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Introduction.

The study of the topological properties of algebraic surfaces,
considered as continua of four real dimensions, has thrown much light
on the theory of the birational invariants of such loci1. The results
obtained for surfaces have been generalised to varieties of higher
dimension by Hodge2, and, particularly, by Lefschetz3. Apart from
this, little seems to be known about the general topological pro-
perties of algebraic loci of three (or more) dimensions, the detailed
study of which seems to present considerable difficulty. In particular,
apart from the general theorems of Lefschetz, nothing seems to be
known about the cycles of three dimensions of an algebraic F3. The
object of the present paper is to study these cycles on certain quite
special F3, in the hope that some insight may be gained into the
general theory.

In § 1 we recall a theorem which enables the three-dimensional
Betti number of an algebraic V3 to be calculated in terms of other
characters. In § 2 we .examine the homology characters of a fairly
extensive class of rational F3, and describe the nature of the 3-cycles
on them. The subsequent sections are devoted to a study of the
general cubic primal in [4]. We show that any 3-cycle of this locus
is homologous to a 3-cycle lying on a certain algebraic ruled surface
on the variety, and may in fact be obtained by the variation of a
straight line. This result has at least a negative interest, for if the
locus contained non-algebraic 3-cycles we should be able to deduce

1 See Lefschetz, 8, 9 ; Zariski, 15, for an account of the topology of algebraic
surfaces.

2 Hodge, 6, 7.
3 Lefschetz, 8, Chap. 5.
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its irrationality; as it is, the matter is still left in doubt. The
work may also be of interest as being an application in detail of the
general procedure outlined by Lefschetz.

§1. We consider an algebraic locus F3 of three dimensions, irre-
ducible and free from singularities. We denote by Rit (i=l, 2, . . , 6)
the i-dimensional Betti number1; 2^ = .Ra_,-, R0 = l. We consider
on F3 a linear system (oo 3 at least) of algebraic surfaces F without
singularities, such that the general curve C of intersection of two
surfaces F is irreducible. A pencil of surfaces of the system, whose
base-curve is C, will contain a certain number n of surfaces with a
double point. It is known2 that

R3 = n + 2 (B1 + R2) - 2r2 - rlt (1)

where r2 is the two-dimensional Betti number of F, and rx the one-
dimensional Betti number of G; Up is the genus of G, r1 = 2p.

§ 2. The Betti numbers of certain rational varieties.

Let Cp be an irreducible curve of order v and genus p, without
singularities, lying in ordinary space. Consider the linear system
| 2 | of surfaces of order m which pass through Gp, m being chosen
so large that | E | is free from fundamental curves or surfaces. Then
| 2 | maps the prime sections of a rational locus F in higher space;

which for m sufficiently large is free from singularities.

The correspondence between V and the space S containing | S | is
(1, 1) except for the points of F mapping the neighbourhoods of
points of the base curve Cp of 12 [. These points on F lie on a ruled
surface B whose genus p is the same as that of G"p, the neighbourhood
of any point on Cp corresponding to a line on R.

Since F and its prime sections are regular, R1(V) = 0. Since F
is rational it contains a linear system of rational surfaces, corre-
sponding to the planes of S. Any 2-cycle on such a surface is

1 For the fundamental theorems of topology used in the sequel we refer to
Lefschetz, 10.

2 Lefschetz, 8, 94. (Theorem XI).
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algebraic, and hence any 4-cycle of V is algebraic1. But a base for
algebraic surfaces on V is manifestly formed by the prime section of
F and the scroll R. Hence Rt(V) = 2, and hence by a known duality
theorem2, i?2(F) = 2.

To calculate Rz we use the formula (1), the system | F\ on F being
that represented by the planes of S. F is then a rational surface
mapped on a plane by curves of order m with v base-points, and C is
a rational curve. Hence r2 = v + 1, rx — 0. A surface F will have a
node if, and only if, two of the base points in the plane it represents
coincide, since | S | has no fundamental curves. Hence the number n
of such surfaces is equal to the rank of Cp, i.e. 2v + 2p — 2. Hence
(1) gives

R3 = (2v+2p-2) + 2(0 + 2 ) - 2 ( * + 1) - 0
= 2p.

We shall now show that the 2p independent 3-cycles on F are
precisely the 2p 3-cycles on the scroll R which is transformed into the
neighbourhood of Cv

v. To do this we require a formula connecting
RS(V) with the characters of the complexes R, V — R. We have,
in fact3,

R3(V) = r3(V-R) + Rs (R) - s3 (R) + h (R),

where rs (V — R) denotes the number of 3-cycles on V — R which are
independent mod. R, ss (R) is the number of 3-cycles on JB which
bound on F, and t3 (R) is the number of relative 3-cycles on V — R,
independent of the r3(V — R) absolute cycles, whose boundaries are
homologous to zero on R. In the present case tB (R) is zero4, and
since F — R is homeomorphic5 to S — Cp ,

Hence, as R3(V) = R3 (R) = 2p, s3 (R) = 0, and the 2p 3-cycles of R
are independent on V.

1 See Lefschetz, 8, 103. The surfaces mapping the planes of S may be used instead
of the prime sections of V itself.

2 Lefschetz, 10, 140.
3 Lefschetz, 10, 150 ; equations (21) and (22).
4 Lefschetz, 10, 153 ; Theorem I.
5 Lefschetz, 11, 100.
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The same method clearly extends to the case when the base-
curve of | S | consists of several totally disconnected curves, the
system still being free from fundamental elements. If there are i
such curves, of genera pu .. .., p(, it is easily seen that R2 = i + 1;
B3 = 2 Zpt.

If fundamental curves and surfaces exist for | S | the problem
becomes more complicated, and the F3 may have singularities. The
results obtained above exhibit clearly, however, the relative nature
of the number R3 considered as a birational invariant of F3. In
general, we may say that the behaviour of B3 under birational
transformation of F3 depends on the genera of the fundamental
curves of the transformation, and probably on other factors besides.

The special cases considered here include a number of well-
known loci, notably most of those with rational or elliptic curve
sections.

§ 5. The Betti numbers and vanishing cycles of the cubic variety in [4].

We consider the general cubic variety F in space of four
dimensions, and denote by \F\ the system of prime sections of V.
We recall1 that F is the locus of a double infinity of lines of which six
pass through each point of the locus, forming an irreducible system
whose Grassmannian locus is a surface </> of irregularity 5, and hence
having Rx (<£) = 10. Any algebraic surface on F is its complete
intersection with another primal2.

Since the general prime section is a rational surface, any 2-cycle
on it is algebraic. Hence every 4-cycle of F is algebraic3. Thus,
since F only contains complete intersections, any I \ on V ~ tF, and
H2 = _R4 = 1. A corollary is that any two lines on F are homolo-
gous on F, a result otherwise evident, since they correspond to two
points of <f>, and a chain on <f> joining these defines a continuous
deformation of one of the lines into the other on F.

Since F is of class 24 and R1 = 0, it follows from (1) that
B3 = 10, since r2 {F) = 7 and r1 (C) = 2. Thus there are ten independent
3-cycles on V.

1 See, e.g. Baker, 1, vol. VI, 294 ; Segre, 13, 947. The result is originally due
to Fano, 5.

- Fano, 4.
3 See Lefschetz, 8, 103.
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We now consider a pencil {Fu} of \F\ whose base is an irreducible
curve C. For each value of u we have a definite surface Fu of the
pencil, and for twenty-four values u^ of u the corresponding surface
Fp has a node. In the plane of the complex variable u we mark the
points u^, and a fixed point u0 corresponding to some fixed surface
Fo of the pencil; and join u0 to each point u^ by a set of non-
intersecting arcs. If the plane be cut open along these arcs it
becomes1 an open 2-cell E2. We can now follow out the variation of
any locus on Fu as u moves on E2.

It is proved by Lefschetz that with each critical value u^ of u
there is associated a definite 2-cycle Ŝ  of Fo with the following
properties:

(I). If u describes a path on E2 from u0 to wM then the cycle
obtained by the variation of 8̂  vanishes (reduces to a point) when
u = u^.

(II). If u describes a closed path on E2 surrounding u^ and no
other critical point, then the initial and final positions F2, IY, of
any 2-cycle on Fo are connected by the homology

IY ~ T2 + (F2 . 8M) 8,, (2)

where (F2. <v) is the usual Kronecker index. Actually Lefschetz
gives the coefficient of 8̂  with a negative sign, but this seems to be a
misprint traceable to one in the first equation on p. 92.

In this case we can actually state what the vanishing cycles
8̂  are. As u tends to %IL, Fu tends to the surface F^ having a node.
On F^ six lines pass through the node, which arise from the coincidence
of two rows of a double-six lying on Fu. Denoting the lines on Fo,
in the usual Schlafli notation2, by at, bu ctj (i,j, = 1, .. . . , 6; c#=(;#),
so that a typical double-six is

alt a2, .. .., a6,

bx, b2, . . . . , b6,

1 The procedure is due to Lefschetz, 8, 91. A more detailed account of the con-
struction is given by Zariski, 15, 105, for the case of surfaces ; and this account applies
to the present case with only a few verbal changes.

- For the notation, and general properties of the lines on a cubic surface, we refer
to Baker, 1, vol. Ill, Chap. IV.

https://doi.org/10.1017/S0013091500008178 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008178


180 J. A. TODD

this means that as u tends to u^ the lines at (or rather the lines on
Fu obtained by continuous variation from them) tend to coincidence
with bit so that as u describes a closed path round u^ enclosing no
other singular point the effect on Fo is to interchange the lines au bit

and leave the lines ctj unaltered. Thus we can take a^ — bi to be the
cycle 8̂  which vanishes at u^, the suffix i being immaterial since the
six possible cycles are all homologous on Fo. A base for 2-cycles on
Fo is composed of a plane section C and the lines at. If then

T2~W + 'Ltiai

is a 2-cycle on Fo, then when u describes a path round u^, F2 becomes
F2', where

and since (C, Ŝ ) = 0 and (au SM) = — 1,

IV ~ r2 + (r2. s,) sM,
in accordance with (2). Also, (8M, 8̂ ) = — 2, which shows that SM is
changed in sign as u turns round u^.

§ 41. If now u describes any closed contour on E2, the lines of Fo

undergo a certain permutation, and the aggregate of all such permu-
tations forms a group O1 which either coincides with the group G, of
order 51840, of all permutations of the lines which preserve their
incidence relations, or forms a proper sub-group of G. We shall show
that in fact Gx = G.

Any closed path on E2 starting from u0 can be deformed into the
sum of a finite number of loops each surrounding a single one of the
points u^ Thus G1 is generated by the permutations effected when
u describes each of these loops. Each of these permutations is
of the type described in the previous section, interchanging the two
rows of one of the double-sixes on Fo and leaving the fifteen lines
which do not belong to the double-six unaltered.

It is well known2 that G can be represented as a group of

1 The results in this section are not used in the rest of the paper, but are inserted
for their intrinsic interest.

2 See Schoute, 12 ; Coxeter, 2, 165 ; Todd, 14.
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congruent transformations in Euclidean space of six dimensions,
leaving invariant a certain polytope with thirty-six pairs of opposite
vertices (in correspondence with the double-sixes on Fo), having also
thirty-six primes of twofold symmetry which bisect the diagonals
joining pairs of opposite vertices at right angles. The operation of G
which interchanges the two rows of a double-six is represented by the
reflection in the corresponding prime, and the whole group is simply
isomorphic with the group of rotations and reflections of the polytope.
Consequently Gx is generated by reflections in a certain number of the
primes of symmetry of the polytope, and so is included in the table
of such groups given by Coxeter1.

We next show that Gx acts transitively on the lines of Fo; to do
which it is sufficient to show tha t if lx and l2 are any two lines of Fo

there is an operation of Gx which interchanges lt and l2. Let Lx and L2

be the points on the Grassmanaian (j> of the lines on V which correspond
to ^ and l2. The lines of V which occur on the surfaces of the pencil
{Fu} all meet the base curve C of the pencil, and conversely any line
of V which meets the plane of C meets C and lies on just one of the
surfaces {Fu}. These lines thus belong to a (special) linear complex
and are mapped by the points of a curve a> on <f> (actually a prime
section of <f>), which is irreducible and which passes through i x and
L2. This curve u> (or rather the corresponding Riemann surface) is
in (27, 1) correspondence with the complex plane on which u is repre-
sented, since each Fu contains 27 lines. Thus any arc on co joining
Lx and L2 corresponds to an arc in the it-plane, which is a cycle
since Lx and L2 both correspond to the same point u0. We can
choose this arc on to so that it does not meet any of the arcs whose
points correspond to points of the w-plane on the cuts u0 u^. Then
the cycle in the w-plane lies on E2, and, as u describes the cycle, lx is
carried into l2. This proves tha t G1 is transitive on the lines of Fo.

I t is now easily seen that G± coincides with G. For if not, it is
a proper subgroup of G occurring in the table in Coxeter's paper
referred to above. All these groups are easily verified to be sub-
groups of one or other of the three groups denoted by the symbols

[32.L1], [ 3 4 ] X [ ] , [3]3.

1 Coxeter, 3, 480. (Table VI, (iv)).
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The first of these is the subgroup of G keeping fixed a definite line
of Fo, the second leaves a particular double-six invariant, while the
third leaves invariant nine lines of Fo which belong to a Steiner
trihedral. Thus all the proper subgroups of G generated by a partial
set of the reflections which generate G are intransitive on the lines of
Fo. Hence, since Gx is transitive, G1 = G.

§ 5. The homologies connecting the vanishing cycles.

The vanishing cycles considered in § 3 are all of the type lx — l2,
where l± and l2 are two non-intersecting lines of Fo. Since Fo contains
216 pairs of non-intersecting lines there are 216 cycles of this form on
Fo, which fall into 36 sets of six homologous cycles corresponding to
the 36 double-sixes on Fo. These sets are themselves connected by
homologies, since it is easily seen that only six of these cycles can be
linearly independent on Fo. For we may take a representative of
each of the 36 sets of cycles, for instance

with the convention 2 ̂  i < j ^ 6. The six cycles

«i — #3; ai — a& > ai — ao; ai ~ °6; ai — &i; ax — c23

are independent on Fo, and the others are expressible in terms of
these in virtue of the homologies

~ («i—&i) + (&i— 64) + (c56— c16) + (c63—c13)

(C36 — c i e ) ( a 2 — ci3) — (C56 — ^4)1

— C2j) *̂̂  (G&i — ^23/ ~t~ \^1 — ^3) — (^1 — ®1c)

— (a-i — c23) + (c32 — c12) — ( c ^ — c1 2) ,

(bi — cjk) - (ax - cjk) - (ax - &i).

The homologies (3) evidently form a minimal basis for homologies
between the vanishing cycles, and the form of these homologies makes
it clear that in any such homology we can arrange, by replacing the
individual vanishing cycles by others belonging to the same set of six
on Fo, that the actual expressions on the two sides of the homology
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sign are algebraically the same when expressed in terms of the lines
ai> t>i, Cij. Consequently we have the following result. Any homology

2A a S a ~O (4)

between the vanishing cycles 8a of Fo is equivalent to a homology

V~0 (5)

in which each of the cycles 8/ is a vanishing cycle homologous on Fo to
one of the cycles Sa, and the algebraic sum of the cycles on the left,
expressed in terms of the lines of Fo, is zero. [Of course it is not
necessarily the case that each of the Aa cycles So in (4) is replaced by
the same cycle 8 / ; an example is the first homology (3), where
2 K — c23) is replaced by (ax — c23) + (c56 — h).]

§ 6. Determination of the B-cycles on V.

I t is shown by Lefschetz in his book1, that for any 3 cycle F3 of
V we have the homology F3 — 2 Â  AJ + M3) where AM is the 3-chain
described by 8̂  as u describes the arc u0 u^, and Mz is a 3-chain on
Fo whose boundary is — 2 AM 8^; and that such a cycle arises from
every independent homology of type (4). Now if 8/ is one of the
other vanishing cycles at u^, and A/ its locus as u describes u0 u^, then
A/ — AM is a 3-chain bounded by the 2-cycle 8/ — SA. Further,
SM' — S,, bounds a 3-chain N3 in Fo such that A/ — A^ — N3 is a
bounding 3-cycle of V. Hence in view of the result of the last para-
graph we may suppose that 2 Â  8̂  is algebraically zero. Then M3

must be a cycle. But any 3-cycle on .Fo —' 0. Thus every 3-cycle on

V is of the form 2 AM AM where 2 Â  8̂  is algebraically zero. Since 8̂  is
of the form l± — l2, where lly lz are two lines of Fo which are inter-
changed when u describes a closed path round u^, AM is the locus
of lx as u describes this circuit. Hence every 3-cycle of V may be
regarded as the locus of a line of V as u describes a suitable closed path
on E2; and is therefore reducible to a cycle on the scroll formed by the
lines of V which meet C. The ten independent cycles accord with the
fact that the Grassmannian <f> of the lines of V carries ten inde-
pendent 1-cycles.

1 Lefschetz, 8, 93. (Theorem VI).
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