗ , ηLUC) is the unique operator HLDBA [LDBA] (A, ηA) over A for
which there is a completely isometric [c.c. faithful] weak∗-continuous representation
ΓA∶A→ CB(B(L2(G))) such that ΓA ○ ηA( f ) = Γ( f ) for each f ∈ L1(G).

(iii) (LUC(G)∗ , ηLUC) is the minimum operator HLDBA [LDBA] (A, ηA) over
L1(G) in (HLD(L1(G)), ≤) [(LD(L1(G)), ≤)] for which there is a c.c. weak∗-con-
tinuous representation ΓA∶A→ CB(B(L2(G))) such that ΓA ○ ηA( f ) = Γ( f ) for each
f ∈ L1(G).

Composing Γ from Corollary 5.9 with the embedding Θ∶M(G) ↪ LUC(G)∗,
yields the completely isometric representation ofM(G) as c.b. operators onB(L2(G))
due to Størmer in the abelian case [24], Ghahramani in the general isometric form
[12], and Neufang, Ruan, and Spronk in the completely isometric form [19].

5.5 Other Examples

_ere are many other examples of operator HLDBAs (A, ηA) for which there is a
completely isometric weak∗-continuous representation ΓA∶A → CB(X∗) such that
ΓA ○ ηA maps A into CBσ(X∗).
For instance, if A is a (c.c.) Banach algebra and S(A∗) is a closed introverted sub-

space of A∗ contained in WAP(A∗), the space of weakly almost periodic function-
als on A∗, then S(A∗)∗ is a (operator) dual Banach algebra over A and therefore,
by [9, Corollary 3.8] (the main result of [25]), there is a re�exive (operator) space
E and a (completely) isometric weak∗-continuous representation ΓS of S(A∗)∗ into
B(E) = Bσ(E) (CB(E) = CBσ(E)). When A = L1(G) for some locally compact
quantum group G, the authors of [13] studied several examples of closed le� intro-
verted subspaces of A∗ = L∞(G) for which there is an operator space X and a com-
pletely isometric weak∗-continuous representation ΓS∶S(A∗)∗ → CB(X∗) such that
ΓS ○ ηS maps L1(G) into CBσ(X∗).
By Corollary 4.7 and Remarks 4.8, for each of these le� introverted spaces there is

a c.c. right operator A-module action Q on X such that S(A∗) = EQ(A∗) = FQ(A∗),
the matrix norms ∥ ⋅ ∥A∗ and ∥ ⋅ ∥Q are equal on this common space, and, therefore,
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the operator HLDBAs (S(A∗)∗ , ηS), (FQ(A∗)∗ , ηQ), and (EQ(A∗)∗ , ηE) coincide.
(_eorem 4.6 thus provides new characterizations of these LDBAs over A.) It would
be interesting to try establishing some of these statements directly as we did with the
other examples in this section, and thereby obtain new proofs of these representation
theorems.

Acknowledgements _e author is grateful to the anonymous referee whose com-
ments have improved the exposition of this paper.
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