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Fourier Spaces and Completely Isometric
Representations of Arens
Product Algebras

Ross Stokke

Abstract. Motivated by the definition of a semigroup compactification of a locally compact group
and a large collection of examples, we introduce the notion of an (operator) homogeneous left dual
Banach algebra (HLDBA) over a (completely contractive) Banach algebra A. We prove a Gelfand-
type representation theorem showing that every HLDBA over A has a concrete realization as an
(operator) homogeneous left Arens product algebra: the dual of a subspace of A* with a compatible
(matrix) norm and a type of left Arens product o. Examples include all left Arens product algebras
over A, but also, when A is the group algebra of a locally compact group, the dual of its Fourier
algebra. Beginning with any (completely) contractive (operator) A-module action Q on a space
X, we introduce the (operator) Fourier space (Fq(A*), || q) and prove that (Fo(A*)*,n) is
the unique (operator) HLDBA over A for which there is a weak™-continuous completely isometric
representation as completely bounded operators on X* extending the dual module representation.
Applying our theory to several examples of (completely contractive) Banach algebras A and module
operations, we provide new characterizations of familiar HLDBAs over A and we recover, and often
extend, some (completely) isometric representation theorems concerning these HLDBAs.

1 Introduction

Many of the most well-studied and basic objects associated with a locally compact
group G, more generally a locally compact quantum group, are introverted subspaces
of L'(G)* = L*°(G) and their dual spaces under an Arens product: examples in-
clude the introverted space of continuous functions vanishing at infinity, Co(G) (its
dual with Arens product is the measure algebra M(G) with convolution product);
the introverted space of continuous almost periodic functions on G, AP(G); the in-
troverted space of continuous Eberlein functions on G, E(G); the introverted space
of continuous weakly almost periodic functions on G, WAP(G); the left introverted
space of left uniformly continuous functions on G, LUC(G); and L°(G). A small
sample of papers in which the duals of these and other spaces are studied as left Arens
product algebras is [1, 8,11,13,15,16, 18,19, 21].

In general, if S(A*) is a closed left introverted subspace of the dual space A* of a
Banach algebra A, then, with its left Arens product 0,2 = §(A*)* is a Banach algebra
such that
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(i) multiplication is separately weak”-continuous with respect to every fixed right
variable and weak*-dense “topological centre” Z;(2() ; and

(ii) there is a continuous homomorphism #g: A — 2 mapping into Z;(2) such that

(iii) the image of the unit ball of A under g is weak*-dense in the unit ball of 2.

We call 2 = S(A*)* a left Arens product algebra over A. In [23] we called a pair
(21, y2) a left dual Banach algebra (LDBA) over A when 2l is a Banach algebra and a
dual space such that properties (i), (ii), and (iii) are satisfied. Motivated by the fun-
damental theorem from semigroup compactification theory stating that every right
topological semigroup compactification of a locally compact group is a Gelfand com-
pactification, we proved that, up to equivalence, every LDBA over A is a left Arens
product algebra over A [23, Theorem 3.3].

In addition to the class of examples provided by the left Arens product algebras
over A, the reader will likely be aware of several examples of pairs (2, 775 ) where 2 is
a Banach algebra and a dual Banach space such that properties (i), (ii), and a weaker
version of statement (iii)

(iii") the image of A under 79 is weak*-dense in

are satisfied. For instance, if A is any involutive Banach algebra and #y: A - B(H)
is a *-representation of A on a Hilbert space J{, letting 2 denote the von Neumann
subalgebra of B(JH) generated by 79 (A), the pair (2, 9() satisfies properties (i), (ii),
and (iii"). We will call any such pair (2, 79) a homogeneous left dual Banach algebra
(HLDBA) over A.

Our Gelfand-type representation theorem [23] suggests that any HLDBA over A
looks something like a left Arens product algebra, and in Section 3 we introduce
the notion of a left introverted homogeneous subspace of A*, (S(A*), |- |s) and an
Arens-type product 0 on 8(A*)* such that the pair (S(A*)*, ng) is an HLDBA over
A, where 7g is defined by (s(a), ¢) = (¢, a). We call S(A*)* a homogeneous left
Arens product algebra over A and we prove a new Gelfand-type representation the-
orem stating that every HLDBA over A is equivalent to a homogeneous left Arens
product algebra over A. By introducing a notion of subdirect product for HLDBAs
over A, we also show that with respect to a natural ordering <, the partially ordered
set (HLD(A), <) of all HLDBAs over A is a complete lattice. The notion of subdirect
product in the category of semigroup compactifications is known to provide an efhi-
cient method of constructing universal semigroup compactifications [4]. The results
in Section 3 are proved in the setting of operator spaces.

A particular example of a left introverted homogeneous subspace of L'(G)* is
(A(G), ||| 4), the Fourier algebra of G with its Fourier norm. Thus, (A(G)*,%4)
with the Arens-type product o defined in Section 3 is an example of an HLDBA over
L'(G). In this case, we can identify A(G)* with VN(G), the von Neumann subalge-
bra of B(L?*(G)) generated by the left regular representation {1,, L*(G)} of L'(G).
In fact, the identifying map ®: A(G)* — VN(G) is a weak*-continuous isometric
algebra isomorphism with respect to o such that ® o 4 = A,. In the language of this
paper, (A(G)*,54) and (VN(G), A,) are equivalent HLDBAs over L'(G), and @ is
a weak™ -continuous isometric representation of the Banach algebra (A(G)*, 0) on
L*(G). The pair (A(G)*,74) is one of many known examples of an HLDBA over A
that can be isometrically represented as an algebra of operators on a Banach space E.
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The main constructions and results of this paper are found in Section 4. Beginning
with a completely contractive Banach algebra A and a completely contractive right
operator A-module action Q: X x A — X, in Section 4.1 we construct the operator
Fourier space Fq(A™) together with an associated operator space matrix norm | - | q
such that (Fq(A*), |- |lq) is an operator left introverted homogeneous subspace of
A* and (Fo(A*)*, o) has a weak*-continuous completely isometric representation
as completely bounded mappings on X*. We characterize (Fq(A*)*,%q) as the
unique HLDBA over A with this property. Within the complete lattice (HLD(A), <),
we characterize (Fq(A*)*, %q) as the minimum HLDBA over A with a weak™-con-
tinuous completely contractive representation in CB(X™*) that extends the dual A-
module action on X* determined by Q. In Section 4.2, we introduce the correspond-
ing construction of the Fourier space F,(A*) and Fourier norm | - | 4 in the category
of Banach spaces.

In Section 5, the theory developed in Sections 3 and 4 is applied to different module
operations X x A — X. We provide new characterizations of some well-studied (op-
erator) homogeneous left Arens product algebras over A and we recover, and often
extend, some familiar results concerning weak”*-continuous (completely) isometric
representations of these Banach algebras:

* When A is an involutive Banach algebra and {7, }} is a *-representation of A on
a Hilbert space JH, in Section 5.1 we introduce the Fourier space (F,(A*), | -||») and
show that (F,(A*), 0) isa W*-algebra that can be identified with VN, the von Neu-
mann subalgebra of B(H) generated by 7, via a weak™-continuous isometric *-iso-
morphism that extends 7. When A = L'(G) and {r, 3} is a continuous unitary rep-
resentation of G, (F(A*), | - [ ) is the Arsac-Eymard Fourier space (A, | - |5(g))
where |- ||5(c) is the Fourier-Stieltjes algebra norm. Taking {7, 5} = {1,,L*(G)},
F(A*) is thus the Fourier algebra A(G) and we recover the identification of A(G)*
with VN(G) and, further, we are able to identify the product on VN(G) with o.

* In Section 5.2, we recover the Figa-Talamanca-Herz spaces A, (G) and the iden-

tification of A,(G)* with the operator subalgebra PM,/(G) of B(L?' (G)), the alge-
bra of p’-pseudomeasures.

* Given a completely contractive Banach algebra A with a contractive right ap-
proximate identity, in Section 5.3 we recognize LUC(A™), the left introverted sub-
space of A* comprised of left uniformly continuous functionals on A, as the Fourier
space Fo(A*) associated with the right module action Q of A on itself. This allows
us to identify the completely contractive Banach algebra (LUC(A*)*, o) with the
weak ™ -closed subalgebra CB4(A*) of completely bounded right A-module maps on
A” via a weak*-homeomorphic completely isometric algebra isomorphism. This in-
cludes results that were pioneered by Curtis and Figa-Talamanca [6], Lau [15,16], and
extended in [13,19], for various examples of A.

* By recognizing LUC(G)* as the Fourier space Fq(L'(G)*) associated with a
natural L'(G)-module action on the trace class operators on L*>(G), in Section 5.4
we recover a result of M. Neufang that provides a completely isometric representation
of LUC(G)* as completely bounded mappings on B(L*(G)) [17,18]. Moreover, we
show that LUC(G)* is characterized within the set (up to equivalence) of HLDBAs
over A by the existence of such a representation.
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2 Preliminary Definitions and Results

Let A be a (completely contractive) Banach algebra. If X is a Banach space, we will
often use the notation x, x*, and x** for elements in X, the dual X*, and the bidual
X** without explanation; an element a or b will always belong to the Banach algebra
A. By a (right, left, or bi-) A-module we will mean a Banach A-module. A right
A-module X is essential if the closed linear span of X - A is all of X and X is neo-unital
when X = X - A. By the Cohen Factorization Theorem [14, Theorem 32.22], when A
has a right bounded approximate identity, the two concepts are the same. When X is
a right (left) A-module, its dual space X* becomes a dual left (right) A-module with
products given by (a - x*,x) = (x*,x - a), ({(x* - a,x) = (x*, a- x)). In particular, A*
will always be viewed as a dual Banach A-module with respect to the operations

(a-¢,b)=(p,ba) and (¢-a,b)=(¢,ab) forpeA”.

Unless the codomain is a scalar field, all maps between normed linear spaces are as-
sumed to be linear and (norm) continuous.

We denote the operator space projective tensor product [10, Chapter 7] of operator
spaces X and Y by X®Y and we use the notation X ®" Y to denote a Banach space
projective tensor product. To aid the reader, we will typically use upper-case script,
P, Q, to denote maps employed when working in the category of operator spaces and
lower-case script, p, g, when working in the category of Banach spaces.

When working in the category of operator spaces, we will often use the abbre-
viations c.b. in place of completely bounded and c.c. in place of completely contrac-
tive/complete contraction. All undefined concepts from the theory of operator spaces
can be found in [10, 20].

Let m:X x Y - Z:(x,y) — x - y be a bounded bilinear map. The (first) Arens
transpose of m is the bounded bilinear map m’:Z* x X - Y*:(z*,x) » z* - x,
where (m’(z*,x), y) = (z*,m(x, y)) or (z* - x, y) = (z*, x - y) [1]. The second Arens
transpose of m is the bounded bilinear map m?: Y x Z* — X*: (y,z*) = y-z*, where
(m*(y,z*),x) = (2%, m(x, y)) or (y-z*,x) = (z*, x- y). More information about m?,
and its relation with m’, can be found in [23].

We will often use the following readily verified facts. The short argument found
on [10, p. 309] can be used to prove the first statement and the second statement is
established in the proof of [10, Proposition 7.1.2].

Lemma 2.1 LetX,Y, and Z be operator spaces, m: XxY — Z a completely contractive
bilinear map. Then the following statements hold:

(i) m' and m* are completely contractive;
(i) for x € X, the map my:Y — Z defined by my(y) = m(x,y) is c.b., with
[msles < %]

Suppose that A is a Banach algebra with a contractive right approximate identity
and X is a contractive right Banach A-module via (x,a) ~ x - a. Then the Co-
hen Factorization Theorem [14, Theorem 32.22], implies that Z = X - A is a closed
A-submodule of X and, moreover, Z|. |, € X|. <" A| <1 € Z|- <1 (Taking z € Z
with |z] <1, 8 =1-|z| > 0. Then z = x - a, where |x — z| < §, hence ||x|| <1, and
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|a]l < d =1.) We now state an operator space version of this result, due to P. J. Cohen,
on the factorization of modules.

Lemma 2.2 Suppose that A is a c.c. Banach algebra with a contractive right approxi-
mate identity and X is a c.c. right operator A-module via (x,a) — x-a. Then Z = X- A
is a closed A-submodule of X and for each positive integer n,

Mu(Z))- a1 € { [xk,1 - a) : [xk,1] € Mu(X))-j<ra € Ap-ja} € Mu(2))-1<1-

Proof Asin the preceding paragraph, Z = X - A is a closed A-submodule of X. Since
(x,a) » x-aisacc., ([xk,1],a) = [xk,1]-a =[x, -a] defines a contractive A-mod-
ule action on M, (X). So by observing that M, (X) - A = M,(X - A), one sees that
the corollary follows from the phrasing of the Cohen Factorization Theorem provided
above. [ |

3 Arens Product Algebras and Introverted Homogeneous Spaces

Let A be a (completely contractive) Banach algebra. The following definition is moti-
vated by the definition on [21, p. 106].

Definition 3.1 A pair (8(A*), | -||s), where 8(A*) is a linear subspace of A* and
| - ||s is a complete (operator space matrix) norm on 8(A*), will be called an (operator)
left homogeneous subspace of A* when the following two conditions are satisfied:

(i) the embedding S(A*) — A* is a (complete) contraction;
(ii) 8(A*)isaright A-submodule of A* such that S(A*) is a (completely) contrac-
tive right (operator) A-module with respect to | - | s, i.e.,

(3.1) S(A*) x A— 8(A")

is a (complete) contraction.

Observe that the first Arens transpose map of (3.1),

32)  8(AT) x8(AT) = A (w,¢)—un ¢, (uo¢a)=(u¢-a)
is also (completely) contractive by Lemma 2.1. We will say that (S(A*), | - ||s) is (op-
erator) left introverted if
(iii) the range of the map described in (3.2) is contained in S(A*) and, moreover,
(3.3) S(A)" x8(A") — 8(A"): (. ¢) — p o ¢
is (completely) contractive with respect to | - | s and the associated dual operator
space structure, which we will also denote by | - ||s, on S(A*)*.

(Operator) right introverted homogeneous subspaces of A* are similarly defined.

Note that a homogeneous subspace of A* will often fail to be closed in A*. When
| - ||s is the dual (operator space matrix) subspace norm |- || 4+ on a closed subspace
8(A*) of A*, our definition of a left introverted homogeneous space agrees with the
the usual definition of a left introverted subspace of A* [8,11]. The statement of the
next proposition includes the introduction of some notation and terminology.
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Proposition 3.2 Let (S(A*), | - ||s) be a (operator) left introverted homogeneous sub-

space of A*.

i) (8(A*)*,|-|s> o) isa (c.c.) Banach algebra with respect to the first Arens prod-
uct 0:8§(A*)* x 8(A*)* — S(A*)*:(u,v) — u 0 v defined by (u o v,¢) =
(u,vo @), and the map ng: A — S(A*)* defined by (ns(a), ¢)s+—s = (¢, a) ax-a
is a (c.c.) homomorphism with weak* -dense range in S(A*)*. Moreover, for each
veS8(A*) and a € A themaps y — p o vand y — ns(a) o y are wk*-wk*
continuous on S(A*)*.

(i) Let Eg(A*) denote the || - | a+-closure of S(A*) in A*. Then (Eg(A*), |- |ax) is
a (operator) left introverted subspace of A* and the embedding S(A*) — Eg(A™)
is a (complete) contraction.

(iii) Let (T(A*), |- |7) be another (operator) left introverted homogeneous subspace
of A*. Then S(A*) < T(A*) as a (complete) contraction if and only if there is a
wk* -continuous (complete) contraction ®:T(A*)* — S(A*)* such that ®ong =
ns; the operator @ is necessarily a wk* -dense range homomorphism.

Proof We will provide the operator space version of the proof.

(i) Being the first Arens transpose of the map (3.3), 0 is c.c. and bilinear. Asso-
ciativity is readily established from the definition (and follows the same calculations
used to establish associativity of o on A** [§2.6] [7]). Observe that n7g = 1* o™ where
T:A < A** is the canonical embedding and 1:S(A*) — A*. Since both ~and ® = /*
have wk*-dense range and ® is wk*-continuous, #g also has wk*-dense range and, as
a composition of complete contractions, #g is c.c. It is easy to check directly that s
is a homomorphism (or note that both ™ and, using (iii), ® are homomorphisms).

(ii) It is obvious that Eg (A*), the | - || s+ -closure of the A-submodule S(A*) of A%,
satisfies both properties of an operator left homogeneous subspace of A*. It follows
that 0: Eg(A*)* x Eg(A*) — A™ is c.c., so we only need to establish that y 0 ¢ €
Es(A*)whenever y € Eg(A*)* and ¢ € Eg(A*). To see this, let (¢, ) be asequence in
8(A*) suchthat|¢,—¢|a+ — 0. Then||pod,—po¢| s+ — 0aswell. Since 1:§(A*) —
Es(A*) is a (complete) contraction, 1*(u) € S(A*)* and, from our assumption that
8(A*) is left introverted, y 0 ¢, = 1" () 0 ¢, € S(A*) for each n. Hence, y 0 ¢ €
Es(A™), as needed.

(iii) If the identity embedding 1: (S§(A*), || |s) = (T(A*),||-|) is a c.c., then it
is easy to check that its dual map @ = /* has all of the desired properties. Conversely,
if®:T(A*)* - 8(A*)* isa wk*-continuous complete contraction such that ® o5 =
13, then its predual map @,:8(A*) — T(A*) is the identity embedding. [ |

When (8(A*)*, 0) is a (operator) left introverted homogeneous subspace of A*,
we will refer to (S(A*)*, 0) as a (operator) homogeneous left Arens product algebra
over A; as in [23], we will call (S(A*)*, o) a (operator) left Arens product algebra over
Awhen |-|[s = |- ]a-

Definition 3.3 Let2Abea (c.c.) Banach algebra with a fixed (operator space) predual
2. The pair (2, 75 ) will be called a (operator) homogeneous left dual Banach algebra
((operator) HLDBA) over A if,

(i) foreachve®, y uv:A - Ais wk*-wk* continuous; and
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(i) #na:A - Z;(2) isa(completely) contractive homomorphism with weak*-dense
range in 2, where

Z:(A) = {p € A:v —> pv is wk*-wk” continuous on 2}

is the topological centre of 2.

If, further, o (A|. <) is weak”-dense in 2. <, then (2, #4) is called an LDBA
over A [23].

Observe that 2., is a left A-submodule of 2*, Z;(2) is a norm-closed subalgebra
of A and, viewing 2 as a left Z;(2)-module via multiplication, . is a closed right
Z:(2()-submodule of the dual module 2*. If (A, 7o) and (B, ) are (operator)
HLDBAs over A, we will write (21, 72) > (B, s ) if there is a wk*-wk™ continuous
(complete) contraction ®:2( — B such that @ o 579 = 13, and we call ® a homomor-
phism of (operator) HLDBAs over A. We call ® an isomorphism of (operator) HLB-
DAs over A when it can be chosen to be a surjective (completely) isometric isomor-
phism; in this case we write (2, %) = (2B, 1) and say that (2, 7% ) and (B, 1)
are equivalent.

Observe that on any set of (operator) HLDBAs over A, 2 is an equivalence rela-
tion, < is transitive, our definition of (2(,75) > (2B, 51 ) is consistent with [23, Def-
inition 3.2], and the intertwining map @ is, as in the LDBA situation, necessarily a
weak* -dense range homomorphism. However, when (B, #5 ) is not an LDBA over
A, ® may fail to be a surjection.

To see this, let G be an infinite locally compact group, A11(): L'(G) - B(L*(G))
the left regular representation of L'(G), VN(G) the von Neumann subalgebra of
B(L*(G)) generated by A11(¢). Then (VN(G),A11(g)) is an example of an HLDBA
over L'(G) that is not an LDBA (over L'(G)). Since Cy(G), the continuous functions
on G that vanish at infinity, is a closed introverted subspace of L>(G) = L'(G)*,
(M(G), 51¢, ) is an LDBA over L'(G). Letting ¢ denote the identity embedding of the
Fourier algebra A(G) into Co(G), ® = 1*: M(G) - VN(G) is a weak*-continuous
contraction such that ® o 77¢, = Ap1(g); hence (M(G), 51¢,) 2 (VN(G), Api(g)- Note
however that @ is the left regular representation A ;(g) of M(G), which is not surjec-
tive. Examples of this type are examined in greater generality in Sections 4 and 5.

The Gelfand representation theorem shows that every right topological semigroup
compactification of a locally compact group is a Gelfand compactifation and, anal-
ogously, [23, Theorem 3.3] showed that every LDBA over A is a left Arens product
algebra over A (and conversely), thus providing an abstract characterization of the
left Arens product algebras. By Proposition 3.2, every (operator) homogeneous left
Arens product algebra over A is a (operator) HLDBA over A. We now establish the
converse.

Theorem 3.4  Every (operator) HLDBA over A is equivalent to a unique (operator)
homogeneous left Arens product algebra over A.

Proof Let (2, %) be an HLDBA over A. Let S(A*) be the linear subspace 1 ()

of A* and consider the surjection @, := 75 07: 2, - 8(A*), where > 2, — A~ is the
canonical embedding. Observe that @, is also injective because 79 has weak*-dense
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image in 2( and 2 separates points in 2(,. We can therefore define a complete (operator
space matrix) norm | -||s on S(A*) so that @, is a (complete) isometry. The map
D := (D,)*:8(A*)* - Ais then a weak*-continuous (complete) isometry such that
Dong = 1. In the operator space situation, we now show that (S§(A*), || - | s ) satisfies
the three axioms of Definition 3.1.

(i) Let ¢ = (@) u(y) € Mu(S(A*)), where y = [y; ;] € M,(2.). Observe that
D, = ny o~ isacomplete contraction when viewed as a map of 2, into A*, so

[¢las = [(@)n(@)ax < [¥la, = [¢]s-

(ii) Forae Aand y € A, v - no(a) € A, since A, is a right Z,(A)-submodule of
2A*. Moreover, a calculation shows that @, (y)-a = @, (y-n(a)), so S(A*) is aright
A-submodule of A*. To see that this module action is a c.c. with respect to | - ||s, let
¢ = (D), (v) € M, (8(A*)), where y = [y, ;] € M (), and a = [ax,;] € M,(A).
Since @, is a complete isometry, 2A* is a c.c. dual operator 2A-module and 79 is a c.c.,
we obtain

H (¢, - ak,l]”S = || (@i, Wm(ak,l))]”S = || (i - Wm(ak,z)]H A,
<[ Twiilll o tnaCar)]| o < Iwlar, | Laxd]
=l ¢lslala

as needed.

(iii) For p € S(A*)* and y € A, @(p)-y € A, and the calculation from the second
paragraph of the proof of [23, Theorem. 3.3] shows that y 0 @, (y) = O.(D(p) - ),
which belongs to S(A*). Since @, and ® are complete isometries, and the left 2(-mod-
ule action on 2, is a c.c., an argument similar to the one used above to establish
condition (ii) shows that S(A*)* x S(A*) — 8(A*): (4, ¢) — p 0 ¢ is a complete
contraction.

Hence, (S(A*)*, ng) is an operator homogeneous left Arens product algebra over
Aand (A, 79) = (8(A*)*, 5s). To establish uniqueness, suppose that (T(A*), | - ||7)
is any operator left introverted homogeneous subspace of A* such that (S(A*)*, s)
(T(A*)*, 7). Let ¥: S(A*)* — T(A*)* be a weak*-continuous complete isometry
such that ¥ o g = 7. Then, as noted in the proof of Proposition 3.2 (iii), the predual
map V,:T(A*) — 8(A*) is the identity embedding. Hence, T(A*) = 8(A*) and,
since ¥, is a complete isometry, the matrix norms | - | and | - ||s are equal. [ |

Given a (operator) HLDBA (2, 9() over A, welet (So(A™), | - [ s4 ) be the (oper-
ator) left introverted homogeneous subspace of A* such that

(,74) 2 (Sa(A")" 7154)-

Observe that by Theorem 3.4 we can now, up to equivalence, view the class of all (op-
erator) HLDBAs over A as a set, denoted HLD(A), and (HLD(A), <) is a partially
ordered set.

Corollary 3.5 Let (U, no) and (B, 113 ) be (operator) HLDBAs over A. Then
(B, 718) < (A, 7120)

https://doi.org/10.4153/CJM-2018-023-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-023-5

Completely Isometric Representations of Arens Product Algebras 725

ifand only if S (A*) € 89(A*) and the embedding S5 (A*) — 8o (A*) isa (complete)
contraction.

Proof Since (B, 3 ) < (2, 52 ) exactly when (8o (A*)*, 71545 ) < (Su(A*)*, 184 )5
this is an immediate consequence of Proposition 3.2 (iii). ]

Remark 3.6 Given any (operator) HLDBA (2, 1j5) over A, we observe that

(8591 (A*)*’ ’15)

is the minimum LDBA (%8, 53 ) over A such that (2(, 7%) < (B, s ). This is a con-
sequence of Proposition 3.2, Corollary 3.5, and [23, Theorem. 3.3].

The author showed that (£LD(A), <) is a complete lattice by using the representa-
tion theorem for LDBAs [23, Theorem 3.3]. However, it is not obvious that Theorem
3.4 can be used in a similar way to prove that (HHLD(A),<) is a complete lattice.
With this in mind, and motivated by the corresponding notion found in the theory of
semigroup compactifications [4], we now introduce the construction of the subdirect
product of a set of (operator) HLDBAs. Although we will focus our discussion on
operator HLDBAEs, it will be clear that the construction also works in the category of
Banach spaces.

Let {(2;,%;) : i € I} be a collection of operator HLDBAs over A. Let [];;2; =
€% — @;2; be the product operator space [10, §3.1], [20, §2.6]

liaho, = sup| L D] 3,y For 1= [iir] = [t (0))ser] € Mo (TT2L1)-

Then [];¢;2l; is the dual operator space of &' — @(2;). [20, §2.6.1], and with respect
to the product defined by pv = (i) ier(vi)ier = (#iVi)ier> one can check that IT;; 2L
is a c.c. Banach algebra.

Define y: A = [1;; i by ny(a) = (:(a))ie1> and let 2, denote the weak™ -clos-
ure of 7y (A) in [];;2;. Since each #; is a homomorphism, so is #,. For any a €
M, (A),

(7 )n(@)] = || [nv (ar)]|| = | T(niCa))ied] |
= sup 1) (@) [ a1, ) < @]

since each #; is a complete contraction; hence, 7, is a complete contraction.

Observe that Pj: [T;; i = 2Aj: (ui)ier — pj is a weak™-continuous completely
contractive homomorphism, so for each j € I, Pju, — Pju weak” in 2; whenever
Yo — p weak® in [];;2d;. Moreover, it is easy to see that the converse of this last
statement holds when the net (4, ) isbounded in [];.; ;. Hence, abounded mapping
O:E* — [];;U; is weak™ -continuous on the unit ball of the dual Banach space E*,
and is therefore weak™-continuous on all of E* if and only if P; o ® is weak*-con-
tinuous on E* for each j € I.

Since each operator HLDBA (2l;, %, ) satisfies Definition 3.3 (i) and (ii) , it follows
from these observations that for each v € [],;.;2; and a € A, the maps

(3.4) pr—pv and v+—ny(a)v
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are weak™ continuous on [];;2;. From this we see that 2, is a c.c. Banach subal-
gebra of [T, A;: for p,v € Ay, if y = w*-limyy (a,) and v = w*-limz, (bs), then
for each y, ny(a,)v = w*-limsny (a,)ny(bs) = w*-limsn, (a,bs) belongs to 2.,
whence uv = w*-lim, 5, (a,)v € 2. Asaweak”-closed subspace of the dual operator
space [];e; 2L, 2, with its subspace operator space structure is itself a dual operator
space [20, Proposition 2.4.2], and the weak”-topology on 2l,, agrees with the relative
weak” -topology inherited from [];.; ;. Since the maps (3.4) are weak”-continuous
on [1;c;2;, they are also weak*-continuous on 2.

We have established that (2., ) is an operator HLDBA over A. We call (2, )
the subdirect product of {(;,1;) :i € I}.

Theorem 3.7  The subdirect product (2, 1) is the supremum of {(;,n;) : i € I}
in (HLD(A),<). Hence, (HLD(A), <) is a complete lattice with maximum element
equal to A** and minimum element equal to the trivial Banach algebra.

Proof Let IT; denote the restriction of P; to 2l.. Since P; is weak*-continuous and
a c.c., so is IT;. Moreover, ITj o 7, = #j, so (2y,7v) 2 (Aj,7;). Suppose now that
(*B, 15 ) is an operator HLDBA over A such that for each i € I, (98,55 ) > (2L, 17:).
Let ®;:8 — 2; be a weak” -continuous c.c. such that ®; o s = #; and define

OB —> 1;[191 by @(u) = (Pi(p))ier-

Since each @; is a c.c., the justification given above to show that 7, is a c.c. shows that
® isac.c.as well. For each j € I, Pj o ® = ®; is weak”-continuous, which, as noted
above, implies that @ is weak”-continuous on ‘B. Since ® o 153 = 7, weak”-density
of 13 (A) in 9B implies that ®(B) is contained in

—wk*

n(Ad)  =2,.
Hence, (B, 5) > (2, 7y ). The infimum of {(2;,4;) : i € I} in (HLD(A),<) is
the supremum of the nonempty set of all lower bounds of {(2;,#;) : i € I}. [ |

The fundamental existence theorem for universal P-compactifications of locally
compact groups [4, Theorem 3.4] demonstrates the importance of subdirect products
in the construction of universal semigroup P-compactifications. We call an (operator)
HLDBA (21, 1751) over A a P-extension of A if (2, 775 ) has the property P of (operator)
HLDBAs, and say that (2, #7%) is a (or the, up to equivalence) universal P-extension
of Afif, further, (B, 1) < (U, o) whenever (B, 553 ) is a P-extension of A. It seems
worth noting that as a corollary to Theorems 3.4 and 3.7 we have the following version
of [4, Theorem 3.4] for (operator) HLDBAs.

Corollary 3.8 Let P be a property of (operator) HLDBAs over A such P is invariant
under isomorphisms of (operator) HLDBAs.

(i)  If P is invariant under subdirect products, then A has a universal P-extension.
(ii) If A has a universal P-extension and P is invariant under homomorphisms of (op-
erator) HLDBAs over A, then P is invariant under subdirect products.
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Proof (i) Let (2L, #y ) be the subdirect product of the set P of all (operator) homo-
geneous left Arens product algebras (S§(A*)*, s ) over A for which (§(A*)*,ns) isa
P-extension of A. By hypothesis (21, 7, ) is a P-extension of A, and if (2, g() is any
P-extension of A, then by Theorem 3.4 (2, 77%) is equivalent to some (S(A*)*, ys)
in P. By Theorem 3.7, (2, n121) < (v, %v), so (v, %y ) is the universal P-extension
of A.

(ii) Let (2B, 13 ) be the universal P-extension of A and let (2(,, 1/ ) be the subdirect
product of a set {(2;,%;) : i € I} of P-extensions of A. For each i € I, (B,ns) >
(20;,4:),s0 (B, 4s) > (Ay, 1) by Theorem 3.7; by hypothesis (2,7, ) is a P-ex-
tension of A. ]

4 The Fourier Spaces F,(A*) and J,(A~)

Given any (completely contractive) Banach algebra A and any (completely) contrac-
tive right (operator) A-module action ¢: X x A - X (Q: X x A — X), we will now
introduce the associated (operator) Fourier space F4(A*) (Fo(A*)). Since showing
that Fo(A*) is an operator left introverted homogeneous subspace of A* involves
more work than establishing the corresponding statement for F,(A*), we will begin
by focussing on the operator space situation.

4.1 The Operator Fourier Space Fo(A*)

Throughout this subsection, A is a c.c. Banach algebra and X is a c.c. right operator
A-module through the action Q: X x A - X:(x,a) ~ x - a. By Lemma 2.1,

QX" x X — A% (x*,x) —> x* - x,
where (x* - x,a) = (x*,x - a) is also c.c.; thus, Q' induces a complete contraction
P:X"®X — A':x" ®@x+—> x" - x.

Since X is a c.c. right operator A-module and X* is a c.c. left operator (dual) A-mod-
ule, the operator space projective tensor product X*®X becomes a c.c. operator
A-bimodule in canonical fashion (cf. [7, Theorem 2.6.4]) and P is an A-bimodule map.
Hence, the kernel N of P is a closed A-submodule of X*®X and the map Py deter-
mined by the commuting diagram

XBX/N — 2 s A%
HNT /
P
X*®X
is also a c.c. A-bimodule map into the dual A-bimodule A*. Let
Fo(A*) := P(X*®X) = Py(X*®X/N)

and give Fq(A*) the quotient operator space matrix norm, |- |q, inherited from
X*®X/N through the linear isomorphism Py. Thus, for ¢ = [¢; ;] € M, (Fo(A¥)),

(41) I¢lq = inf{ €] &= [&;] € My (X*®X) and P, (§) = ¢} .
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We will call Fo(A*) the operator Fourier space associated with Q and |- |q is its
Fourier operator space matrix norm.

Theorem 4.1 'The pair (Fq(A*), |- |q) is an operator left introverted homogeneous
subspace of A™.

Proof We will show that the three axioms of Definition 3.1 are satisfied.

() Let ¢ = [¢,;] € Mu(Fq(A*)),say ¢ = [P(&;j)] = Pu(&). Since P: X*®X — A*
isac.c.map, [¢]a+ = [Pn(&)]]ar < |&]A- Hence, | ¢ 4 < ||¢] q follows from formula
(4.1).

(ii) Since N is a closed A-submodule of X*®X, it is easy to check and will be well
known that X*®X/N is also a c.c. operator A-bimodule. As Py is a completely iso-
metric A-bimodule isomorphism of X*®X /N onto Fq(A*), property (ii) is obvious.

(iii) From (ii), Fq(A*) x A - Fq(A*) is a c.c. and therefore so is its first Arens
transpose

(4.2) 0a:FQ(A")" xFo(A") — A% (4, ¢) —> p o ¢.
To establish (iii), we must first show that o 4+ maps into Fq(A*). To this end, observe

that Q": X* x X » Fq(A*) isc.c.since P = Py o Il : X*®X — Fo(A*) is a c.c. map.
Hence

(43) ¥=Q":Fo(A" ) x X" — X™:(u,x*) — pu-x*, (u-x*,x)={p,x"x),
is also completely contractive. Fixing u € Fo(A*)*, ¥, (x*) = ¥(u,x*) defines a
c.b. map on X* with | ¥, e < [ #, whence ¥, ® idx: X*®X - X*®X is also c.b. We
claim that for any ¢ = P(§) € Fo(A*),u 0 ¢ = Po (¥, ®idx)(§) € Fo(A"). Since
both £ —» p o P(&) and Po (¥, ® idx) are continuous linear maps of X*®X into A*,

using (4.2) and the continuity of P when viewed as a map into either F5(A*) or A*,
it suffices to establish the claim for £ = x* ® x. To see this, observe that

(44) (4o (x*-x),ahara = (i, (7 %) - @ry g = (2" (x-0))s 7,

(
(u-x",x-a)xex =((p-x")-x,a)an
sopn¢=puoP(§)=uo(x"-x)=(u-x") x=P¥,0idx(£)) € Fo(A") as
needed.

Finally, we will show that 0:Fo(A*)* x Fo(A*) - Fq(A¥) is c.c. with respect
to |- |q. Let ¥: Fo(A*)*®X* - X* and T y: Fo(A*)*®Fo(A*) - A* be the c.c.
linearization mappings of ¥ and o 4+ respectively. From (i), each of the maps in the

diagram
*\ kS * T NS VE\S \Aﬂ@idx * S
Fo(AT) B(X"®X) ——— (Fo(A")"®X")®X X®X
l”
id®P ?Q(A*)
s )
?Q(A*)*@)?Q(A*) A*
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is a c.c. Moreover, it follows from (4.4) that the diagram commutes on elementary
tensors y ® (x* ® x) and therefore commutes on all of Fq (A*)*®(X*®X). Thus, for
(&) € Fo(A*)* x (X*®X), p o0 PEe Fo(A*),and

poPE=T o (idoP)(u®§) = Po(¥oidx) o T(u®§).
Let r and s be positive integers, and consider
Orsi M (FQ(A™)") x My(F(A")) — Mixs(Fo(AT)).

Let u = [pi,;] € My (FQ(A™)*), ¢ = [¢x,1] € M(Tq(A")), and take any & = [&x ;] €
M;(X*®X) such that P;& = ¢. Then

H s ([4’ ¢)”Q = || [.ui,j o PEk,l]“ Q = ” Pr><s ° (\"I7 ®idX)rxs ° Trxsl:['ii,j ® fk,l]” Q

<[ luis @ &ealll, = lu® Eln = [ul€] A

The formula (4.1) now yields | 0, (¢, ¢)]lq < |#]ll¢]q- Hence, o is a complete
contraction. u

Hence, the Fourier dual (Fo(A*)*, 0) is an operator homogeneous left Arens

product algebra over A. We will denote the embedding homomorphism
Ny A — Fo(A")"

by nq. We begin our study of Fo(A*)* by showing that it can be identified with
a weak*-closed subalgebra of CB(X*), where the weak*-topology on CB(X*) is, as
usual, defined through its canonical identification with (X*®X)* [10, Corollary 7.1.5].

The left dual A-module action on X*, Q% A x X* — X* (as defined in Section 2),
isac.c. map,so[g: A > CB(X*), where [q(a)(x*) = a-x*, defines a representation
of A on X* such that |Tq(a)|e < |al|- Let

———wk”
MQ ZFQ(A) SCB(X*)

be the weak™-closed operator subalgebra of CB(X*) generated by I'g. As noted in the
proof of Theorem 4.1 (see (4.3)), ¥:Fq(A*)* x X* - X*: (4, x*) — p-x* is a com-
pletely contractive bilinear map. It follows that I'q maps Fo (A*)* into CB(X*) where
To(u)(x*) = u-x*and |Tq(u) | < ||¢]. We now observe that T is a weak*-con-
tinuous completely isometric extension of I'g to a representation of Fo(A*)* as c.b.
operators on X*.

Theorem 4.2  The following statements hold.

(i)  The bilinear map Fq(A*)* x X* - X*:(u,x*) — p-x*, where (p-x*,x) =
(u,x* - x) defines a c.c. left operator Fo (A*)*-module action on X* such that for
eachx* € X* p py-x*:X* — X* is weak™-continuous and o (a) -x* = a-x*.

(i) The map Tq:Fq(A*)* - CB(X*) is a weak*-continuous completely isometric
algebra isomorphism of Fo(A*)* onto Mg such that T o g = Iq.

Proof (i) We have already observed that the bilinear map (g, x*) — p-x* is a com-
plete contraction. For y, v € Fo(A*)*,

((pov)x™,x) = (uov,x"-x) = (p,vo (x"-x)) = (4, (v-x")-x) = (- (v-x7) , ),
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where we have used the calculation (4.4). Also,

(na(a)-x*,x) = (nq(a),x* -x) = (x* -x,a) = (x*,x-a) = (a-x",x).

(ii) From our definition of || - || g, P: X*®X — Fq(A*) is a complete quotient map,
so P*:Fq(A*)* - (X*®X)" is a weak*-continuous complete isometry, as is the
canonical mapping A: (X*®X)* — CB(X*). For y € Fo(A*)*,

(o P*(u)(x*) %) = (P* () X" ©x) = (ox" -x) = {u-x" , x),

s0 I'g = A o P* is a weak*-continuous complete isometry of Fo(A*)* into CB(X*).
From part (i), I'g is an algebra isomorphism and I'g 077 = I'q. Since Iy is weak*-con-
tinuous with norm-closed range, its range is also weak*-closed in CB(X*) [5, The-
orem VLL10]. As To(A) = To(17q(A)), we can conclude that M, is contained in
range(T'q). By Proposition 3.2, 77 has weak*-dense range in Fo (A*)*. The contain-
ment of range(I'q ) in M, follows because I'g is weak* -continuous and Tg 0 17 = Tg.

|

Corollary 4.3  We can identify the c.c. Banach algebra (Fo(A*)*, 0) with the
weak* -closed operator subalgebra Mq of CB(X™) via a weak™-homeomorphic com-
pletely isometric algebra isomorphism Mq - Fq(A*)*: T — ur satisfying

(ur,x"-x)=(Tx",x).

Proposition 4.4 Let T € CB(X*) and consider the following statements:

(i) T e MQ;

(i) thereisac.b. linear map A:Fq(A*) - Fo(A*) suchthat Ar(x*-x) = (Tx*)-x
and | Ao <[ T ebs

(iii) there is a bounded linear map Ar:Fq(A*) - Fq(A*) such that Ar(x* - x) =
(Tx*) - x.

Then (i) implies (ii) implies (iii), and (iii) implies (i) whenever A has a bounded ap-

proximate identity for X, e.g., when A has a right bounded approximate identity and

X is essential. Moreover, when T € Mq, Ar(¢) = pur 0 ¢ and Ar = (Rr)., where

Rr:Mqg = Mq: S~ ST.

Proof Suppose that T € M. By Lemma 2.1, the map
Ar:Fq(A") — Fo(A"):¢ —uro ¢
is c.b. with || A7 | < || = | T|cb- Observe that

(Ar(x"-x),a) = (ur o (x"-x),a) = (ur, (x" - x) - a) = (ur,x" - (x-a))
=(Tx",x-a)=((Tx") x,a),

so Ap(x*-x)=(Tx*)-x. Also, A7: Mg - Mq and for § € Mq, ¢ € Fo(A¥),

(AT(S),¢) = (us pur 0 ¢) = (us 0 ur, ¢) = (usr,¢) = (ST, §),

$0 A%(S) = ST = Ry(S). This establishes the first implication and (ii) implies (iii) is
trivial.

https://doi.org/10.4153/CJM-2018-023-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-023-5

Completely Isometric Representations of Arens Product Algebras 731

Assuming that (iii) holds and (e; ) is a bounded approximate identity for the right
A-module X, let 4 be a weak*-limit point of the net ( A% (rq(e;))) in Fq(A*)*; we
can assume that A% (nq(e;)) — p weak™ in Fo(A*)*. Then

(To(u)(x"),x) = (u-x",x) = {u,x" - x)
=lim{A7(nq(e:)),x" - x) =lim(nq(e:), (Tx") - x)
=lim((Tx") -x,e;) =lim(Tx",x - ¢;)
=(Tx",x).
Hence, T = T'o (1) belongs to M. [ |

Let £q(A™) denote the |- [ 4+-closure of Fo(A*) in A*: Eq(A*) = Eg,(A).

Then by Remark 3.6, the Eberlein space associated with Q, (Eq(A*), |- |la«) is an

operator left introverted subspace of A* such that (Fq(A*)*,nq) < (EqQ(A™)*, ne).
Moreover, (£q(A*)*, ne) is the minimum LDBA over A with this property.

Remark 4.5 (i) Observe that the operator Fourier space Fq(A*) is the |- | o-
closed linear span of X* - X = {x*-x : x* € X*,x € X} and Eq(A*) is the | - | 4+-
closed linear span of X* - X. Indeed, since P: X*®X — Fq(A*) is || - | o-continuous
and span{X* - X} = P(X* ® X), this easily follows from the definitions.

(ii) When X is an essential c.c. right operator A-module, Fo(A*) and £q(A*)
are contained in LUC(A*), the | - | 4+ -closed linear span of A* - A. Indeed, as noted
in [23, Example 4.3(b)], x* - (x - a) = (x* - x)-a € A* - A, so this follows from
(i). In particular, suppose that G is a locally compact group and X is a right Banach
G-module, and X is therefore a neo-unital right Banach L'(G)-module through the
action defined by the weak integral x - f = [ x - s f(s) ds. Assuming that this L'(G)-
module action is c.c., Fo(L'(G)*) and €q(L'(G)*) are contained in LUC(G) and,
as observed in Section 4.3 of [23], in this case x* - x € LUC(G) is given by

(x*-x)(s) =(x",x-s) (seQq).

(iii) Supposethat (T(A*), |- |) is an operator left introverted homogeneous sub-
space of A* such that (Fq(A*)*, nq) < (T(A*)*, 7). Then
(4.5) I5:T(A*)" - CB(X™) given by (T3 (p)(x*),x) = {p,x* - x)
defines a c.c. weak*-continuous representation of T(A*)* on X* such that

Iyong(a)(x*)=a-x".

To see this, observe that ®:T(A*)* - Fo(A*)*, the dual of the embedding map
Fq(A*) &> T(A"),is a weak*-continuous c.c. homomorphism such that ® o 5 = #q
and Tgo® = I'y (see Corollary 3.5 and Proposition 3.2 (iii)). Since Fq(A*) < € (A*)
has dense range, @: Eq(A*)* - Fo(A*)* is a monomorphism, and therefore I'g o @
is one-to-one. Thus, (4.5) determines a faithful c.c. weak*-continuous representa-
tion of Eq(A*)* on X*. If X is an essential right Banach A-module through Q,
then, as noted in (ii), (Fo(A*)*,%q) < (LUC(A*)*,nLuc), so (4.5) determines a
c.c. weak*-continuous representation, [t yc, of LUC(A*)* on X* in this case.

Moreover, if X is an essential L'(G)-module and ®: M(G) < LUC(G)* is the
canonical embedding given by (®(y) , f) = [ f dy, then (TLuco®)(u)(x*) = pu-x*,
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the usual left dual module action of M(G) on X*. That is, [ yc extends the usual left
dual M(G)-module action on X* to a weak*-continuous module action of LUC(G)*
on X*; a different justification of this statement can be found in [23].

Theorem 4.6  The following statements hold.

() In (HLD(A),<) [(LD(A), )], (Fo(A) nq) [(Eq(A*)*,ne)] is the min-
imum operator HLDBA [LDBA] (2, 521) over A for which there is a c.c. weak™-con-
tinuous representation Ty: A — CB(X™) extending T in the sense that Ty o o = Iq.

(i) (Fo(A*)*,nq) [(EqQ(A*)*, ne)] is the unique operator HLDBA [LDBA] over
A for which there is a completely isometric [c.c. faithful] weak™ -continuous representa-
tion Tg: A - CB(X™) such that Ty o 59 = Tq.

Proof (i) By Theorem 4.2, (Fq(A*)*, nq) has this property. Suppose that (2, o)
is an operator HLDBA over A with this property. Assuming without loss of generality
that (2, 49) is an operator homogeneous left Arens product algebra (S(A*)*, ys)
over A (Theorem 3.4), let [s:S(A*)* — CB(X™) be a weak*-continuous c.c. repre-
sentation of S(A*)* such that I's o 5 = Ig. Letting 0: X*®X — S(A*) be the c.c.
predual map of I's, we have

(0(x* @), a)a-a = {15(a) . o(x* ®x)) = (Ts 0 15(a) . %" © )
= (FQ(a)(x*) ,X) = (x"-x,a)aea.

Hence, 0: X*®X — S(A*):x* ® x = x* - x; since idg: S(A*) — A* is also a c.c. (see
Definition 3.1) we obtain P = idg o0: X*®X — A*. Hence, Fo(A*) = P(X*®X) ¢
8(A*), N = ker P = ker g, and we obtain a c.c. ox: X*®X/N — §(A*); thus,

on o Py Fo(A%) - S(A*)

isac.c. A calculation shows that o o P! is the identity embedding Fq (A*) = S(A*),
$0 (FQ(A)*,nq) < (8(A*)*,ys) by Corollary 3.5.
As noted in Remark 4.5 (iii), (Eq(A*)*, ¢ ) satisfies the desired property. If

(%, na) = (S(A™) ", ns)

is an LDBA over A satisfying this property, then (Fq(A*)*,nq) < (8(A*)*, ns)
by the case above, and therefore Fo(A*) ¢ 8(A*) by Corollary 3.5. Since S(A*)
is a closed subspace of A*, Eq(A*) ¢ S(A*) and it follows that (Eq(A*)*,7e) <
(8(A*)*, 5s), using [23, Corollary 3.5].

(ii) By Theorem 4.2, T is a completely isometric representation of T (A*)* map-
ping weak*-homeomorphically onto Mg, from which it follows that (Mg, Tq) is an
operator HLDBA over A and (Fq(A*)*,%q) = (Mq,Tq). If (2, %) is any operator
HLDBA over A for which there exists a weak”-continuous completely isometric rep-
resentation Iy: 2 - CB(X™) such that Iy o 519 = Tq, then the argument provided in
the last paragraph of the proof of Theorem 4.2 shows that I'y maps onto M. Hence
(% na) = (Mg, Tq) as well, so (U, na) = (Fo(A*)",7q).

In Remark 4.5 (iii), we observed that (€4 (A*)*, n¢ ) has a weak*-continuous c.c.
faithful representation I'e on X* such that I'e o e = . If (2, o) = (S(A*)*, 1) is
any LDBA over A with a weak*-continuous c.c. faithful representation I's: S(A*)* —
CB(X*) such that I's o g = T'q, then (£q(A*)*,ne) < (S(A*)*,5s) by (i). This
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means that £g(A*) € S(A*) and, letting 1 denote the associated embedding map,
D = 1*:§(A*)" - Eq(A*)” satisfies D o g = ne. Since [g o D oyg = T oye =
Tq =T o 55, weak*-density of 5 (A) in S(A*)* implies that I'e o @ = I's. Hence, ®
is injective and, as noted in [23, Definition 3.2], ® is necessarily surjective; therefore
¢ maps onto S(A*). Thus, Eq(A*) = 8(A*), as needed. [ |

Observe that foreach a € A,Tq(a)(x*) = a-x* isa weak*-continuous c.b. operator
on X*, i.e., observe that I'g o g = Tq maps A into CB?(X*).

Corollary 4.7  Let (2, 1) be an operator HLDBA [LDBA] over A for which there is a
completely isometric [c.c. faithful] weak™ -continuous representation Ty: 24 - CB(X™)
such that Ty ong maps Ainto CB? (X™). Then there is a c.c. right operator A-module ac-
tion Q:X x A — X such that Ty o no = Tq and (A, 1) = (Fo(A)*,nq)
[= (Ea(A")* 1))

Proof Since Iy o 57y € CB(A,CB(X™)) is a c.c. homomorphism, X* is a c.c. left
operator A-module through

P A x X" — X*:(a,x*) —>a-x"=Tyo qm(a)(x*)

[10, Proposition 7.12]. Foreach a € A,let Q( -, a): X - X:x — x-a denote the predual
map of the weak*-continuous map y(a, - ) on X*. Then {(a-x*,x) = (x*, x-a), from
which it follows that x - (ab) = (x - a) - b. Observe that

yZ:X* % X** — A* and yZZ:X** % A** N Xx—*

are c.c. bilinear (by Lemma 2.1) and y**(%, @) = Q(x, a)". It follows that X is a c.c.
right operator A-module through Q such that y is the associated left dual module
action on X*. Since Ty oxyg(a) (x*) = a-x* =Tq(a)(x*), (A, na) = (Fo(A*)*, nq)
[2 (Eq(A™)*,%e)] by Theorem 4.6. [ |

Remark 4.8 It follows from Corollary 4.7 that several commonly studied operator
HLDBAs over A can be recognized as (Fq(A*)*,nq) or (Eq(A*)*, ne) for some
module action Q. We discuss some specific examples in the next section. More-
over, if (2, %) is an operator LDBA over A for which there is a completely isometric
weak*-continuous representation Iy: 2 — CB(X™*) such that [y o n9(A) is con-
tained in CB?(X*), then there is a c.c. right operator A-module action Q on X such
that Tyco g = T, (2, 1) = (Eq(A*)*, ne) = (Fq(A*)*, 51q) and, by Corollary 3.5,
Fq(A*) = Eq(A¥) = 8o (A*) with equality of the matrix norms | - ||q and | - || a» on
this common space

It will be useful for us to be able directly to determine when Fq(A*) = Eq(A¥)
and ||-|q = || |a» without employing Corollary 4.7 together with pre-existing the-
ory. In the following proposition, : denotes the c.c. embedding Fq(A*) = Eq(A¥)
and @ := 1*:Eq(A*)*" - Fo(A*)* is the weak*-continuous c.c. weak*-dense range
homomorphism such that ® o ¢ = 74.

Proposition 4.9  The following statements are equivalent.
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(i) Fq(A*) = Eq(AY) and the matrix norms |- |q and |- || a+ are equal on this
common space.

(i) ©:Eq(A*)" = F(A*)* is a complete isometry;.

(iii) For each positive integer n and each y € M,(Eq(A*)*), |Pn(p)|q = |l ax-

These three equivalent conditions hold whenever

Sy = {[xzj~xk,l] : [xfj] € M,(X*)H.Hsl, [xk.1] € M (X)) <1 and rs = n}

is | - || ax-dense in M, (EQ(A™))| - <1 for each positive integer n.

Proof That (i) implies (ii) is obvious, as is the equivalence of statements (ii) and
(iii), since @ is a c.c. Suppose that ® = /* is a complete isometry. Then ¢ has closed
dense range in €4 (A*) and it follows that o (A*) = Eq(A*). By the open mapping
theorem, the norms | - | and | - || s+ are equivalent on this set, i.e., on M;(Eq(A*)),
so the sets Fo(A*)* and Eq(A*)* are also one and the same. Hence, ® = /* is the
identity mapping of £q(A*)* onto Fo(A*)*. As @ is a complete isometry, so is 1 =
o |3'~Q( a)> which establishes the final implication (ii) implies (i).

Assuming that 8, is || -||4+-dense in M, (Eq(A*))|-|<1» we will now show that
condition (iii) holds. To see this, first note that §,, is contained in M, (Fq(A*))| - o<1
since, as observed in the proof of Theorem 4.1, Q": X* x X — Fo(A*) is a c.c. with
respect to | - | q. Taking 4 = [pe s] € M,(EQ(A*)*), this observation and our hy-
pothesis give

[©4() @ = sup{ | [(D(pe,r) > $uv) -0 ]|  [Buv] € Mu(FQ(AT)))- g}

( ]
(e $unden-eol|  [Dun] € Mu(FQ(A)))- Jout |
( ]
( [

> sup{ | [(pe,r 75 Xia)en-eql| + (67 xka] €8}
= sup{ | [{tter> $un ez e : [Dur] € Ma(EQ(A)))- i}
= |lplax
as needed. -

4.2 The Fourier Space J,(A*)

Unless stated otherwise, in this section A is a (not necessarily c.c.) Banach algebra and
X is a contractive right Banach A-module through the action

GXxA— X:(x,a) — x-a.

By replacing the operator space projective tensor product ® with the Banach space
projective tensor product ®” and dropping the words operator, complete and com-
pletely, we obtain the Fourier space F4(A*) and its Fourier norm | - | 4:

Fq(A7) = p(X™ ®” X) = pn(X" ®" X/N),

where p: X* @’ X — A*:x* ®x — x*-x is the contractive linearization of ¢’: X* x X —
A*, N =ker pand || - |4 is the Banach space quotient norm inherited from X* ®¥ X /N
via the A-module isomorphism py: X* ®” X/N — F,(A*), i.e., for ¢ € F (A"),

(4.6) [¢lq =inf{[[&],: &€ X" ® Xand p(§) = ¢}.
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In this situation, we have the following familiar-looking descriptions of F,(A*)
and | - |-

Proposition 4.10  Thepair (F4(A*), | - | ¢) is a left introverted homogeneous subspace
of A*. If (x}) and (x,) are sequences in X* and X, respectively, and ¥ | x| ] x.| <
oo, then ¢ = Y x;, - x,, belongs to F,(A*); 0(A*, A)-convergence of the series implies
| - |4-convergence and | - | a«-convergence. Conversely, if ¢ € F,(A*), then there are
sequences (x) in X* and (x,) in X such that ¥ |x}|||x.| < o0 and ¢ = ¥ x5 - x5
moreover, [ $|q = inf {3 [xyxn]: ¢ = X xy - xn}.

Proof The first statement follows from (simpler) versions of the arguments used to
establish Theorem 4.1. Recall that £ € X* ®” X exactly when there are sequences (x})
in X* and (x,) in X such that )’ |x [ x| < co and & = ¥ x;; ® x,, with | &], equal
to the infimum of Y | x| ] x,| taken over all such representations of &. Since p is a
contractive surjection onto F4(A*), the validity of each remaining statement follows
from (4.6) via routine arguments. |

As in Subsection 4.1, the bilinear map Fy(A*)* x X* — X*: (4, x™) = p - x* de-
fined by (u-x*,x) = (u,x* - x) is a contractive left F,(A*)*-module action on X*.
Let M, denote the weak”-closure of I, (A) in B(X*), where Ty (a)(x*) = a-x*. Then
[;:F,(A*)* - B(X*),defined by Iy () (x*) = u-x*, is a weak* -continuous isomet-
ric algebra isomorphism of F;(A*)* onto M, such that I; o ; = T,. In particular,
we have the following proposition.

Proposition 4.11 ~ We can identify the Banach algebra (F4(A*)*, o) with the
weak”™ -closed operator subalgebra My of B(X™) via the weak” -homeomorphic isomet-
ric algebra isomorphism My — F,(A*)*:T w ur defined by (ur, X x; - xp) =
S(Txs , xa) whenever 3. |5 [ < oo.

Letting £,(A*) = E5,(A"), the || - | a+-closure of T, (A*) in A*, the Eberlein space
associated with g, (€4(A*), |- [|a+), is a left introverted subspace of A* by Proposi-
tion 3.2.

Remark 4.12 The Banach space analogues of the statements found in Remarks 4.5,
Theorem 4.6, Corollary 4.7, Remarks 4.8, and Proposition 4.9 all hold.

Remark 4.13  To close this section, assume again that A is a c.c. Banach algebra, X is
ac.c. right operator A-module via Q: XxA — X, and let g: X x A — X denote the same
module action with the operator space structures of X and A ignored. Then we have
the containments F, (A*) € Fo(A*) € Eq(A*) = E4(A") and, for each ¢ € Ty (A*),
I9lla < 9] V

To see this, note that because (Fq(A*)*, %) is an HLDBA over A such that I,
when viewed as a mapping of ¥ (A*)* into B(X™), is a contractive weak* -continuous
representation such that g o7q = T = I, the Banach space versions of Theorem 4.6
and Corollary 3.5 imply that (F;(A*), |- [4) is contained in (Fo(A*), |- [q) viaa
contraction. The equality Eq(A*) = ,(A*) follows from Remark 4.5 (i) and its
Banach-space counterpart.
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5 Examples

In this final section, we will apply our theory to several specific module operations
X x A — X, thereby recovering, and often extending, results concerning (completely)
isometric representations of familiar Banach algebras associated with A. Moreover,
by applying Theorem 4.6 to these module actions, we obtain new characterizations
of these well-studied Banach algebras. The identification of some (but not all) of the
spaces studied in this section with Fo(A*) and Eq(A*) for some Q could also be
achieved by using pre-existing theory in tandem with Corollary 4.7 and Remark 4.8.
However, a primary goal in this section is to show how our theory can be applied in a
variety of situations to extend and provide new proofs of previously known theorems.

5.1 The Fourier Spaces F,(A*)

The main objects discussed in this section, F,(A*) and its dual, are new. In the case
that A is the group algebra L'(G) of a locally compact group G and {7, 3} is a con-
tinuous unitary representation of G, we recover the Ar.sac—Fourier spaces A, [2].

When H is a Hilbert space and & € H, we will write £ when viewing & as an element
of 3, the conjugate Hilbert space of 3. For B € B(3(), observe that B € B(3{) where
B( §) = (B¢ ),and B + Bisa conjugate-linear isometric *-isomorphism of B(3() onto
B(J). Hence, ®7:(B) := (B*) = (B)* defines a linear isometric anti-homomorphic
*-isomorphism of B(7H) onto B(J).

Let A be a Banach algebra, m: A — B(XH) a contractive representation of A on K.
Then 7 := @z; o m A — B(H), i.e, 7(a) := (n(a)*), is a contractive, linear anti-
homomorphic representation of A on . Therefore, if for a € A and & € , we let

§-a=(a)(§) = (n(a)*(§)).
then g: H x A - I: (£, a) ~ £-a defines a contractive right A-module action on .
We will use (F,(A*), [ - | =) to denote the associated Fourier space (I, (A*), | - 4, )-
Since J can be identified with the dual space of { via the linear isometry
¢:H - T & o
givenby (¢g. )5 gz = (i1 | §)5c = (€| m)ac, wehave gl HxTC > A (&1) = g1,
where
(9g-11.a) ={9e. - a)ge e = (i1~ al E)ge
={(m(a)"(n)) | &) = (& m(a)*n)sc
= (m(a)& ] m)sc.

Using the coefficient function notation &x, 17(a) = (n(a)& | #)g¢ (see Arsac [2] when
A = L}(G), with G alocally compact group), we thus have

G Hx F— A" (& 77) > Exa .

In the next theorem we will further assume that A is an involutive Banach algebra
and {7, H} is a *-representation of A. (Observe that in this case 77 is also a *-map.)
Of course, a version of this theorem also holds without making these assumptions,
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the main difference being that 7, as defined below, may not be *-map and F,(A*)*
may fail to be a W*-algebra.

Theorem 5.1 Let A be an involutive Banach algebra and {m, H} a *-representation
of A.

(i) If (&), (nn) are sequences in H and Y. | &, |na] < oo, then ¢ = Y&, *,
Nn € Fo(A*) with 0(A*, A)-convergence implying | - || ,-convergence. Conversely, if
¢ € Fo(A*), then there are sequences (&,) and (1,) in H such that Y | &, ||| 114 < o0
and § = 5, k15 moreover; |§lx = F(S |l [l : 6 = 5 En 5 0}

(i) (Fo(A*),|-|lx) is a left introverted homogeneous subspace of A* closed under
¢ — ¢*, where ¢*(a) = ¢(a*). Furthermore, (%, 1)* = 5 x, Eand ¢ — ¢ is
isometric with respect to || - | a+ and || - | .

(iii) With respect to the involution defined by u*(¢) = u(¢p*), p € Fo(A*)*, ¢ €
Fn(A*), (F(A*)*, 0) isa W*-algebra, and 7i: F,(A*)* — B(H) given by

()& mac = (> E*+a n)ar o,

is a weak™ -homeomorphic isometric x-isomorphism of F,(A*)* onto

*

——wk
VN, =n(A) ,

the von Neumann subalgebra of B(H) generated by m on A. Moreover, 7t o 1, = T,
where 1, is the canonical homomorphism of A into F,(A*)*.

(iv) Themap VN, — F,(A*)*: T — ur is a weak* -homeomorphic isometric -iso-
morphism where (fr, 3. &y *n n)gs—5, = 2ATEn | 1n)sc whenever 3. &, *, 1, €
Fn(A*) (with 3 ||E4 ||| < 00). In particular, VN, can be identified with the dual of
Fn(A").

Proof Part (i) and the statement that (F,(A*), |- | ) is a left introverted homoge-
neous subspace of A* are immediate consequences of Proposition 4.10 and the pre-
ceding discussion. One can quickly verify that (&x,7)* = n*,&and ||¢* | a» < | P]axs
since (9°)° = 6, 9 |- = [$lar- 166 = 3£y a1 € To(A%) with 3. |E] 1] < oo
then part (i) gives Y. 17, * &, € Fo(A*) and ¢* = (X & *2 11u)* = X fn *2 & bY
| - | 4+ -continuity of ¢ — ¢*. Part (i) now yields |¢* | < || @] z» which in turn implies

that "]z = [ ¢]l-
By Proposition 3.2, (F,(A*)*, 0) is a Banach algebra and, as noted in the para-

graph preceding Proposition 4.11, fq”: Tr(A*)* = Mg, is a weak*-homeomorphic
isometric algebra isomorphism onto M, the weak*-closure of Iy (A) in B(ﬁ*).
Here

(Ta, (1)(96) s e 52 = (- P> e 56 = (> Exm 1),
(T (a)(@e) > M5er _a¢ = (@ 9es Mgp _5¢ = (@ 11+ a)gpr _a¢ = (m(@) & | m)ac.

Define an isometric algebra isomorphism, «, of B (ﬁ*) onto B(H) by putting x(B) =
¢ 'oBog. ForBe B(ﬁ*) and &, 17 € H(, we have ¢, (5y: = ¢ o k(B) (&) = B(¢;), so

{(k(B)E [ mac = (9xmye> Mar _5e = (B(9e) N)e 5>
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from which it follows that « is a weak”-homeomorphism and 7 = x o I; . Conse-
quently, 77 := kol : T (A*)* — B(J() isaweak*-continuous isometric isomorphism
mapping F,(A*)* onto

* * *

K(My,) = k(T (A" ) = x(Tq, (AN =a(A)"™ =N

VNz,
(#()E | m)ac = (k(Tq, () E | Mhac = (Tq, () (98) > )5+ 5¢ = (4> & *n 1),
(tona(a)(&) | n)ac = (na(a),&xnn)=(n(a)é|n)s.

Let y € F,(A*)*. Then p* € F,(A*)* and

(W) & nhac = (us (Sxn ) ) = (o &) = (7 () | Sac = (7 (W)™ E [ s,

s0 77 is also a *-isomorphism onto the von Neumann algebra VN,,. Hence, F,(A*)*
isa W*-algebra, which completes the proof of (iii). Part (iv) is a consequence of part
(ii). n

Remark 5.2 By Theorem 4.6 and Remark 4.12, (F,(A*)*, #,) is the minimum
HLDBA in (HLD(A),<) [unique HLDBA] (2L, g) over A for which there is a
weak*-continuous contractive [isometric] representation Iy:2l — B(J) such that
Iy ong = .

Suppose now that G is a locally compact group and {7, 3} is a continuous unitary
representation of G. Then {7, H} determines a non-degenerate *-representation of

LY(G) through (n(f)& | n)ac = [{n(s)&| n)acf(s)dsforall f € L'(G) and &, 1 € K.
Using the definition provided above of & *, 1 € L'(G)* = L*(G), we obtain

[ Exa @75 ds = (Exan Pl = (2D Mo = [ (r()E] macf (<) ds.

In L*=(G), & %, n therefore equals the continuous coefficient function s — (7(s)& |
)¢ on G, as defined in [2].

Applying Theorem 5.1 (i) to the *-representation {7, H} of L'(G), we see from
[2, Theorem 2.2 (ii) and (iii)] that our Fourier space F,(L'(G)*) is precisely Arsac’s
Fourier space A, and our Fourier norm |- |, agrees with the Fourier-Stieltjes al-
gebra norm on B(G) restricted to A,. (In particular, when {7, K} is the left reg-
ular representation {1,, L*(G)}, and the universal representation {wg,H,}, of G,
F.(L'(G)*) is, respectively, the Fourier algebra A(G), and the Fourier-Stieltjes alge-
bra B(G).) We also see that the usual identification of VN, with A% is a special case
of the general result described in Theorem 5.1 (iv), which in turn is a special case of
Proposition 4.11. Furthermore, Theorem 5.1 identifies A as a left introverted homo-
geneous subspace of L' (G)*, and the product in VN, as an Arens product over L'(G).

To reduce the length of this paper, we will postpone the detailed study of the
Fourier spaces F,(A*) of an involutive Banach algebra A, and the corresponding
Fourier-Stieltjes spaces, C*-algebras, von Neumann algebras, and Eberlein spaces to
a subsequent paper.
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5.2 The Figa-Talamanca-Herz Spaces A,(G)

Let G be a locally compact group, 1 < p < oo, and let p’ be the conjugate index,
satisfying 1/p + 1/p’ = 1. In this subsection, we will observe that A,(G) is also an
example of a Fourier space 4 (L'(G)*) and will recover the identification of A, (G)*
with the Banach algebra of p’-pseudomeasures, PM,(G).

Letting {1,, L?(G)} be the left regular representation of G on L?(G) defined by
Ap(s)é(t) = &(s7't) for £ € LP(G) and s, t € G, LP(G) becomes a contractive right
Banach G-module through & - s := 1,(s™")¢. Hence, as noted in Remarks 4.5 (ii)
and 4.12, defining ¢q: L?(G) x L'(G) — LP(G) through the weak integral £ - f =
[ &-sf(s)ds, LP(G) is a contractive neo-unital right Banach L'(G)-module such
that

¢':L7 (G) x LP(G) — LUC(G): (1, §) +— 1 §
satisfies - &(s) = (n, &+ s) 1o = [ E(st)R(7") dt = €% 7(s). Let
(Ap(G), |- [la,) = (Fo(L(G)) - )

and let PM,(G) denote the weak*-closure in B(L?(G)) of A,(L'(G)), where 1, is
defined on L'(G) through the weak integral A, ()& = [ 1,(s)& f(s) ds.

Corollary 5.3 Let ¢ € CB(G). Then ¢ € A,(G) if and only if there are sequences

(&) in LP(G) and (1) in LP'(G) such that | &, | | 7allpr < 00 and ¢ = X &, # i1,
(with pointwise convergence implying | - || a, and uniform convergence); moreover

[@1a, = inf{ D7 N Eulplnallpr = @ = D &t}

Furthermore, (Ay (u)(1), &) 1o = (4> & * M) az_a, for n € LV (G), & € LP(G),
defines a weak™-homeomorphic isometric algebra isomorphism A, of A,(G)* onto
the operator subalgebra PM, (G) of B(L¥'(G)). Thus PMy(G) and A,(G)* can
be identified through the pairing (T, ¥ &, * ﬁn)A;_AP = Y{(THn, &n) 1y _» Whenever
5 17 < oo.

Proof The first statement follows from Proposition 4.10 and the above discussion.
As noted in the paragraph preceding Proposition 4.11,

Ay (:=Tg): Ap(G)* > My € B(L? (G))
is a weak*-homeomorphic isometric algebra isomorphism onto M,, where
(/ip'(#)('l) &) e = usm- 5>A;—AP =(u, &~ ﬁ)A;—AP

and M, is the weak*-closure of 1, o 7,(L'(G)) in B(L?'(G)); here, as before, 7,
is the canonical homomorphism mapping L'(G) into F,(L'(G)*)* = A,(G)*. But,
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for f € L'(G), £ € LP(G),and 7 € L” (G),
Ao (1a (DY) 5 E)iwr_po = (1a(F) % A az-a, = (€5 77, i
- [ [ &onsnars(s)as

= [ OO, Do 1o f(s) ds
= (A ()1 E) 1w 1o
) ip/ o014 = Ap. Hence, My = PM,(G). ]

Let 1, denote the canonical homomorphism of L'(G) into A,(G)*. Observe
that by Theorem 4.6 and Remark 4.12, (A,(G)*,#,) is the minimum HLDBA
in (HLD(L'(G)),<) [unique HLDBA] (2,79 ) over L'(G) for which there is a
weak*-continuous contractive [isometric] representation Ty:21 — B(L?' (G)) such
that rg[ o g = AP"

5.3 The Space of Left Uniformly Continuous Functionals on A, LUC(A*)

Given a (c.c.) Banach algebra A, recall that LUC(A™) is the closed linear span of A* -
A, where (a* - a,b) = (a*,ab). By recognizing LUC(A*) as £,(A*) = F,(A*)
(Eq(A*) = Fq(A*)) associated with the right module action of A on itself, with
Theorem 5.5 we establish a (completely) isometric identification of the Banach algebra
LUC(A*)* with B4(A*) (CB4(A*)), the operator (c.c.) Banach algebra of all (c.b.)
A-module maps on A*. This extends each of the corresponding results describing
LUC(A*)* found in [6,13,15,16,19] for various examples of A. Corollary 5.4 provides
new characterizations of LUC(A*)*.

Suppose first that A is a (not necessarily c.c.) Banach algebra with a contractive
right approximate identity. Let X = A, and consider the right A-module action

GXxA— X:(x,a) — x-a=xa.

Then g": A* x A > A*:(a*,a) — a* - a, where (a* - a,b) = (a*,ab). Hence, in
this case g’ is just the usual right A-module action on A*. Since A has a contrac-
tive right approximate identity, the Cohen Factorization Theorem (as stated prior to
Corollary 2.2) implies that LUC(A*) = A* - Aand

(5.1) LUC(A*)” <1 € (A*)” ‘<1 A” <1 € LUC(A*)” ‘<t

As E4(A") is the | - | 4+-closed linear span of X* - X = A* - A, we see that £,(A*) =
LUC(A*) in this case. Moreover, (5.1) implies that 8; = {x*-x : |[x*|| <1and |x| < 1}
is || - |-dense in the closed unit ball of €,4(A*), so LUC(A*) = £,(A*) = F4(A*) and
|- ]a* =1l-lq (see Remarks 4.12 and Proposition 4.9).

Now suppose further that A is a c.c. Banach algebra with a contractive right ap-
proximate identity. Then X = A is a c.c. right operator A-module via

Q:XxA— X:(x,a) —> x-a=xa.

Letting q denote the same module action with the operator space structures of A and
X ignored, the above discussion and Remarks 4.13 give

Fq(A") = Fq(A7) = €q(A7) = €4(A”) = LUC(A").
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Moreover, since Q": A* x A - A*:(a*,a) — a* - ais a c.c. right operator A-module
action on A* and £q(A*) = A* - A, by Lemma 2.2,

My (Eq(A")))-j & { [akr-a] s [ag,] € Mu(A) | jcr @ € A}
€ Mu(€q(A")))- a1

for each positive integer n. Since X = A, this implies that §,,, as defined in Proposition
4.9,1s || - [ a-dense in M,,(Eq(A*))|- <1 for each n. Hence, the matrix norms | - [|q
and || - | 4+ are equal on Fo(A*) = Eq(A*) = LUC(A*).

By Theorem 4.2 (i), A* is a c.c. left operator LUC(A*)*-module via

LUC(A")* x A" — A*:(p,a")— poa®,

where (uoa* ,a) = (u,a*-a), using the standard notation; moreover, yc(a)oa* =
a-a” is the left dual A-module action on A*. Let

I"A— CB(A") and TIiyc:LUC(A*)* — CB(A")

be defined by I'(a)(a*) = a-a* and I[Lyc(p)(a*) = u 0 a*, and let Myyc denote the
weak*-closure of ['(A) in CB(A*). Then by Theorem 4.2 (ii), I'Lyc is a weak™-con-
tinuous completely isometric algebra isomorphism of LUC(A*)* onto Mryc such
that FLUC °HLuc = I.

As an immediate corollary to Theorem 4.6, we obtain the following new charac-
terizations of LUC(A*)*.

Corollary 5.4 Let A be a c.c. Banach algebra with a contractive right approximate

identity. The following statements hold.

(i) (LUC(A*)*,nruc) is the minimum operator HLDBA [LDBA] (2, ng() over A
in (HLD(A),<) [(£LD(A), <)] for which there is a c.c. weak™ -continuous repre-
sentation Tg: A — CB(A*) such that Ty o g = T.

(i) (LUC(A*)*,nruc) is the unique operator HLDBA [LDBA] (2, 151) over A for
which there is a completely isometric [faithful] weak™ -continuous representation
To: A — CB(A*) such that Ty o gy = T.

Let CB4(A*) denote the c.c. Banach algebra comprised of all c.b. right A-module
maps on A*; so an operator T in CB(A*) belongs to CB4(A*)if T(a*-a) =T(a*)-a
foreacha* € A*and a € A.

Theorem 5.5 Let A be a c.c. Banach algebra with a contractive right approximate
identity. 'Then we can identify the c.c. Banach algebra (LUC(A*)*, 0) with the
weak™ -closed operator subalgebra CB4(A*) of CB(A*) via the weak* -homeomorphic
completely isometric algebra isomorphism CB4(A*) — LUC(A*)*: T — ur defined
by (ur,a*-a)=(Ta*,a).

Proof By Corollary 4.3, Miyc - LUC(A*)*: T +~ ur satisfies the properties de-
scribed above, so it suffices to show that Myyc = CB4(A*). To see this, suppose first
that T € Mpyc. Then yr € LUC(A*)* and for any b € A,

(T(a”-a),b)=(ur,(a"-a)-b)=(ur,a”-(ab)) = (Ta",ab) = ((Ta") - a,b).
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Hence, T € CB4(A*). Assuming that T € CB4(A*), by Proposition 4.4 we can

establish that T € Myyc by showing that Ar(a* - a) = (Ta*) - a defines a bounded

linear mapping of LUC(A*) into itself. To see this, first note thatif a*-a = b* - b, then
(Ta*)-a=T(a"-a)=T({b"-b)=(Tb")-0,

so At isawell-defined map. Taking ¢;, ¢, € LUC(A*) = A*-A, by [14, Theorem 32.23]
there are elements a;, a; € A* and a € A such that ¢, = af -a and ¢, = a} - a. Hence,
foryeC,

Ar(ydi+¢2) = Ar((yar +a3)-a) =T(ya +a3)-a
=y(Tay)-a+(Taz) - a=yAr(d) + Ar(¢2),
showing that A7 is linear. Finally, observe that
[Ar(a™-a)| = [(Ta")-a] <|T][a"]]a]

and, as noted above, 8; = {a* - a: |a*| <land |a| <1} is | - || a+-dense in the closed
unit ball of LUC(A*). Hence, A7 is bounded, with | Ar| < | T]. [

Remark 5.6 The same argument shows that if A is a (not necessarily c.c.) Banach
algebra with a contractive right approximate identity, then we can identify the Banach
algebra LUC(A*)* with B4(A*), the weak*-closed operator subalgebra of B(A*)
comprised of all bounded right A-module maps on A*, via the weak*-homeomorphic
isometric algebra isomorphism defined as in Theorem 5.5. The Banach space version
of Corollary 5.4 also holds.

5.4 Representations of LUC(G)* as Completely Bounded Maps on B(¥)

Throughout this section, G is a locally compact group and {7, H} is a continuous uni-
tary representation of G. Observe that T'()), the Banach space of trace-class opera-
tors on 3 with the trace-class norm || - |, becomes a right Banach G-module through
theaction K-s = (s )Kn(s), (K € T(H),s € G) (see [3, Lemma 2.1]) and therefore,
as noted in Remark 4.5 (ii), T(H) is a neo-unital right Banach L'(G)-module via

QT(H) x L'(G) — T(H): (K. f) — K- = [ K-sf(s)ds.

Throughout the remainder of this section, Q will refer to this module action, s € G,
and, unless stated otherwise, T and K are operators in B(H) = T(H)* and T(H),
respectively.

Letting £ ® 1 denote the rank-one operator (§®%*)({) = ({| #)& on H, observe

that ({@7%) -5 = (n(s™)§) @ (n(s™)n)".

Proposition 5.7  With respect to Q, T(H) is a neo-unital c.c. right operator L'(G)-
module.

Proof Since L'(G) has the max operator space structure,
B(L'(G),CB(T(H))) = CB(L'(G), CB(T(H))) = CB(T(H) x L'(G), T(H))

[10, Sections 3.3 and 7.1]. To establish that Q is a c.c., it therefore suffices to show
that given f in L'(G), Qf(K) = Q(K, f) is c.b. on T(H) with | Q[ < | f]h-
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Equivalently, we will show that the dual map Qf is c.b. on B(3) = T(H)" with
|Q} v < [ f - To this end, for T € M, (B(H)) = B(H") with | T| <1and &, 7 € "
with | €], [#]] < 1, we will show that | ((QP)n(T)E | n)acn| <[ f - We have

Qf(Tl])f]|r] | ‘z": Qf z]) £]®’7>B T‘

1 i,j=1

(T,,, / f]®’7f)'5f(s)ds)34|

’((Qf) (T)E| n)sc

l

i,j=1

> [ (T © (x(™)1) )orf (5) d

i,j=1

:‘f Zn: (Tijm(s)E | (s )mi)ac )f(s)ds|

i,j=1
= [Tl ™)ED ] (s ma)aen £s) d|
< [Tt | (™ madses| ()] ds

<[ flh
since | T <1, [ (n(s™)&;);] = €] <1and [(w(s™)ni)i] = |n] <1. u

As noted in Remark 4.5 (ii), Fo(L'(G)*) and €q(L'(G)*) are contained in
LUC(G)and T-K(s) = (T, K-s)p_1. Hence, if K € T(H) iswrittenas K = ¥ &, ®7,
then
(5.2)

T-K(s) = ((T, Zn(s‘l)fn ® (n(s)m)"), . = X Tr(s™) 8 | n)oc

Moreover, by Remark 4.5 (iii), g = I['(¢) € CB(B(9()), where

(T(u)(T),K) = (u,T-K)
defines a c.c. weak*-continuous representation of LUC(G)* as c.b. maps on B(K).
If, as in [23, §4.3], we employ the notation (i, f)rucr -ruc = [ f(s) du(s), then we
obtain the following formulation of T from (5.2):

(L) (D)E [ mac = (T(p)(T), E@n") = {u, T-(§@17))
= [ Ta(s™)E m)ac du(o).

By composing I' on LUC(G)* with the left-strict-weak* -continuous completely iso-
metric embedding ® of M(G) into LUC(G)* and noting that the restriction of ® to
L'(G) is Luc, we obtain the c.c. left-strict-weak* -continuous representation

Ty M(G) — CB(B(H))
given by (Ty () (T)E | n)ac = [(m(s)Tr(s™)E | n)ac du(s) of M(G) as c.b. opera-
tors on B(J(); here the left-strict topology on M (G) is taken with respect to the ideal

L'(G) [22, Lemma 1.2]. Observe that [11, Lemma 5.1 and Theorem 5.2] are contained
in these remarks.
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The formulation u — T'(u), where

<r(l/‘)(T)f|”I)i}C:f(”(S)T”(S_l)HW)J{dM(S)

also yields a weak* -continuous completely isometric representation of Fo (L'(G)*)*
and a c.c. weak* -continuous faithful representation of € o (L'(G)*)* as c.b. operators
on B(H) (Theorem 4.2 and Remarks 4.5 (iii)). When {7, }} is the left regular repre-
sentation {,, L*(G)} of G, we will now show that Fo (L' (G)*) = LUC(G) and, asan
immediate corollary, will thereby recover the completely isometric weak”-continuous
representation of LUC(G)* as c.b. mappings on B(L?(G)) due to Neufang [17,18]. (It
would be interesting to identify and study Fo(L'(G)*) and €4 (L'(G)*) for other
continuous unitary representations {7, 3} of G.)

For the proof that follows, we note that since L'(G) has a (contractive) bounded
approximate identity, LUC(G) = L*™(G) - L'(G); moreover, for ¢ € L=(G) and
feLG), (¢-)(t) = f+¢(t) = [ f(s)p(s7't) ds where f(s) = A(s™) f(s7).

Theorem 5.8 Let Q: T(H) x L'(G) — T(3) be taken with respect to {A,, L*(G)},
and let q be the same module action with the operator space structures ignored. Then
(5.3) LUC(G) = €q(LY(G)") = Fo(L'(G)") = F4(LY(G)"),

the matrix norms | - | q and | - | .1y~ agree on this common space, and

I-lg =1+l ey
on LUC(G).

Proof We have already observed that each of the spaces displayed in (5.3) is con-
tained in LUC(G). Let y = [yi,;] € M, (Eq(L'(G)*)) with [[y[1(g)+ < 1. To see
that £ (L'(G)*) = Fo(L'(G)*) and the matrix norms | - | g and || - | 11(g)~ agree, by
Proposition 4.9 it suffices to find T = [T;,;] € M, (B(3))|. <1 and K € T(H) ||«
such that [Wi,j] = [Ti,j . K]

Since (¢, f) = ¢ - f = f * ¢ defines a c.c. right operator (dual) L'(G)-module
action on L*(G), LUC(G) = L*(G) - L'(G), and y € M,,(LUC(G))| - <1, it follows
from the Cohen Factorization Theorem (Lemma 2.2) that [y; ;] = [¢;,; - f] for some
[¢:,j]in My, (L=(G))|- <1 and f € L'(G)|. |<1- The map L=(G) — B(H): ¢ = My,
where ¢(s) = ¢(s7!) and M is the multiplication operator on J{ = L*(G) by ¢, isa
composition of *-isomorphisms of C*-algebras and is therefore a complete isometry
(10, p. 26]. Letting T;; = My, , we therefore have T = [Ti,;] € M,(B(3()) with
| T| < 1. Following the proof of [11, Theorem 5.3], we now define &, 7 € JH by letting
E=f2, n(t) = F()/If[M2(¢) if f(t) # 0and 5(t) = 0 otherwise. Then K = E@ 7" €
T(90) with [K ]y = |2l = |f ] = |1 < 1and for t € G,

Tij- K(t) = (Ti,jAa(t7)E A2 (7)) = fcpi,j(s*l)f(ts)mds
:f¢i»j(s_l)f(ts)d5:ff(5)¢i,j($_lt)ds

=[x ii(0) = (90 (1) = yi;(0).
Thus, [y ;] = [T;,; - K] with | T|| <1and |K]; <1, as needed.
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Observe that the above argument shows that any y € LUC(G) with ||y| < 1
can be written as y = T - K € Fo(L'(G)*) for some T € B(H)|.|q and K €
T(H)|.<1- Hence, LUC(G) = Fo(L'(G)*) = Eq(LY(G)*) = €4(L'(G)*). More-
over, £,(L'(G)*) = F4(L'(G)*) and | - |4 = | -] 12()+ by the Banach space version
of Proposition 4.9 (see Remarks 4.12). [ |

The following is an immediate corollary to Theorems 5.8 and 4.6. Part (i) was first
proved by Neufang [17,18]; parts (ii) and (iii) are new.

Corollary 5.9  The following statements hold.
(i) The map T:LUC(G)* — CB(B(L*(G))) given by

(T = [ Qa(s)TA(™)E | ) du(s)

defines a completely isometric weak™-continuous representation of LUC(G)* as c.b.
mappings on B(L*(G)).

(ii) (LUC(G)*,nruc) is the unique operator HLDBA [LDBA] (2, n151) over A for
which there is a completely isometric [c.c. faithful] weak™-continuous representation
Iy: A - CB(B(L*(G))) such that Ty o ny(f) = T(f) for each f € L'(G).

(iii) (LUC(G)*,nLuc) is the minimum operator HLDBA [LDBA] (2, ng) over
LY(G) in (HLD(LY(G)), <) [((LD(L(G)), <)] for which there is a c.c. weak*-con-
tinuous representation Tg: 2 — CB(B(L*(G))) such that Ty o o (f) = T(f) for each
f e L'(G).

Composing ' from Corollary 5.9 with the embedding ®: M(G) = LUC(G)",
yields the completely isometric representation of M(G) as c.b. operators on B(L*(G))
due to Stermer in the abelian case [24], Ghahramani in the general isometric form
[12], and Neufang, Ruan, and Spronk in the completely isometric form [19].

5.5 Other Examples

There are many other examples of operator HLDBAs (2, 575) for which there is a
completely isometric weak*-continuous representation I'y: 2 — CB(X™) such that
Ty o 9 maps A into CB? (X™).

For instance, if A is a (c.c.) Banach algebra and 8(A*) is a closed introverted sub-
space of A* contained in WAP(A*), the space of weakly almost periodic function-
als on A*, then 8(A*)* is a (operator) dual Banach algebra over A and therefore,
by [9, Corollary 3.8] (the main result of [25]), there is a reflexive (operator) space
E and a (completely) isometric weak*-continuous representation I's of S(A*)* into
B(E) = B°(E) (CB(E) = CB?(E)). When A = L!(G) for some locally compact
quantum group G, the authors of [13] studied several examples of closed left intro-
verted subspaces of A* = L°°(G) for which there is an operator space X and a com-
pletely isometric weak*-continuous representation I's: S(A*)* — CB(X*) such that
I's o s maps L'(G) into CB?(X*).

By Corollary 4.7 and Remarks 4.8, for each of these left introverted spaces there is
a c.c. right operator A-module action Q on X such that S(A*) = Eq(A*) = Fo(A*),
the matrix norms || - |4+ and || - | o are equal on this common space, and, therefore,
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the operator HLDBAs (8(A*)*, 1s), (Fq(A*)*,nq), and (£q(A*)™, ne) coincide.
(Theorem 4.6 thus provides new characterizations of these LDBAs over A.) It would
be interesting to try establishing some of these statements directly as we did with the
other examples in this section, and thereby obtain new proofs of these representation
theorems.

Acknowledgements The author is grateful to the anonymous referee whose com-
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