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ABSTRACT. Measurements of velocity have been made on and next to Ice 
Streams Band C, West Antarctica. The results are more precise than previous work 
and constitute a 93% increase in the number of values. These velocities are used to 
describe the confluence of flow into the ice streams and the development of fast ice­
stream flow. The onset of fast-streaming flow occurs in many separate tributaries that 
coalesce down-glacier into the major ice streams. For those inter-stream ridges that 
have been studied, the flow is consistent with steady state. Along Ice Stream B, 
gradients in longitudinal stress offer little resistance to the ice flow. The transition 
from basal-drag control to ice-shelf flow is achieved through reduced drag at the 
glacier base and increased resistance associated with lateral drag. Velocities in the 
trunk of Ice Stream C are nearly zero but those at the up-glacial head are similar to 
those at the head of Ice Stream B. 

BACKGROUND 

The reason for the differences in £low regime In West 
Antarctica (fast-streaming £low and nearly stagnant 
ridges), as well as for the recent stoppage of Ice Stream 
C, are still largely unknown. Streaming flow is not an 
isolated phenomenon, for analyses of aerial photography 
and SPOT imagery show that the up-glacial onset of ice 
streaming occurs over a broad zone (Vornberger and 
Whillans, 1986, 1990; Merry and Whillans, 1993). 
Moreover, the shear margins can be traced over large 
distances. Once started, ice streams seem to be able to 
maintain their characteristics. 

Field programs were initiated on Ice Streams Band C 
(Fig. 1), with the objective of testing the early inferences 
about the presence, extent and steadiness of ice streams, 
and to infer the mechanics controling their motion. Ice 
Stream C was selected for study because of the indications 
that it had stopped flowing. Studies were conducted on 
Ice Stream B because it is active, has a simpler basal 
topography than other ice streams, but otherwise 
seems representative of most of the ice streams. Also, 
being next to the stopped Ice Stream C, it too may be 
changing, perhaps through capture of the drainage of 
Ice Stream C. 

Because both Ice Streams Band C appear to be 
undergoing significant change, understanding their 
mechanics is crucial. To address this issue, surface 
velocities were measured on a local scale (by deploying 
strain grids: Whillans and Van der Veen, 1993), on a 
regional scale (from repeat aerial photography: Whillans 
and Bindschadler, 1988; Whillans and others, 1993), and 

on a large scale covering the entire ice stream and its 
catchment area. These large-scale velocities were deter­
mined by repeat occupation of Doppler satellite-tracking 
stations. The present contribution presents and discusses 
results of the large-scale survey of the ice streams. 
Preliminary results of many velocity de terminations 
have been given in Whillans and others (1987), but the 
velocities presented here are more precisely determined 
and many additional measurements are included. 

METHODS 

Poles were placed vertically in the surface of the ice sheet 
and surveyed on at least two occasions for position. The 
resulting vectors for surface velocity are presented in 
Table I and plotted in Figures 2 and 3. The base map for 
Figure 2 includes the major geographic features mapped 
from aerial photographs (Vornberger and Whillans, 
1990), satellite imagery (Merry and Whillans, 1993), as 
well as features on satellite imagery additional to those 
discussed by Merry and Whillans. Figure 3 shows velocity 
vectors together with elevation contours and the 
boundaries to the ice streams. 

The surveying was done using Transit (also called 
"Doppler") satellite receivers . Most of the equipment 
were Magnavox model 1502 "Geoceivers", which were 
left tracking at each site for about 24 h. As described in 
McDonald and Whillans (1988, 1992), the data are 
reduced using precise, post-processed orbits for the 
satellites, or else they are linked in a network adjustment 
to other sites with positions so obtained. The earlier 
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Table 1. Positions and hori<.ontal velocities of stations. Positions are in the WGS84 system. Velociry components are 
parallel to, and in the direction of90"W longitude (grid west) and 1800 longitude (grid south). The last column indicates 
how much the more precisely determined ice speed differs from the values tabulated in Whillans and others (1987) (values 
that are new are so indicated) 

Station South West Ellipsoidal Velociry Correction 
latitude longitude height components to previous value 

m ma -I m a- I 
south west 

UpB-01 83 28 50.218 138 11 57.763 339.0 208.9 - 389.5 -1.0 
11 84 02 9.357 135 58 26.172 393.9 319.4 -184.2 -1.3 
12 83 51 28.424 135 51 29.414 398.6 19.3 - 19.6 --0.5 
13 83 41 9.329 136 20 18.413 400.4 56.0 - 104.5 0.6 
14 83 24 37.414 136 40 57.989 365.9 221.5 -360.8 --0.6 
15 83 13 36.882 136 44 12.973 389.6 -2.2 -5.9 2.3 
16 84 04 52.615 137 25 53.826 369.0 18.5 1.2 --4.5 
17 83 52 17.069 137 55 6.098 352.2 322.8 -177.0 8.1 
19 83 16 21.976 138 15 56.961 357.8 -3.8 -7.5 3.4 
21 83 34 44.792 138 5 48.825 347.1 1,4 --0.6 New 
22 83 26 30.460 140 40 22.154 306.1 162.4 --431.5 --4.0 
24 83 24 6.683 141 59 56.347 310.7 -4.5 --4.3 New 
25 83 39 36.546 143 34 36.104 278,4 327.3 -{)59.5 5.3 
26 83 27 17.970 143 54 1.193 292 .2 - 5.5 -5.0 2.4 
27 83 38 40.412 139 49 37.307 298.6 5.0 --0.9 --4.9 
31 83 56 35.687 142 24 57.575 321.7 1.0 -3.6 - 2.3 
32 84 00 51.738 144 26 5.960 212.4 4.3 -5.9 1.3 
33 83 45 42.209 145 40 18.436 212.2 -15.2 --824.4 - 2.5 
34 83 35 4.069 146 14 38.294 231.0 - 5.9 -3.6 2.9 
41 84 04 41.549 144 58 3.863 150.8 3.6 -7.7 --0.5 
42 83 54 53.514 146 46 5.538 195.6 -237.1 -760.5 3.6 
43 83 44 30.623 148 10 40.563 186.5 --4.3 --8.8 7.8 
44 84 14 10.822 146 11 47.666 142.1 6.5 - 18.2 2.3 
45 84 04 59.908 148 9 50.515 140.9 - 172.1 -{)97,4 -2 .7 
46 83 51 48.236 149 36 23.101 150.5 -2.9 - 2.8 1.0 
47 83 56 7.612 147 59 8.833 154.4 -225.5 -756.0 0.9 
51 82 51 11.614 131 31 40.767 555 .3 - 2.8 -9.0 5.4 
52 83 10 43 .800 132 42 44.441 431 .5 93.3 -160.4 2.6 
53 83 02 11 .953 129 49 20.592 537.6 35.8 --46.8 3.9 
54 83 13 54.004 130 40 11 .288 498.6 72.9 -{)O.O New 
55 83 17 33 .645 128 44 6.978 582. 7 109.4 -46.2 -5.2 
56 83 35 43 .035 131 47 8.727 499.9 34.3 -7.4 0.1 
57 83 33 46.359 129 21 39.201 586.0 37.1 -9.1 --0.8 
58 83 54 14.171 133 28 30.046 487 .0 26.7 - 13.6 1.0 
59 84 04 12.899 129 20 17.973 795 .7 157.9 -57.4 0.0 
60 84 09 56.938 130 27 46. 306 720.0 59.3 --45.2 1.6 
61 82 52 57 .814 132 32 9,426 514.5 -D.3 - 3.9 New 
63 83 03 55.984 131 35 24.007 465.7 42 .7 - 90.5 New 
64 83 10 18.042 129 2 5.250 562.5 26.5 -9.6 New 
65 83 24 26.562 129 38 31.445 540.1 101.9 --81.3 New 
71 83 33 21.238 136 27 2.727 391.7 2.9 -D.4 -{).1 
72 83 40 57 .426 137 59 27.890 379.8 1.1 - 1.3 - 9.3 
80 82 22 4.214 136 56 15.783 459.1 1.8 --0.4 - 3.2 
81 82 36 39.659 137 18 27.350 465.2 1.3 -{).5 New 
82 82 21 31.201 136 20 17.101 492.5 1.4 -1.9 New 
83 82 09 8.329 136 19 5 .263 498.9 8.3 - 9.6 New 
90 82 22 12.047 135 41 22.330 545.1 5.0 -9.2 4.5 
100 82 21 9.148 130 47 36.346 639.1 27.1 -10.9 New 
101 82 36 49.614 128 44 9.657 706.2 40.1 -36.0 New 
110 82 07 13.321 128 27 6.071 715.8 -167.4 -741.2 New 
133 82 19 19.603 119 45 26.473 896.1 -85.2 -349.9 New 
330 83 25 59.830 137 17 39.660 347.9 219.8 -374.0 8.5 
422(1) 83 28 35 .953 122 32 10.591 882.7 10.9 - 1.9 New 
NORTH 82 53 31.509 136 39 36.974 511.1 - 1.0 - 3.2 0.4 
SOUTH 84 29 48 .710 134 16 48.940 664.1 12.1 - 3.5 --4.4 
AI9275(2) 84 24 26.418 154 42 20.699 95.5 207.5 35.2 New 
BI7-18(2) 83 56 57 .925 153 35 40.723 81.3 242.2 -340.4 New 
B25(1) 83 52 1.899 153 10 38.430 90.8 -2.9 5.0 New 
C4(2) 84 57 49.689 165 38 31.862 207.1 -1.2 -3.9 New 
CIR(I) 83 37 8.349 166 45 15.696 46.8 214.6 -111.7 New 
DNB (2) 84 10 26.853 154 21 16.687 85.4 246.3 --433.3 New 
E2- LPl (l) 83 00 4.751 172 59 52.329 84.7 - 16.1 10.9 New 
E2.3(l) 83 33 5.442 168 13 13.498 35.9 126.7 -102.1 New 
E3 (1) 83 22 44.910 169 34 27.758 36.8 -7.3 -1,4 New 
E4(2) 83 09 20.176 171 36 37.288 58.4 -1.0 2.3 New 
EI 9-F 1(l) 84 09 3.311 156 51 7.542 83 .9 256.2 -383.3 New 
Gl (l) 84 03 58.211 152 11 43.393 105.6 204.6 --473.4 New 
G2 (2) 84 00 31.461 150 34 47 .983 135.6 178.3 -522.9 New 
G3(l) 83 25 33 .293 162 43 43 .009 22.5 281.1 -33.3 New 
HI-H2(2) 83 53 49.241 150 25 27 .059 124.1 -10.7 -6.8 New 
J1 (1) 83 35 18.847 171 36 58.078 28.7 243.9 -264.7 New 
J 2(1) 83 18 56.544 173 5 29.436 26.7 263.7 -202.8 New 
J3 (2) 83 07 12.527 174 56 17.354 27.7 324.4 - 162.7 New 
Kl (l) 83 10 18.292 168 9 42.440 18.4 205.7 -80.8 New 
K2(1) 82 56 29.394 169 58 33.135 10.5 186.2 -98.3 New 
K3 (1) 82 49 21.887 171 10 34.326 -5.7 185.7 -143.7 New 
Ll (2) 83 06 11.551 172 25 19.321 55.2 --0.5 4.0 New 
MID-MO(I) 84 17 42.130 158 13 24.896 71.0 255.2 -397.3 New 
W3 (2) 84 56 4.837 154 37 47.374 90.2 -7.2 -23.0 New 
W5(1) 84 35 31.426 166 37 33,460 51.0 256.5 -309.8 New 
W5513 84 57 40.458 142 54 12.483 236.6 184.4 --83.8 -{).5 
W5515 84 44 32 .806 146 12 45.941 189.0 201.3 -181.5 8.7 
W514 85 10 36.387 139 34 42.507 289.5 25.7 - 9.1 15.1 
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results in Whillans and others (1987) did not involve these 
precise orbits. In the present work, absolute positions of 
the survey stations are accurate to about I m. Relative 
positions for stations linked together in a network 
adjustment are more precise, but discussion here relates 
to a bsol u te veloci ties, which are accurate to 
JI(lm)2 + (lm)21j[elapsed time], or typically OA-ma- i

. 

A few positions are calculated from tracking data 
provided by other groups. As indicated in Table I, some 
of these positions are of lesser quality because fewer 
satellite passes were tracked. There are positions and 
velocities in Table I that lie outside the area of the figures 
and are not plotted. 

Many stations have been surveyed three times, giving 
two velocity determinations. There is no significant 
change in velocity. Only vectors calculated from the 
longest time interval are presented. Positions are relative 
to the WGS84 ellipsoid. Heights above the geoid are 
about 40 m smaller (AUSLIG, 1980; Rapp and others, 
1991) . 

ICE STREAM B 

In drawing the boundary for the onset of ice-stream flow 
in Figure 3, active ice-stream flow is defined as grounded 
ice having a driving stress less than about 50 kPa and 
speeds in excess of about 100 m a - i (expanding on a 
definition suggested by Bentley (1987)). Other definitions 
are possible but this definition emphasizes the essential 
anomaly of the ice streams in this vicinity (fast despite 
small driving stress). Other drainages, such as Rutford Ice 
Stream (Frolich and Doake, 1988) and J akobshavns 
Isbrre (Echelmeyer and others, 1991 ), are not anomalous 
in this way and may be more like outlet glaciers. 

Older maps of Ice Stream B show different positions 
for the boundaries of the ice stream in its upper reaches 
(Rose, 1979; Shabtaie and others, 1987). The earlier 
maps are based on correlation of sites of strong radar 
back-scatter and the assumption that these sites represent 
lateral shear margins. It appears that some of these 
regions with dense crevasses do not correspond to shear 
margins. 

For appropriately averaged surface slope, velocity 
vectors are perpendicular to surface-elevation contours 
from Retzlaffand others (1993). Up-glacier of the onset 
region of the ice stream (stations 50 to 65), the vectors are 
perpendicular to slope averaged over about 15km in all 
directions (Fig. 3). Within the ice stream, flow is 
perpendicular to surface slope measured over 50 km 
along-flow and across the full width within the ice-stream 
boundaries, excluding the inter-stream ridges. The cause 
of the surface-slope variations within the ice stream and 
the reason that they have such a small effect on ice flow is 
not fully understood. Whatever the cause, averages of the 

<l Notes 

( i ) Less precise orbits used and tracking data of poorer quality. 
(2) Less precise orbits used. 
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Fig . 1. Location of ice streams (indicated by STIP­
PLING) draining into the Ross Ice Shelf. 

driving stress for ice streams must be taken over larger 
distances in order to correlate with flow direction. 

Where Ice Stream B is well-defined, its width varies 
slowly. The width of tributary B2 varies by a factor of 
only 2 between the UpB camp and station 45, 150km 
down-glacier. The width of tributary Bla varies even less 
over the same distance. The simplicity of the form of the 
ice-stream margins and the lack of clear basal topo­
graphic control on many of the margins (Shabtaie and 
Bentley, 1988) indicates that some process, probably 
involving the transmission of shear stress between the 
inter-stream ridges and the ice stream, is determining the 
location and intensity of the shear margins. 

In contrast to tributary B2 and the trunk of Ice 
Stream B, there is more basal relief and more important 
basal topographic control on the course of the sub­
tributaries of tributary Bl. Ridges BlajBlb and BljB2 
(the unicorn) are associated with basal highs (Retzlaff 
and others, 1993). A comparison of the maps of velocity 
and bed elevation shows that tributary BI tends to flow 
around, and not over, basal highs. The region of tributary 
B2 and the snake is remarkable for having little apparent 
bed-topographic control. 

The head ward onset of ice-stream flow is not marked 

Stations whose name starts with "W" were occupied by the University of Wisconsin in Madison; all other stations whose name starts with a letter 
(except for "UpB", "North" and "South") were occupied by NASA-GSFC. 
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Fig. 2. Velociry vectors superimposed on a sketch of major surface features from aerial photographs and satellite images. 
Some polar-grid intersections are indicated to aid correlations with the maps of RetzlafJ and others (1993). The anticlines 
(also called warps) have been discussed by Merry and Whillans (1993) . The basal(?) features are surface ridges that 
are less simple in form than other linear features. We speculate that they are due to ice flowing over hogbacks in the bed 
(ends of dipping strata that resist erosion). 

by a simple boundary. Rather, the boundary wanders 
back and forth by at least lOO km. There is even an 
"island" in the ice-stream system (the unicorn). This 
indicates that the criterion for the onset ofice-stream flow 
is achieved separately at many different sites and that ice 
streams, once formed, tend to persist and coalesce. 

B drainage basin. An average thinning over the 
catchment basin and ice stream of 0.06 m a- I is 
indicated . The limit of error is 0.04ma- l

. This is 
believed to be the most accurate way to quote errors. 
However, for comparison with estimates by other authors, 
a standard error has been calculated by taking error 
limits on individual measurements as equal to twice the 
standard error and assuming that errors tend to cancel in 
a statistical way. The standard error is 0.0 I m a-I . 

The ice-stream system is changing with time. The 
most accurate determination of change over a large area 
is that of Whillans and Bindschadler (1988), who 
determined that output exceeds input for the Ice Stream Earlier studies over smaller areas show rapid thinning 
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Fig. 3. Velociry vectors superimposed on elevation contours from RetzlafJ and others (1993). Heavy lines mark boundaries 
to ice-stream flow from Merry and Whillans (1993) and Vornberger and Whillans (1990) . Short lines perpendicular to 
contours indicate onset of ice-stream flow. 
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in the upper reaches of Ice Stream B, but these results are 
open to re-interpretation. In their small-area calculation, 
Whillans and others (1987) assumed that the strain rate 
between velocity determinations is homogeneous, an 
assumption that is now clearly inappropriate in view of 
the complexity of tributaries shown in Figure 2. In 
another small-area study, Shabtaie and others (1988) 
used freehand interpolation to determine velocity values 
between measurements. Nevertheless, thinning at the ice­
stream head and inland migration of the onset of ice­
stream flow is an attractive process to account for the 
overall negative mass balance of the ice stream, the excess 
discharge of the ice stream being due to evacuation of ice 
associated with headward thinning. 

ICE STREAM C 

In great contrast to Ice Stream B, Ice Stream C is nearly 
stagnant. This confirms the early inferences. The region 
around the VpC camp is moving at only 1-13 m a-I. 
Velocities in the upper reaches are about 40ma- l

. The 
lower reach of Ice Stream C is completely stagnant 
(Bindschadler and others, 1988). 

Velocities on Ice Stream C are inadequate to evacuate 
the snow-accumulation rate. For mass balance, the speed 
would need to be similar to that of Ice Stream B, i.e. 
about 400 m a- I. Ice Stream C must now be thickening at 
about its snow-accumulation rate of 0.10 m a-I (Whillans 
and Bindschadler, 1988) . The flow direction of one station 
(81 ) is inconsistent with the direction of this relict ice 
stream; it shows a strong component of motion toward the 
margin. This also indicates non-steady flow. 

INTER-STREAM RIDGES 

Ice flows into the sides ofIce Stream B all along its length. 
This flow usually enters the ice stream at an angle of 
about 45° to the main flow and is p erpendicular to 
elevation contours on the inter-stream ridges. 

The flow of ice from inter-stream ridge B/C is 
consistent with steady flow by internal creep. The 
discharge by internal creep using flow-law parameters 
from Hooke (1981 ) balances the up-glacier accumulation 
reported by Whillans and Bindschadler (1988), but limits 
of error would allow thinning as fast as 0.3 m a-I or 
thickening as fast as 0.1 m a- I (McDonald, 1990, p.83 ) . 
Within uncertainties, principally associated with the flow 
law and the size of the catchment area, the ridge may be 
in balance and flowing without basal slip. 

The steadiness of flow from ridge A/B cannot be 
assessed with even this level of imprecision. This is 
because the shape of the ridge is complex and catchment 
areas for the flow cannot be drawn with confidence. 

Whillans and others (1987) argued that the velocity of 
station 27 is very anomalous. This station is at the tip of 
the unicorn (ridge BI/B2) and is moving across-flow. It 
seemed that such flow cannot be sustained by up-glacial 
snow accumulation and that the tip of the unicorn is 
being pushed by tributary BI or pulled sideways by 
tributary B2. This led to the suggestion that there may 
exist rafts of stiff ice that are being carried along by the ice 

stream. However, a less dramatic interpretation is now 
possible. Elevation contours (Fig. 3) indicate that ice is 
routed along the long axis of the unicorn. Station 27 
seems to be at a special site, just where most of the 
discharge from the unicorn exits. The anomaly is not so 
much with the velocity as it is with the unusual 
topographic shape of the unicorn. 

LONGITUDINAL TENSION AND COMPRESSION 

Along most of its length, the surface of Ice Stream B is 
very flat. Consequently, the driving stress is small (less 
than 20kPa; Alley and Whillans, 1991, fig. 2), yet the 
surface speed is very large. This combination of small 
driving stress and large speed places active ice streams in 
a category transitional between inland-ice flow and ice­
shelf flow. 

Perhaps longitudinal tension or compression is very 
important in countering gravity as described by the 
driving stress. In the models of MacAyeal (1989) and 
Hughes (1992), the driving stress in ice streams is taken to 
be partly or largely balanced by longitudinal compression 
(MacAyeal) or tension (Hughes). The present data, 
together with strain rates measured earlier on the Ross 
Ice Shelf (Thomas and others, 1984) can be used to 
evaluate longitudinal stresses and test this hypothesis. 

The flow line selected for this calculation is shown in 
Figure 4. It begins at station 55, passes through tributary 
B2 and south of Crary Ice Rise and ends at station R13, 
close to the calving barrier. The longitudinal elevation 
profile, and measured surface velocity are shown in 

\\'RooSeVelt V Island 

Fig. 4. Location of stations on the flowline used to 
calculate the role of gradients in longitudinal stress in 
opposing the driving stress. Marginal numbers are grid 
coordinates, with the Greenwich meridian as grid longitude 
if, and the South Pole at grid latitude if (Bentley and 
others, 1979). Stippling indicates lateral shear margins. 
The dotted line represents the grounding line (from 
Shabtaie and others, 1988). 
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Figure 5. Data for stations 55 through 47 are from Table 
1, and for station DNB from Bindschadler and others 
(1988). For stations F7 through R13, velocities and strain 
rates (not shown) are from Thomas and others (1984). 
The lines are not joined from F7 to DNB. This is because 
the two data sets were collected at different times, 
between which the velocities changed by 20% (Stephen­
son and Bindschadler, 1988). Ice thicknesses for the 
grounded stations are from Retzlaff and others (1993) 
and for the stations on the floating ice shelf from Bentley 
and others (1979). 

Differential pushes and pulls (longitudinal stress 
gradients) are calculated from the available data as 
described in the Appendix. The fraction, 1/1, of the driving 
stress that is opposed by lateral drag and basal drag is 
shown in the lower part of Figure 5. Where 1/1 = 1, all 
resistance to flow is due to drag at the glacier sides and 
bed; for 1/1 = 0, longitudinal tensile or compressive 
gradients dominate, as would be the case if the glacier 
were spreading as a freely floating ice shelf (Weertman, 
1957). For 1/1 > 1, local basal and lateral drag support a 
larger part of the glacier. Figure 5 shows that longitudinal 
stress gradients play small roles in controling the flow of 
the glacier, except for the region between stations F7 and 
G9. 

The major uncertainties in the calculations are due to 
measurement errors. In particular, results are sensitive to 
relative errors in the second spatial derivative of ice 
velocity. For the grounded stations, relative ice speeds are 
accurate to 0.2 m a-I, but on the ice shelf the uncertainty 
is 25 m a-I or somewhat worse. Therefore, to obtain 
meaningful results, gradients need to be calculated over 
larger horizontal distances on the ice shelf than on the 
grounded part of the flowline. 

Longitudinal stresses are generally unimportant to the 
force balance. Thomas and MacAyeal (1982, fig. 8) also 
found that the retarding force acting on the Ross Ice Shelf 
due to effects such as shearing past margins and the 
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presence of ice rises is generally sufficient almost to 
balance the weight forces that induce ice-shelf spreading. 
Or, using the present notation, 1/1::::J 1 on most of the Ross 
Ice Shelf. 

There is a special region near station G9, between 
Crary Ice Rise and the Transantarctic Mountains. 
Compression occurs up-glacier and tension down­
glacier, and side drag is large; 8[HRxlll/oy is about 
0.8 kPa. Figure 5 does not depict this effect very well 
because side drag and driving stress are convolved. 
Driving stress fluctuates spatially by a large amount 
(from 0.9 to 0.1 kPa) on either side of station G9. Side 
drag (8[HRxlll/8y) more than balances the local driving 
stress; it supports some of the ice up- and down-glacier. 
The calculated amount of support depends on the values 
selected for the flow-law parameters but the favored 
values indicate support as much as 200 km of the glacier. 
This is a crucial site of large resistance, or throttle, 
because it controls much of the ice shelf. As has already 
been argued (e.g. MacAyeal and others, 1987), its 
mechanics are especially important. The role of this 
throttle is also significant because the region is changing 
as a large fold in the ice shelf passes (Casassa and others, 
1991 ) and due to the progressive up-glacial migration of 
Crary Ice Rise (Bindschadler and others, 1989) and time 
changes in ice speed (Stephenson and Bindschadler, 
1988). 

CONCLUSIONS 

The precise determinations of velocity confirm earlier 
work that Ice Stream B is fast and the neighboring ice is 
slow. The speed contrast exceeds two orders of mag­
nitude. Ice feeds into the ice stream along most of its sides 
but the bulk of input occurs at the up-glacial ends of 
several tributaries. The lateral shear margins show no 
sharp bends and are remarkable for being some of the 
longest simple features in the ice sheet. 

Some authors have suggested that longitudinal tension 
or compression plays a large role in holding back or 
pulling along the ice stream. The velocity measurements 
demonstrate that this is not the case; rather, the major 
flow resistance comes from the bed and sides for almost 
the entire flowline studied here. The single major 
exception, where longitudinal stress is important, is next 
to Crary Ice Rise in the ice shelf. These large stresses 
point to the great importance of the ice rise in controling 
the flow of the ice shelf. 

Ice Stream C, in contrast to Ice Stream B, is 
confirmed to be very slowly flowing. Velocities in the 
upper part are similar to those in the upper part of Ice 
Stream B. However, the main trunk of Ice Stream C is 
almost stagnant. 
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APPENDIX 

To evaluate the role of longitudinal stress, consider the 
balance of forces in the ice-flow direction (Van der Veen 
and Whillans, 1989) 

III which the x-axis is in the direction of flow and y is 
perpendicular to it, H represents ice thickness, and ~j 
are the depth-averaged components of resistive stress. 
This equation states that the driving stress, Tdx, is 
balanced by drag at the glacier base, 1"bx (which is zero 
for the ice shelf), lateral drag (second term on the right­
hand side) and gradients in longitudinal stress (third term 
on the righthand side). 

Let 'l/J denote the fraction of the driving stress that is 
opposed by basal drag and lateral drag. Then 

Tbx - iylHRxy] 
'lj; = -----=.!!.~---=.:.. 

Tdx 
(A2) 

and the balance equation can be written as 

This equation IS used to calculate 'lj; for each pOSItIOn 
along the flowline . The driving stress is calculated from 
the glacier geometry, while the gradients in longitudinal 
stress are estimated from surface-strain rates. 

The resistive stress, R xx , is related to deviatoric 
stresses, ad by neglecting bridging effects (Van cler 
Veen and Whillans, 1989) 

Rxx = 2axx' + ayyl . 

Invoking the constitutive relation (Paterson, 1981, p. 30-
31 ) 

(A5) 

gives 

(A6) 
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Here, B represents the rate factor (540 kPa a-! for n = 3 
from Whillans and Van der Veen (1993)), and fe is the 
effective strain rate. 

For Ice Stream B, strain rates are calculated from the 
ice speeds and the width of the ice stream. Longitudinal 
stretching is calculated from the ice speeds in Table 1: 

OU 
fxx=OX' (A7) 

Lateral spreading may be important where the width of 
the ice stream vanes In the flow direction. In first 
approximation: 

. UoW 
fyy = W ox (AS) 

where W represents the width of the ice stream. Along the 
center line, other components of strain rate may be 
neglected and the effective strain rate is 

. 2 1(' 2 . 2 . 2) 
fe = 2 fxx + f1JY + fzz (A9) 

with 

(AIO) 

from incompressibility. The quantities used to calculate 
Rxx are measurements of ice speed and ice stream width. 

For the ice shelf, strain rates and rate factors from 
Thomas and others (1984) are used. Also, for the ice shelf, 
it is easier to compute driving stress from ice thickness. 
Because the ice shelf is floating in ocean water, the surface 
elevation, h, is related to the total ice thickness, H: 

(All) 

where p and Pw denote the density of the ice shelf 
(0.897 Mg m -3) and sea water (1.028 Mg m -3) (Mac­
Ayeal and others, 1987), respectively. The driving stress is 
thus 

oh 
Tdx = -pgH­ox 

= -P9H[I-~] oH . 
Pw ox 

(A12) 

Ice-thickness values have been taken from Bentley and 
others (1979). 
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