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GAP TAUBERIAN THEOREMS

JEFF CONNOR

In the first section we establish a connection between gap Tauberian conditions and
isomorphic copies of Co for perfect coregular conservative BK spaces and in the sec-
ond we give a characterisation of gap Tauberian conditions for strong summability
with respect to a nonnnegative regular summability matrix. These results are used
to show that a gap Tauberian condition for strong weighted mean summability is
also a gap Tauberian condition for ordinary weighted mean summability. We also
make a remark regarding the support set of a matrix and give a Tauberian theorem
for a class of conull spaces.

In this note we make some remarks regarding gap Tauberian theorems in the con-
text of some settings associated with strong and ordinary summability. In the first part
of this paper we provide an interpretation that leads to the construction of isomor-
phic copies of Co and establish a partial converse. In the second we characterise the
gap Tauberian conditions for strong summability with respect to a nonnegative regular
summability matrix. In a later section we restate this characterisation in terms of the
support set of the matrix. We also apply these results to weighted mean summability
methods and, as a bonus, we establish an analog of a gap Tauberian theorem for a large
collection of conull spaces.

We use the standard notation of summability and Banach space theory as it is found
in [4] and [13]. Let w = {all scalar sequences}, ip = {x 6 w : x is finitely nonzero} and
let Co , c, and /,» denote the vector subspaces of w consisting of, respectively, the null
sequences, the convergent sequences and the bounded sequences. We also let e* =the
kth unit vector, e = (1,1,1,. . .), and, if £ is a Banach space, we let E' denote its
continuous dual. If 5 is a subset of a Banach space E, we let [S]E denote the closed
linear span of S in E. A BK space is a Banach space which is a vector subspace of u>
that has the property the inclusion map from E into w is continuous when w is given
the topology of coordinatewise convergence . A BK space E is said to be conservative
if c C E and is said to be perfect if [C]E = E. We recall that if E and F are BK spaces
and E is contained in F, then the inclusion map from E into F is continuous.
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386 J. Connor [2]

An infinite array of scalars T = (tn,k)n k=i <*, is called a regular summability matrix
provided lim £ tnifcX/t = lima*, whenever x = (xk) G c. The matrix T is called a

n k *
triangle if t n n ^ 0 for all n £ N and n < k implies tn t = 0. If z £ w and
X) *„ t 1 * exists for all n G N , we let Tse denote the sequence (£)*» t x t : n € N). Let

cT = {x G w : Tx G c}. cT is called the convergence domain of T and if x G cT we say
that x is T-summable and set T — lima; = lim 53*n *xt. It is well-known that if T is

n k '

a triangle, then cT is a BK space with the norm ||x||T = sup £*„.***
fc

Throughout this note we let 7 : N U {0} —* N U {0} denote an increasing function
with 7(0) = 0 and set

G(-y) = {x G u> : Xk — Xk+i T̂  0 implies there exists r G N such that k — ~f(r)}.

A gap Tauberian theorem for a matrix summability method T generally asserts that if
7 satisfies some condition depending on T, x £ G{i) and Tx G c then x is convergent.
With this in mind, we say that, for a sequence space E, G(f) is a gap Tauberian

•y(r+i)
condition for E if E fl G(*f) C c. For a given 7, we set bT[j) =

1. GAP TAUBERIAN CONDITIONS AND ISOMORPHIC COPIES OF C0

The results in this section follow from the fundamental properties of BK spaces and
the Bessaga-Pelcznyski characterisation of Banach spaces containing isomorphic copies
of Co.

THEOREM 1 . 1 . Let E be a conservative BK space and 7 an increasing sequence

of integers with 7(0) = 0. if G(7) is a gap Tauberian condition for E and (6r(7)) is

basic in E, then (br(y)) is equivalent to CQ 'S unit vector basis and the norm oi E and

c0 are equivalent on Z = [(bT(f))]E C c0.

PROOF: Let br = 6r(7). First note that inf \\br\\E > 0. If not, then there is a

subsequence (6r') of <6r) such that | |6r' | |E < 2"' for each I G N. Now x = X)*r' G E
1

and it can be arranged for x to have both 0 and 1 as limit points. As x G G(f) D E
and x £ c, G(f) is not a gap Tauberian condition for E.

Observe that, since Co C E and the inclusion map is continuous, J3 l/(^r)l < °°

for all / G E'. Since (6P) is basic in 25, (6r) is equivalent to co's unit vector basis [4,

p.45].

The remainder of the claim follows from noting that Z C c0 and that the inclusion

maps from Z into CQ and from c0 into E are each continuous. D

https://doi.org/10.1017/S0004972700015215 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015215


[3] Gap Tauberian theorems 387

The converse of the preceding proposition is obviously false: If E — /<„ and
-f[r) = r then (6r(7)) is basic, Z — c0 and G(y) fl {«, = /«,. We can, however,
establish a partial converse by making suitable restrictions on E. First, in order to
avoid our counterexample, we assume that E is perfect. Also recall that if G{j) is a
gap Tauberian condition for a conservative BK space E, then E must be coregular,
that is, there must be an / £ E' such that f(e) ± £ / ( e * ) [31-

k

A BK space E is said to have a monotone norm if, for all x — (xk) £ E and n £ N,

l*=i
and \\*\\E =

k=i
Observe that if E has a

E
monotone norm, then {bT(y)) is basic for any 7 [4, p.36] and [y»nG(7)].E = [̂ ]

THEOREM 1.2 . Let E be a perfect coregular BK space with a monotone norm.
Then G(y) is a gap Tauberian condition for E if and only if (6r(7)) is equivalent to
Co 's unit vector basis.

PROOF: Since E has a monotone norm, we have that {bT{pi)) is basic in E and
hence, if G(f) is a gap Tauberian condition for E, the preceding result yields that
{br(f)) is equivalent to Co 's unit vector basis.

Now suppose that (br(f)) is equivalent to Co's unit vector basis. Note that if
w £ G{-y) H [(e*)]E = [(br(-y))]E, then there is a z = (zr) £ c0 such that w = £ z r 6 r

r

and hence w £ Co.
Next note that, since E is coregular and (efc) is basic in E, e £ [<P]E- Since E is

perfect, it follows that if z £ E, then there is a scalar Az and a wx £ [<P]E such that
x = Xze + wx. If x £ £7(7) H E, then wt £ G(y) D [<P\E an{l hence x is convergent to
A , . D

COROLLARY 1 . 3 . Every perfect coregular conservative BK space with a mono-
tone norm has a gap Tauberian condition.

PROOF: Observe that, since E is coregular, £ e* does not converge m. E. It
k

follows that there is a 7 and a S > 0 such that

>6

for all r £ N . Now, since E is conservative, £ \f(bT{-y))\ < 00 for all / € E'. This is
r

enough to insure that (6r(7)) is equivalent to c<> 's unit vector basis and hence G(*f) is
a gap Tauberian condition for E. U

COROLLARY 1.4 . Let T be a triangular regular matrix summabiUty matrix
such that cT is a BK space with a monotone norm. Then there is a subspace W of c<>
such that T restricted to W is an isomorphism onto its range.
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388 J. Connor [4]

PROOF: Since T is a regular triangle, Fridy [6] has shown that there is a 7 such
that G(-y) is a gap Tauberian condition for cT. Now, since (&r(7)) is equivalent to
Co 's unit vector basis in cT , (T6r(7)) is equivalent to c<> 's unit vector basis in Co. Let
W = [(&r(7))]c<> • Since {bT{f)) and (Tbr(f)) are both equivalent to c0 's unit vector
basis, T acts as an isomorphism from W onto T(W). D

2. GAP TAUBERIAN THEOREMS FOR STRONG SUMMABILITY

In this section we characterise gap Tauberian conditions for strong summability
with respect to nonnegative regular summability matrices. Before giving our character-
isation, we recall a few definitions and facts.

If T is a nonnegative regular summability method, x £ u and A is a scalar, we
say that x is strongly T-summable to A if Iim53tn fc l^t — A| = 0. If A C N , we let

n Jfc
I A denote the characteristic function of A. Finally we recall the following result [10,
4.1, 5].

THEOREM 2 . 1 . Let T be a nonnegative regular summability method. If x is

strongly T-summable to A, then there is a subset A of N such that T — lim/yi — 1
and lim(a!fc - A)/A(fc) = 0.

THEOREM 2 . 2 . Let T be a nonnegative regular summability method. Then the
following statements are equivalent.

(1) G(7) is a gap Tauberian condition for strong T -summability.

(2) For all A C N such that T - ]imIA = 1, (7(r),7(r + 1)] n A ^ 0 for all

but finitely many r € N .
( )

(3) limsup£) X) *„ k ** 0 for aii increasing subsequences (nr) 0/natural
n r Jb>7(nr) "'

numbers.

PROOF: (1) implies (2): Suppose that (2) fails and that we have found A C N
such that T — lim/x = 1 and an increasing sequence (nr) of natural numbers such
that An(7(n P ) ,7(n r + l)] = 0 for all r € N. Set B = \J (7("r),7(nr + 1)] and

r€N

let x = IB • Since B C N — A, x is strongly T-summable to 0 and has both 0 and

1 as limit points. Since x 6 £(7) , £(7) is not a gap-Tauberian condition for strong

T - summability.

(2) implies (1): Now suppose that 7 satisfies (2), x is strongly T-summable and

x G G(f). Without loss of generality, suppose that x is strongly T-summable to

0. Select A C N such that T - lim/^ = 1 and ]imxkIA(k) -0.

Let /3 : N —> N be an arbitrary increasing function. Select an increasing se-
quence of integers (nj) such that (7(nj),7(nj +1)] n {(3(r) : r G N} ^ 0 and
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(7(ni)>7(n« + 1)] 0 A ^ 0 for all / € N. Now select natural numbers 6(1) and p(l)

such that 0(9(1)) £ (7M.7( i« + 1)] and p(l) £ AD (7(n(),7(n, + 1)] for all I G N.

Note that, since x € ^(7) , a;̂ (e(j)) = xp(i) f°r ^ ' and, since p(l) G A, limaj^j) = 0.

Hence every subsequence of x has a subsequence which converges to 0 and thus x

converges to 0.

The equivalence of (2) and (3) follows immediately from noting that, if B =

U {iinr), "f(nr + 1)], then T - Urn IB = 0 if and only if hm sup X) E <„ * = 0. Q
r€N n r t>-y(nr) '

3. AN APPLICATION TO WEIGHTED MEAN SUMMABILITY

In this section we apply the results of the preceding sections to weighted mean
summability methods generated by positive sequences. Let (p*) be a sequence of non-

71

negative real numbers with pi > 0 and set Pn = X) P* • The weighted mean summa-

bility matrix (R,p) is denned by (R,p)n k = pk/Pn for Jfe < n and (R,p)n k = 0
otherwise.

Suppose that p* > 0 for all A;. Then (R,p) is a triangle and hence its convergence
domain is can be regarded as a BK space where, if x is in the convergence domain of

- 1

k=l

sequence, there is an I ^ n such that

the definition of the norm that

. This is a monotone norm: Since (Pn) is an increasing

J

J b = l J b = l
. It now follows from

E zjte* ^Pf1 <

fc=i
»ikPfc =

n

EZ*e*

and that | | i | | = sup ^ n e ' . It is also straightforward to verify that (R,p) is a
n II 1

type-M summability method and hence, if (R,p) is regular, its convergence domain is
a perfect coregular BK space [13, p.42].

THEOREM 3 . 1 . Let p = (pk) be a sequence of positive numbers and suppose
that (R,p) is a regular weighted mean summability matrix. The following statements
are equivalent.

(1) G(f) is a gap Tauberian condition for (R,p) summability

(2) G(j) is a gap Tauberian condition for strong (R,p) summability

(3) inf
7 ( r )

Pk > 0.
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PROOF: (1) implies (2) follows immediately from the observation that, for any
nonnegative regular summability method T, if a sequence x is strongly T-summable
to A then T - lim x = A.

7(r)
(2) implies (3): Suppose that inf P ,\ X) Pk —0. Let (6n) be a sequence of pos-

r ^ *>7(r-l)

T(n)
tive numbers decreasing monotonically to 0. Select rj such that P . » JZ Pk <

6\. Now suppose that n > 1 and r\ < • • • < rn_i have been selected. First, using the
hypothesis that (R,p) is regular, select N such that I > N implies that

n - l

t=l k>i(Ti-l)

7(r»)
Now select r n such that 7 ( r n - 1) > N and P~(*n) X) Pk<6n/2. Note that

)

n 7(r«)

E
An elementary computation using the definition of (R,p) yields that if

IE [ 7 ( r n - l ) , 7 ( r n + 1 ) ) , then

oo 7('-< + l ) n -f(.ri)

E E WI»)M<^)E E »<«••
t=l

It follows that
oo 7(ri + l)

E (fl.P)».» =

and hence, by 2.2(3), G(f) is not a gap Tauberian condition for strong (R,p)-

summability.

(3) imphes (1): Note that

7(r)

and, since (R,p) is regular, it follows that (br(y)) is equivalent to c0 's unit vector basis.

The result now follows from 1.2. U
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COROLLARY 3 . 2 . G(l) is a gap Tauberian condition for (R,p) if there is a
6 > 0 such that

-r(r)

E P*
*>7(r-l)

-Kr-1)
E P*

for all r e N .

REMARKS. 1. Recall that a conservative BK space E is conull if it is not coregular,
that is, /(e) = E / ( e * ) for all f £ E'. It has been shown in [3] that, for any 7 and

k
any conull BK space E, G(f) is never a gap Tauberian condition for E. It turns out,
however, that one can establish an analog of a gap Tauberian theorem for a large class

of conservative conull BK spaces.

Let r — (rn) be an increasing sequence of natural numbers with r\ = 1. For

x G w, let

xu - xv\ : rn ^ u < v < r n + i}

and set

fi(r) = {iew:lim 0;(s;) = 0}.
n

If we define ||z||r = x\ +supOJj(x), then {Sl(r), \\ ||r) is a conservative conull BK space
n

[13, p.95]. Also, given an arbitrary conservative conull BK space E, there is an r such
that fl(r) C E.

Now define Z(r) Cw by

Z(r) — {x : there is a scalar A such that z* = A if T2n < j ^ »"2n+i for all n E N}.

An elementary e — N argument yields that Z(r) D £l{r) C c, which we record via the

following proposition.

PROPOSITION 4 . 1 . Z(r) is a Tauberian condition for Q(r).

»"3n+l

This is analogous to a gap Tauberian theorem in that ( E e3 : n £ N) is equiv-
i

alent to CQ 'S unit vector basis in fl(r).

2. Let T be a nonnegative regular summability matrix and x = (xk) G «• For each
e > 0 and A 6 R , let A(e,A) = {k : |x* — A| ^ e}. The sequence x is said to be
T-statistically convergent to A if T — lim JA(£|.X) = 0 for all e > 0. It is known that if
x is strongly T-summable to A then x is T-statistically convergent to A and, if x is
bounded and T-statistically convergent to A, then x is strongly T-summable to A [2].
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392 J. Connor [8]

The above observations allow us to conclude that G(f) is a gap Tauberian condi-
tion for T-statistical convergence if and only if G(*f) is a gap Tauberian condition for
strong T-summability. Since strong T-summability implies T-statistical convergence,
a gap Tauberian condition for T-statistical convergence must also be a gap Tauberian
condition for strong T-summability. To establish the converse, suppose G(T) is a gap
Tauberian condition for strong T-summability and that x £ G(-y) is T-statistically
convergent to A. Define x by z* = a;* if la;* — A| < 1 and Xk — A + 1 otherwise. Note
that x is bounded and statistically convergent to A and hence strongly T-summable
to A. Now, since x £ G(-f), x, and hence x, is convergent to A.

When we restrict our attention to {R,p) where pjt = 1 for all k, (R,p) is the Cesaro
mean (order 1) and (R, p) -statistical convergence is the usual statistical convergence as
discussed in [7] and [11]. Theorem 3.1 yields Fridy's result that G{*f) is a gap Tauberian
condition for statistical convergence if liminf 7(n + l)/j(n) > 1 and its converse.

n

3. If we recall a few elementary facts about the Stone-Cech compactification of N ,
the result of section 2 can be given an interpretation in the setting of N* = /3N — N.
Recall that /3N can be identified with the set of all ultrafilters on N [12,8]. If p is an
ultrafilter on N , we say that p is a free ultrafilter if p does not contain a bounded subset
of N and recall that N* can be identified with the collection of all free ultrafilters on
N . If A C N , we let A ' = { p £ N* \A £ p} and recall that {A*\ A C N} is a base
of clopen sets for the relative topology on N*. Also recall that if x = (xn) £ loo >
then x can be extended to x? £ C(/3N) by defining xfi(p) = n{cls.(x~^(A)) \ A £ p}
for an ultrafilter p on N and that, for a sequence x £ loo, l imzt = A if and only if

x^ \ N* = A.

If T is a nonnegative regular summability matrix, the support set KT of T is

defined by

KT - f]{A* \A C N, lim£*„,/<(*) = 1}.

The support set of a matrix was introduced in [9] and has been discussed by a number
of authors. Note that p G KT if and only if p G A* whenever T — lim/x = 1. As was
noted in [1], Theorem 2.1 can be reformulated to yield that KT is a P-set in N* (that
is, KT is interior to any Gs that contains KT)- It can also be used to show that if
x £ loo, then x is strongly T-summable to A if and only if x& \ KT = A. It follows
that G(f) is a gap Tauberian condition for bounded strong T-summability if and only
if x £ G(-y) n /«, and x? \ KT = A implies that x? \ N* = A.

THEOREM 4 . 2 . G(-y) is a gap Tauberian condition for strong T-summability if
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[9] Gap Tauberian theorems 393

and oniy if

^N« f U (7(«r),7(nr + 1)] J n KT ± 0
\r€N /

for any increasing sequence of integers (nr).

PROOF: Observe that cIN. ( \J {-y{nr),f(nr + 1)] ) n A* ^ 0 for all A C N such

that T — lim /^ = 1 if and only if lim sup J^ £ *„ * > 0 • The result now follows
n r *>7(nr)

from 2.2(3). D
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