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EQUALITY ALGEBRAS

DESMOND FEARNLEY-SANDER AND TIM STOKES

As part of an attempt to capture abstractly the most fundamental properties of
algebraic reasoning involving equality, we introduce the notion of an equality algebra.
It is a universal algebra A endowed with a binary function =i A x A —> L, where L
is a meet-semilattice with top element 1, called internalised equality, and satisfying,
for all x, y G A,

1. (x =i x) = 1; and

2. (x =i y)f{x) = (x =i y)f(y), where / is any function A —> L derived
from the operations on A, the semilattice operations, and =*.

We characterise internalised equalities in terms of finitely many identities, give ex-
amples, and show that all are equivalent to internalised equalities defined in terms of
congruences on the underlying algebra. In the special case in which A is an Abelian
group or ring, the internalised equality is shown to be equivalent to the dual of a
norm-like mapping taking values in a semilattice.

All semilattices are assumed to be meet-semilattices with top element 1. Denote
meet by A or juxtaposition.

Every semilattice L is a partially ordered set with respect to the order defined by
setting a ^i b if and only if ab = b for all a, 6 € L. Hence any inequality in a semilattice
can be expressed as an equation.

1. EQUALITY ALGEBRAS

We shall say that any universal algebra A equipped with a function =*: A x A —> L
is an e-algebra over the semilattice L. Notation: (̂ 4, L, =;).

An e-algebra (A, L, =*) may be viewed as a many-sorted algebra having two sorts,
semilattice having carrier L, and underlying having carrier A.

A replacement algebra over the semilattice L is an e-algebra over L for which, for all
x,y€A,

1. (i =j i) = 1; and
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178 D. Fearnley-Sander and T. Stokes [2]

2. {x =i y)f(x) = (x =t y)f(y),

for all functions / : A —> L derived from the operations on A, the semilattice operations
and =j.

We call 1 the reflexivity rule and 2 the replacement rule. We call =i, satisfying both
rules, an L-valued internalised equality on A. An element of the form (a =i b) is called
an internalised equation.

Taking the many-sorted view, a replacement algebra is an e-algebra (A, L, =;) for
which the identity (x =, x) = 1 and the family of identities

(x=i y)f(x,xi,x2,...,xn) = (x=i y)f(y,xux2,...,xn)

holds, where / ranges over all sort semilattice elements in the free e-algebra on countably
many generators of each sort.

The motivation for defining equality algebras is simple enough - it is an attempt to
capture abstractly and internalise the most basic kinds of reasoning involving equality:
"x = x is always true"; and "if x equals y and p(x), then x equals y and p{y), and
conversely". Something formally close to replacement algebras is studied from a computer
science point of view by Dijkstra and Scholten in [2], although there the semilattice is
assumed to be a Boolean algebra. In comparison, our approach is more algebraic, the
focus being on particular algebras equipped with semilattice-valued mappings rather than
the generalised "Boolean structures" of Dijkstra and Scholten.

Among the many rules satisfied by =;, the following are especially significant.

P R O P O S I T I ON 1 . 1 . Let (A, L, =i) be a replacement algebra. For all a,b,c e A,

1. (o= i O ) = l;

2. (a=ib) = (b=ia);

3. {a=ib)(b=ic)^i,(a=ic).

For any n-ary operation on A and any ai, b\,..., an, bn S A,

(ai =i h)---(an =i bn)^L (p(au...,an) =* p(bu ... ,&„))•

PROOF: We prove the parts in order. The first is immediate, and

(a =i b) - (a =i b)(b =i b) = (a =i b)(b = i a) = (b =, b)(b =, a) - (b =, a)

proves the second. For the third,

(a =i b)(b =t c)(a =i c) = (a =t b){b =4 c)(b =, c) = (a =t b){b =, c).

For the final part,

( a i -i bi)---(an =i bn)(p(au...,an) =t p(h, . . . , & „ ) )

= ( a i =i &i) • • • ( a n = i bn){p(h, ...,bn)=i p{bi,..., bn))

= {ai=ibi)---{an=ibn). •
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[3] Equality algebras 179

Thus familiar general properties of equality are internalised. Let us call an e-algebra

A over L which satisfies the above four properties an equality algebra over L.

It follows easily from the above result tha t the relation p~{ — {(a, b) \ a,b €

A,(a=i b) — 1} defined on A is a congruence relation. The idea of a fuzzy relation

is defined over an arbitrary partially ordered set in [3]; a fuzzy relation defined on an

algebra, taking values in a semilattice and satisfying the conditions of Proposition 1.1

seems a plausible candidate for the title of "fuzzy congruence".

Proposition 1.1 shows that every replacement algebra is an equality algebra. The

converse is also true.

THEOREM 1 . 2 . Every equality algebra is a replacement algebra.

PROOF: In proving the replacement rule, we may assume that xx actually appears
in the element of sort semilattice f(xt,X2, • •., xn) of the free e-algebra, since otherwise
there is nothing to prove. We give an inductive argument based on the depth of a specific
way of writing f(xi,X2,---) using the operations of (A, L, =;) viewed as a two-sorted
algebra, that is, the deepest bracketing that occurs in the expression. (For example
y(z(u =i (v * w)))) has depth four. One could be more precise in the definition of depth,
but it seems unnecessary; obviously depth is not an invariant of / , but consideration of
one representative way of writing it suffices.)

Fix n. We shall show for all m that for any sort semilattice f(x\,X2, • • • ,xn), of
depth m, (x =t y)f(x,yi,y2,...) = {x ={ y)/(y, j/i, j/2, • • •) is an identity.

We begin by proving by induction that any / of the form (g =* h) satisfies this; we
note that if / has such a form, then g, h have sort underlying.

Now f{x\,X2, • • •, xn) cannot have depth zero as then it would not be of semilattice
sort. If it is of depth one, then it has the form (x =i y) where x, y are of sort underlying,
and then we are required to prove the identity (x =; y)(x =; z) = (x =; y)(y =; z). Now
(a =i b){a =i c) ^R (b = , c) for all a,b,c £ A, so (a =t b)(a =t c) ^ (a =* b)(b =t c ) .

Reversing the argument establishes the desired equality.

If / i s o f d e p t h t w o , t h e n / = ( p ( x a i , x a 2 , . . . , x a j ) =t o { x 6 l , x S 2 , . . . , x s j ) ) , w h e r e

p has arity v and a has arity w and at least one of the xai,xsj is x\. Then, for a
fixed substitution of a2, a3,. . . 6 A for the variables other than X\ in / , we can write
7(0:1,02,03,...) = (5(^1) =i h{x\)), where g, h are derived operations of depth 1. Then
(g{a) =i g(b)) ^ (a =; b), as follows from the equality algebra axioms; thus (a =; 6) —
(g(a) =i g(b))(a =i b). Similarly, (o =* b) = {h(a) =i h(b))(a =i b). So from the depth 1
case considered above,

(a=ib)f(a,a2,a3,...) = {a-lb){g(a)=lh(a))

= (a =i b)(g(a) =, g(b))(h(a) =t h(b))(g(a) =, h(a))

= (a =i b)(g(a) =i g(b))(g(a) =t h(b))

= (a =t b)(g(b) =t h(b))
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180 D. Fearnley-Sander and T. Stokes [4]

= (a=ib)f(b,O2,a3,...),

as required.

Assume that the result holds if / has depth at most k - 1.

For f = (g =i h) of depth at most k, and for a fixed substitution of a2,03,... € A for

the variables other than X\ in / , we can write f(xi,0,2,0,3, • • •) = (ff(^i) —i h(xi)), where

g, h are derived operations of depth at most k — 1; thus (letting x = X\) we may write

g(x) — p(gi(x),g2(x),... ,gm{x)), where p is an m-ary operation on A and each gi{x) is

a (possibly constant) derived unary operation of depth at most k — 2 on A; similarly,

h(x) = a(h\(x), h2(x),..., hp(x)) for some p-ary a and derived unaries hi on A of depth

at most k — 2. Then define g[{x) = (gi(x) =i gi(a)), g"(x) = {gi(x) =, gi(b)), and similarly

h[{x) = {hi(x) =i hi(a)) and h'{(x) = (hi(x) ={ h^b)). Note that g'^a) = g'!{b) = 1 for all

i, and h'^a) = h"(b) = 1 for all i, and that all the g^g", h\, h" have depth at most k — 1.

Hence by the inductive assumption,

(a =,b) = (a=tb)g'1(a)g'2(a)---g'm(a)h\(a)h'2(a)---h'p(a)

= (a =i b)g[(b)g'2(b) • • • g'm(b)h[(b)h'2(b) • • • h'p(b).

It follows from this and the equality algebra axioms that

(a=ib)f(a,a2,a3,...) - (a ={ b)(g(a) - , h(a))

= (a=i b)(p(gi(a),...,gm(a))) =x a{hi(a),..., hp(a))

= (a =i b)(p(9l(b),.. .,gm(b))) =i aih^b),..., hp(b))

= (a =i b)(g(b) =i h(b))

= (a =ib)f(b, 0.2,0.3,...),

as required. This intermediate fact now follows: if / — (g —i h), then general replacement

works for / .

We now return to the general problem, which we likewise prove by induction on

the depth of / . But we need only consider / not of the form (g =t h). The depth

zero and one cases are trivial. Assume that the result holds if f(xi,x2,... ,xn) has

depth k — 1. If f(xi,x2, • • • ,xn) has depth k, then it must be of the following form:

g(xux2, • • •,xn)h(xi,x2,... ,xn), where g{xx,x2,... ,xn) and h(xi,x2, • • • ,xn) each has

depth at most k — 1.

But then

(x =r y)f(x,yi,y2,---,yn-i)

, 2/i) 2/2, ••• ,yn-i)h(x,yi,y2,... , 2 / n - i ) )

, 2/1,2/2, • • •, 2 / n - i ) ) ( ( z =i y)h{x, 2 / 1 , 2 / 2 , . . . , y n - \ ) )

= ({x=i y)g{y, 2/1,2/2, • • •,yn-i)){{x -t y)h(y, yu y2, • • •, yn-\))
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[5] Equality algebras 181

= (x =i y){g(y,yi,V2,• • • ,yn-i)h(y,yuy2,• • • ,yn-i))

= {x=iy)f(y,yi,y2,---,yn-i)-

Thus in every case, ( i =* y)f{x, yu y2,..., yn-\) = {x =t y)f(y, yi, 2/2, • • •, J/n-i), and
the result follows in full generality. D

Thus replacement algebras and equality algebras are the same objects, and we adopt
the name "equality algebra" exclusively from now on; similarly for the title "internalised
equality". For a given variety of universal algebras, the equality algebras definable on
members of the variety are essentially the same as the replacement algebras definable on
them, a fact which one can phrase in terms of the existence of a term equivalence between
varieties of two-sorted algebras in an obvious manner. The terms "group with equality"
and "ring with equality" have the obvious meanings.

We say (A, L, =j) is a strong equality algebra if (o =; b) = 1 implies a = b for all a, b,
and we then call =j a strong internalised equality. Writing A A = {(a,a) | a € A}, the
trivial congruence on A, it is obvious that (A, L, =j) is strong if and only if p=i — A^.

PROPOSITION 1 . 3 . Every equality algebra has a strong equality algebra as a
homomorphic image.

PROOF: Let (A,L,=t) be an equality algebra. For any x,y G A/p=i, define
(x —si y) = (a =i b) for any a G x,b G y; this is well-defined since if (a =, a') = (b =* b') =
1 then

(a = 1 b) = (a =i b)(a ={ a')(b =< b') < (a' =i b)(b =, b') < (a' =i b'),

and reversing the argument establishes equality. =y is obviously a strong equality on
A/p=i. The canonical mapping / : A —> A/p=i together with the identity mapping
L —> L constitute a homomorphism (A, L, =;) —> (A/p=i, L, =s')- D

2. EXAMPLES

Let A be a universal algebra and 5 a set. Define * : As x As -> 2 s by setting
/ * g = {x I x G S,f(x) = g(x)}. Then * is easily seen to be a 2s-valued internalised
equality on A, (where in 2s, meet is set intersection). Generalising, if S is a topological
space, define (/ =j g) to be the interior of / * g, again a 25-valued internalised equality
on A (and in fact an O-valued internalised equality, where O is the lattice of open sets
ofS).

Some important equality algebras are subalgebras of such examples. For instance,
let R = k[xi,X2,... ,xn] be the polynomial ring in n variables over the field k. Then
each / € R may be viewed as a function kn —> k, and then f * g = V(f — g), the variety
defined by / — g.
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Another important special case is as follows: if A — {0,1}, a two-element set without
operations, elements of As are essentially characteristic functions or, equivalently, subsets
of S, and for all U, V € S, (U * V) = (IT n V) U{UnV). Indeed if R is any Boolean
algebra, define (a* b) = (a A 6) V (a' A b') = a + b for all a,b £ R, the Boolean ring
addition on R; then * is an i?-valued internalised equality on R.

We generalise to arbitrary direct products: if X = W^jXi, define ((a;) *z (bi)) =
{i | i € T, at = bi}, for all (a,), (bi) € X. Clearly *x is a 2z-valued internalised equality
on X - the coordinate equality. This and the previous examples are strong internalised
equalities.

Let A be an algebra and E a set of congruences on A (just equivalence relations if
A has no operations). For a, b G A, define a *E b = {p | p G E, apb}. The coordinate
equality on a direct product is a special case of this - hence the notation.

PROPOSITION 2 . 1 . For a set E of congruences on A, *E is a 2E-valued inter-

nalised equality on A.

PROOF: That a *E a = 1 and a *E b = b *E a for all a, b € A is obvious. For any
a, b, c G A, if p G (a *# b) n (b *E C), then apb and bpc, so ape and so p G a *# c.

For any n-ary operation p on A and any ai, &i,..., an, bn € A, if a € (ai *E &I) n
• • • n (an *£&n) then (ai,6i) G a,..., {an,bn) € a, so (p{au... ,an)), (p(6i,. . . , 6n)) G a,
and so a G ( p ( a i , . . . , an)) *E (p{bu . . . , bn)). U

If E is not the set of all congruences on A, *E need not be strong.

PROPOSITION 2 . 2 . Let E = {p; | i g 1} be a collection of congruences on

A. Then *E is strong if and only if f] Pi — &A, whence there exists an embedding of

( X 2 £ , * s ) in (UiexA/pi^1,*!).

PROOF: For all a,b £ A, the following are equivalent: (a*Eb) = E; apb for all
p G E; (a,b) € p for all p G i?; (a,b) G f) P — A^. The existence of the embedding

peE

cj) : A -t UiexA/pi follows from a result of Kurosh, [4, p. 183]; here, <j>(a) = (pta), where
PiG is the congruence class in A/pi containing a. This embedding, together with the
isomorphism ip : 2B —> 2T defined by setting ip(S) = {i | i G J , p; G 5}, constitutes an
isomorphism (cj>, ip) : (A, 2E, * E ) ->• (/m(0), 21, * z ) . D

If -E1 is a collection of congruences on A such that the intersection of any subset of
the relations in E is also in E, then we shall say that E is D-closed; for example, suppose
E is all congruences on A. In such a case E constitutes a complete lattice in which
meet is intersection, the join px V p2 is the intersection of all congruences in E containing
both p\ and P2, and the bottom element is 0 = f| p. There is a smallest congruence

peE

in E containing each (a, b) G A x A, namely the intersection of all congruences in E
that contain (a, b)\ denote this by pa,b- We adopt the convention of using the opposite
of the usual inclusion ordering on E: we say pi < pi if and only if p2 C px. Thus
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semilattice meet (which we denote by juxtaposition to avoid confusion with intersection)

is not intersection but rather the join of congruences in E as described above; further,

the top element is the intersection of all congruences in E, which we refer to as 1. Now

define oE : A x A -> E by setting ( a o E b ) = pa,b for all a,b e A. Again, the coordinate

equality on a direct product has essentially this form.

PROPOSITION 2 . 3 . If E is a C\-closed collection of congruences on A, then oE

is an E-valued internalised equality on A, where E is given the opposite order to set
inclusion.

PROOF: For all a,b,c € A, p0)O = f\ p- = 1; pa^ = pba is clear; and because
PEE

(a,b),(b,c) £ pa<bPb,c, it follows that (a,c) € pa,bPb,c, and so pafi C pa,bpbtC, that is,

Pa,c ̂  Pa,bPb,c- Finally if a is an operation on A of arity n, then (ai, &i ) , . . . , (<zn, bn) €

Pauk ••• Pan,bn, s o ( c r ( a i , . . . , O n ) , a ( b i , . . . , b n ) ) € p a u b i •• • P a n , b n , a n d s o p a ( a u . . . < a n ) ^ b l bn)
^ P a u h '" • Pan,bn- 0

The internalised equality oE is strong if and only if the same condition holds on E
as was required in Proposition 2.2. If E is the collection of all congruences on A, we call
o£ the full congruence equality on A; obviously it is strong.

Recall that an ultrametric space (X, d) is a metric space which satisfies d(x, y) ^
max(d(x, z), d(y, z)) for all x, y, z e X - the generalisation to pseudo-ultrametric spaces
is obvious. Let ^* be the reverse of the usual ordering on the non-negative reals [0,oo);
then L = ([0, oo), ^*) is a A-semilattice with top element zero and o A b — max(a, b) for
all a,b e [0,oo).

Then =<* defined by setting (a —d b) = d(a, b) for all a, b G X is an L-valued inter-
nalised equality on X.

3. EQUIVALENCE

In an equality algebra (A, L, =i), all of the interesting behaviour occurs in the two-
sorted subalgebra generated by A, that is, the equality algebra (A,L=i,=i), where L-{

is the subsemilattice of L generated by the internalised equations - elements of the form
(a =i b) for some a, b € A; the rest of L has no interaction with A. We say that equality
algebras (,4i,Li,=i) and (A2,L2,=2) are equivalent if their respective two-sorted sub-
algebras Mi, (Li)= 1,=iJ and (A2, ( ^2) = 2 I =2) are isomorphic. Equivalence is obviously
an equivalence relation on equality algebras.

Let us say that the internalised equality =2 on A taking values in L2 is a quotient of
the internalised equality =1 on A taking values in L\ if there is a mapping ip : L\ —» L2

for which ip((a —1 b)) = (a =2 b) for all a,b € A and for which the restriction of ip to
(Li)=i is a homomorphism; in such a case it is clear that ip maps (Li)_i onto {L2)=2-
We call such ip a quotient map. If such a ib exists with the additional property that its
restriction to (Li)=1 is an isomorphism, then we say =\ and =2 are equivalent, and ijj is an
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184 D. Fearnley-Sander and T. Stokes [8]

equivalence map. The notion of equivalence is an equivalence relation on the collection of
internalised equalities denned on A. Indeed this collection defines a category in which the
objects are pairs (L, =i) where =i is an L-valued internalised equality on A and arrows
are quotient maps; in this category, isomorphism is equivalence as defined above.

Clearly, =2 is a quotient of =1 if and only if there exists xj) : L\ —> L2 for which the
two-sorted mapping (I,ip) : [A, (£ i ) = 1 ,=i ) ->• \A,{L2)=2,—2), where / : A -» A is the
identity map, is a two-sorted homomorphism; =2 and =1 are equivalent if and only if this
homomorphism is an isomorphism for some ip. If =1, =2 defined on A are equivalent, then
(A,L\,=i) and (A, L2,=2) are equivalent. More generally, (Ai,Li,=i) and (A2, L2, =2)
are equivalent if and only if there exists an isomorphism 4> '• Ai —> A2 for which =i< given
by (a =i< b) = (4>(a) =2 (j>(b)) is an L2-valued internalised equality on Ai equivalent to

For any collection of congruences E on the algebra A, let

En = {p I p is an intersection of elements of E}.

En is a fl-closed collection of congruences on E.

THEOREM 3 . 1 . Let E be a collection of congruences on an algebra A. Then the

internalised equalities *E and *E" on A are equivalent.

PROOF: Define <j> : 2E ->• 2 ( £ n ) by setting <j>(a) = an for all a C E. Now for any

a,be A,

(j){a *E b) = {p PeE,(a,b)ep}

peEn,(a,b) ep

so 4> respects internalised equality.

For a finite intersection f\ (a; * b{) € 2E,E , where i ranges from 1 to n,
i

ij) = {p\peE,(ai,bl)€p,i = l,...,n}

= {p\peEn,{ai,bi)er,i = l,...,n

= f]{p\peEn,(ai,bi)ep}

so 6 is a n-homomorphism (2E) -
\ ) *E E

For finite intersections f](ai *E bi),C\(cj *E dj) € 2E,E, suppose <j>(f) (a{ *E b,)) =
i } v i

(9 *E dj))- Now if p e fl {o-i *E bi), then (ait 6.) € p for all i, and p G (fl (a. *E ftj
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[9] Equality algebras 185

= ((I (CJ *E dj)) , so p is an intersection of things in fl (c,- *E dj), say p — flpk, where,

for all j , {cj,dj) € pk for all k. So (cj,dj) 6 p for all j , and so p £ (f] (c: *E d3)\ and

so f| {o-i *E h) Q fl {cj *E dj). Reversing the argument gives equality, establishing tha t
« i

4>: 2E,E -¥ 2 ( £ n ) » E n is one-to-one.
Surjectivity of <j): 2E,E —> 2^E \En now follows easily:

(/"(Pi ai *E bi) = H <^(ai *E bt) = P | (a; *En bi).
i i i

Hence the map cj>: 2E
%E —> 2^£n'»En is an isomorphism which respects internalised equal-

ity, and so is an equivalence map. D

4. EQUALITY ALGEBRAS AND CONGRUENCES

Let (A, L, —i) be a fixed equality algebra throughout this section. For all a € L,

define

pa = {{a,b) \a,be A,a^ (a=ib)},

and let C=i = {pa \ a e L).

LEMMA 4 . 1 . For every a 6 L, pa is a congruence on the underlying sort A.

PROOF: Let a e i . Then for all a € A, (a —i a) = 1, so apaa. For all a,b £ A, if

apab then (a =i b) ^ a, so also (b —i a) = (a =; 6) ^ a, so bpaa. Finally, for a, b, c e A,

if apab and 6pQc, then (a =, 6) ^ a and (6 =j c) ^ a, so (a =i c) ^ (a =; 6)(b =* c) ^ a,

and so apQc. Hence pQ is an equivalence relation.

Now let a be n-ary on A, with a^, b\,..., on, 6n € A If a,ipabi for each z = 1, 2 , . . . , n

then (a; =< bi) ^ a for all i, so a ^ A;(a; =; bi) ^ (cr(ai,..., on) =i o(b\,..., 6n)), and so

by definition, a{a\,..., an)PQc(^i! • • •, bn). D

4.1. SETS OF CONGRUENCES CHARACTERISATION We showed in Proposition 2.1 that

for any collection E of congruences on A, *E is a 2£-valued internalised equality. Up to

equivalence, every equality algebra arises in this way.

THEOREM 4 . 2 . The internalised equality =; on A is equivalent to * c , where

C = C=1.

PROOF: Let C = C=i. Define (j) : L ->• (2 c ,n ) by setting <p{a) = {pp \ a ^ /?}.

Then <j> is a semilattice homomorphism:

</»(Q/?) - { p 7 | a / 3 > 7 }

= {p7 | a ^ 7 and (3 ̂  7}

= {p7 I a > 7} n {p7 I /? ^ 7}
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Restricted to L=i, 4> is injective. For suppose <f>(Aj(a,j =, 6,-)) = <f>(Aj(pj =, qj)),
where the meets are finite. In particular this implies that if /3 ^ A{(aj =; bj), then there
exists 7 E L such that /? < (c =t d) if and only if 7 ^ (c =, d) and 7 ^ Aj(pj =i qj)- Let
/? = Aj(aj =i 6j); it follows that there exists 7 € L for which Aj(a.,- =* 6,) ^ (c =* d) if and
only if 7 ^ (c =* d) and 7 < Aj(pj =; q3). So for all j , {jpj ={ qj) ^ 7, so Aj(a^ =t bj) ^
(Pi =i Qj) f°r a ^ J a n d s o Aj(°j =i ^ ) ^ A;(pj =i 9j). Reversing the argument establishes
equality.

It is also easy to see that <f> maps onto f 2fc, m .

Finally, 4> respects internalised equality:

4>(a =i b) = {p/3 I (a = , b) ^ /?} = {p& | (a, b) e p0} = a * c 6.

Thus 4> is an equivalence map. D

There are a number of immediate corollaries to this result. From Theorem 3.1, we
have

COROLLARY 4 . 3 . The equality algebra (A, L, =;) is equivalent to an equality
algebra (A, 2E, *E) where E is a D-closed collection of congruences on A.

From Propositions 2.2 and 1.3 we have

COROLLARY 4 . 4 . Let (A, L, ={) be a strong equality algebra. Then (A, L, =*) is
equivalent to an equality subalgebra of (niexAi, 21, —j\ where the A{ are homomorphic
images of A.

COROLLARY 4 . 5 . Let (A, L, ={) be an equality algebra. Then (A, L, —{) has a
homomorphic image in (UieiAi, 2J, =XV where the Ai are homomorphic images of A.

4.2. LATTICE OF CONGRUENCES CHARACTERISATION There is a characterisation fol-
lowing Proposition 2.3 also.

THEOREM 4 . 6 . The internalised equality =t on A is equivalent to oc, where

C = C=i.

PROOF: Let C — C=i. Define tp : L —¥ Cn by setting ip(a) = pa. First note that for
all a,b G A,

(a oc b) = pa,b

= n{pa \aeL, (a,b) e pa}

= n{pQ I a e L, (a =i b) ^ a}

= P(a=ib)

= ip(a=ib).

Let ip* denote the restriction of tp to L=i. Now for finitely many internalised equations
(aj =i bj)>

Ajtp((aj =i bj)) = n{p1 | 7 G L, ip(aj =i bj) C Pl for all j}
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= n{py I 7 e L, P(ai=ibj) C p7 for all j }

= n{p7 I 7 e L, (a,j -i bj) ^ 7 for all j }

= H{p7 | 7 € L, Aj{aj =i bj) ^ 7}

so ?/;* is a homomorphism L=i —¥ (Cn)o .

T/>* has image (Cn)o c since for any finite meet Aj(a,- o c 6j) e (C n ) o c ,

/\i(dj °c bj) = Ajpaj,bj = \i>(aj =i bj) = ip(Ai(aj =* bj)).

Finally, ip* is injective. For suppose xjj(Aj(aj =; bj)) = ip{/\j{pj —t qj)) where the
meets are finite. Now (a, =, 6̂ -) ^ Aj(a.j ={ bj), so (aj,bj) € p^{aj=ibj) = P A ^ P ^ , ^ ) , SO

by definition (a^ =j 6j) ̂  Aj(pj =j ̂ j), and so Aj(a,j =i bj) ^ Aj(pj —i qj). Reversing the
argument proves equality. Thus tp is a n equivalence map. D

This result allows us to show that, given an algebra A, the "free-est possible" in-
ternalised equality on A is the full congruence equality: the unique free object in the
category of equality algebras defined on A.

THEOREM 4 . 7 . The internalised equality =i on A is a quotient of oEt where E
is the set of all congruences on A.

PROOF: By Theorems 3.1 and 4.6, it suffices to show that oDn is a quotient of oE)

where D — C-{ and E is the set of all congruences on A. Let C = Dn. Define rp : E —> C
by setting %p(p) = f){a | a € C, p C a}. Then for any pi,P2 S E,

= n{cr I a e C, px U p2 C a}

= n{a|aeC,V(pi)UV(p2) Ca}

So ip is a homomorphism, and is surjective: for all p € C, ip(p) = p. Finally, for all
a, 6 € A, letting pfb denote the smallest congruence in E containing (a, b) and p%b the
smallest in C containing (a, b), we have that

ip{a oE b) = ip(pa,b) = n{p I p e C, (a, b) e p} = p£6 = (a oc b),

so tj) is a quotient mapping. D

In the above proof we have actually shown that the two-sorted mapping (/, tp) :
(A,E,oE) —> (A,C, oc) , where / is the identity map A —>• A and C = (C=i)

n, is a
surjective homomorphism.
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5. SPECIAL CASES: ABELIAN GROUPS AND RINGS

For groups, congruences are in one-to-one correspondence with normal subgroups;

more generally, for multi-operator groups, congruences are in one-to-one correspondence

with ideals (see [4]), and congruence reduces to ideal membership. Correspondingly, an

internalised equality on a (multi-operator) Abelian group can be expressed in terms of a

unary operator.

Let L be a semilattice and G an Abelian group, the operation written additively. An

L-valued modal map [ ] on G is a function [•] : G —> L for which the following conditions

are satisfied for all a,b £ G:

2. [-o] = [a]; and
3. [a}[b] ^ [a + b].

If also [a] = 1 implies a = 0, we say [•] is strong.

If a modal map is defined on the Abelian group G, we say G is a modal Abelian group.

If the opposite semilattice L' of L is used, the result is something akin to a pre-norm on

G, but taking values in the join-semilattice with zero L' - this connection is explored in

an example to follow.

The significance of modal Abelian groups for the current work lies in the following

fact.

PROPOSITION 5 . 1 . The variety of modal Abelian groups is term equivalent to

the variety of Abelian groups with equality.

PROOF: Let G be an Abelian group and L a semilattice. If [•] is a (strong) L-valued

modal map on G then =t given by (a =; b) = [a - 6] for all a, b e A is a (strong) L-

valued internalised equality on G for which [a] = (a =t 0): (a =i a) — [a — a] = I (and

in the strong case (a =* b) = 1 implies [a — 6] = 1 so a — b = 0); (a =t b) — [a — b] =

[b - a] = (b = ; a); (a = t b)(b ={ c) = [a - b][b - c] ̂  [a - b + b - c] = [a - c] = (o, = , c);

(a =x b){c =i d) = [a - b][c - d] ̂  [a - b + c - d] = [(a + c) - {b + d)] = (a + c =x b + d);

and finally, [a] = [a - 0] = (a =; 0).

Conversely, suppose =t is a (strong) L-valued internalised equality on G. Note first

that

(a=ib) = (a=ib)(-b=i-b)

= (a-b=ib-b)

^ {a-b={0)

= {a-b=iO)(b=ib)

= (a - b + b =i 0 + b)

^ (a=ib),
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so (a =i b) — (a — b =i 0) for all a, b G G. Then [•] given by [a] = (a —i 0) is a (strong)
L-valued modal map on G for which (o =i b) = [a — 6]: [0] = (0 =i 0) = 1 (and in the
strong case [a] = 1 implies (a =j 0) = 1, so a = 0); [-a] = ( - a =t 0) = (0 =i a) =
(a =, 0) = [a]; [a}[b] = (a =t 0)(6 =i 0) = (a = i 0)(0 =< -b) ^ (a =< -b) = [a + &]; and
finally, (a =< b) = (a - b ={ 0) = [a - b}. D

The above proof does not generalise to groups in general: a "modal map" on a non-
Abelian group G induces an internalised equality on the underlying set of G, but not
generally one which is compatible with the group operation.

It follows from Proposition 5.1 that the various notions and theorems for equality
algebras and internalised equalities have analogs for modal Abelian groups and modal
maps. In particular the notion of equivalence makes sense and we have the following
corollaries of Theorems 4.2 and 4.6.

COROLLARY 5 . 2 . Let C be a collection of subgroups of the Abelian group G.
Then [ ] c defined by [a]c = {S | 5 G C, a € S} for all a € G is a 2C'-valued modal map
on G, and every modal map on G is equivalent to one of this form. If C is H-closed,
then [ )'c defined by [a]'c = Ci{S | 5 G C,a € S} for all a € G is a C-valued modal map
on G (where C ordered by the opposite of set inclusion), and every modal map on G is
equivalent to one of this form.

The same analysis can be carried out for any variety of O-groups; we here single
out (possibly non-associative) rings for special attention but the process is similar in
other cases. A ring R is a modal ring if it has an additive L-valued modal map [ ] which
additionally satisfies [ab] ̂  [o] and [ab] ̂  [b] for all a,b € R; in this case we say [ ] is a
ring modal map. Again, the notion of equivalence carries over to modal rings and ring
modal maps.

Note that if L is a lattice, the latter condition is equivalent to [ab] ^ [a] V [b], and if
the opposite lattice to L is used, we obtain something reminiscent of a normed ring.

PROPOSITI ON 5 . 3 . The variety of modal rings is term equivalent to the variety
of rings with equality.

PROOF: The term equivalence is the same as that in Proposition 5.1.

Let (R, L, =i) be a ring with equality. Then [ ] defined by [a] — (a =j 0) for all
a G R is an L-valued modal map on the additive group of R for which (a = t b) = [a — b];

moreover, for all a, b,c,d € R,

[ab - cd] = {ab ={ cd) > (a ={ c)(b =t d) = [a - c][b - d].

The fact that [ab] ^ [a] follows by putting c = 0, d = b; similarly for [ab] ^ [b]. So [ ] is a
ring modal map.

Conversely, if (R, L, [•]) is a modal ring, then =R defined by (a =R b) = [a — b] for all
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a, b G R is an L-valued internalised equality on the Abelian group (R, +), satisfying also

(ab =i cd) = [ab — cd]

= [{a - c)b + c{b - d)}

> {(a-c)b][c(b-d)}

^ [a-c][b-d]

= (a=ic)(b=id),

so (R, L, =j) is a ring with equality. D

COROLLARY 5 . 4 . Let C be a collection of ideals of the ring R. Then [ }c defined
by [a]c — {S I S G C,a e 5} for all a G R is a 2C-valued ring modal map on R, and
every ring modal map on R is equivalent to one of this form. If' C is H-closed, then [ ]'c
defined by [a]'c = fl{5 | 5 G C, a G 5} for all a £ R is a ring modal map on R, and every
ring modal map on R is equivalent to one of this form.

Note that two different fl-closed collections of ideals on a ring R can give rise to
equivalent ring modal maps. For instance, let A be the polynomial ring over the field k
in infinitely many variables, k[x\,X2, • • •]• Let E be the collection of finitely generated
ideals in A, C the collection of all ideals of A; then E is a subsemilattice of C, closed under
ideal sums (that is, ideal meets with respect to the partial order of interest here), and
moreover [O\E = [a]c is the ideal generated by a—b, so the ring modal maps are equivalent.
This shows more generally that two distinct fl-closed collections of congruences on an
algebra can give rise to equivalent equality algebras.

Recall the earlier example of a ring with equality: the polynomial ring in n variables
over the field k, R = k[x\,X2, • • • ,xn]. The 2*"-valued internalised equality * on R
defined by / * g = V(f - g) arises from the ring modal map [ ] defined by [/] = V(/),
which equivalently arises from the D-closed lattice of ideals of the form 1(5) = {/ | / €
R, f(a) = 0 for all a S S} for 5 a subset of kn (with order the reverse of set inclusion, as
discussed earlier), reflecting the familiar Galois correspondence of algebraic geometry.

We conclude with a class of examples of importance in number theory. Let K be
a field on which is defined a non-Archimedian valuation |-|, taking values in an ordered
group G. (See [1].) Thus for all a,b£ K,

1. \a\ ̂  0 and \a\ — 0 if and only if a = 0;

2. \a + b\ ̂  max(\a\, |6|);

3. \ab\ = \a\ • \b\.

The standard example is the field of rationals with the usual p-adic valuation (p prime),
taking values in the non-negative reals and defined by |0| = 0, and \x\p = c* for fixed
c € (0,1), where x = pk(a/b), a ̂  0, gcd(a, b) = 1, and p divides neither a nor b.

Let V be the valuation ring determined by |-|: V = {a | a G K, \a\ ̂  1}. Now G is
a V-semilattice satisfying a V b = max(a, b), so \a + b\ ̂  \a\ V |6|. G' = {a \ a € G,

https://doi.org/10.1017/S0004972700030902 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030902


[15] Equality algebras 191

0 ^ a ^ 1} is a subsemilattice of G, and for all a € V, \a\ G G'. Finally, for all a,b £ V,

\ab\ ^ \a\, \ab\ ^ |6|, because \a\, \b\ ^ 1. Dualising the order on G' and defining [a] = \a\,

it follows immediately that [ ] is a G'-valued ring modal map on V.

The p-adic valuation is of course a pre-norm with respect to which both addition

and multiplication are uniformly continuous. This analytic structure on V is typical of

modal groups and rings: the modal map behaves like the dual of a pre-norm, and the

resulting uniform structure is compatible with the operations and is often non-trivial.

These remarks extend to equality algebras in general - one may view the dual of an

internalised equality as something like a metric on the underlying algebra with respect

to which all its operations are uniformly continuous. We shall explore these matters

elsewhere.
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