
AUTOMETRIZED BOOLEAN ALGEBRAS I: 
FUNDAMENTAL DISTANCE-THEORETIC PROPERTIES OF B 

DAVID ELLIS 

1. Introduction. There have been several brief studies made [3, 4, 7, 8, 9, 11] 
of systems in which a ''distance function" is defined on the set of pairs of 
elements of some abstract set to another abstract set. Frequently both of the 
sets involved are given algebraic structures. One of the more novel of these 
systems is the naturally metrized group [3, 7] originated by Karl Menger in 
1931. This system is analogous to the Euclidean line in that it assigns to each 
pair, a, & of elements of an additively written Abelian group the "absolute 
value", (a-b, b-a) = (b-a, a-b), of the "difference" of the elements as "distance". 
As might be anticipated (since this is precisely the distance function used on the 
Euclidean line) many of the results valid for the distance function on the 
Euclidean line are also valid for this "distance function" 

In this paper a system will be defined which is also somewhat similar to the 
Euclidean line in that the "distances" of elements are themselves elements of 
the same set. A few of the usual notions of metric geometry will then be 
examined in terms of these "distances". It should be noted that the definitions 
of metric concepts in this system are analogous to the corresponding definitions 
for metric spaces; in particular, there is a striking resemblance between the 
list of properties given in Theorem 1.1 and the usual list of assumptions about 
the metric of a metric space. 

DEFINITION. Let B be a Boolean algebra with meet, join, complement, and 
inclusion (in the wide sense) denoted by ab, a + b, a', and a(Zb respectively. 
(All these notions are discussed in [1]. The notions of metric geometry not 
defined in this paper are discussed in L. M. Blumenthat's Distance Geometries, 
University of Missouri Studies, vol. XIII (1938).) 

Define "distance" of a and b by d{a, b) = ab' + a'b. Throughout the 
paper subsets of B will be denoted by capital English letters and all small 
English letters will denote elements of B. The name, autometrized Boolean 
algebra, seems appropriate for the system thus defined. 

Remark (i). The "distance function" defined in B, d(a, b) = abf + a'b, is 
also the element corresponding to the ring sum of a and b under the one-to-one 
correspondence of Boolean algebras and Boolean rings with units [1] so all the 
results of this paper might, if desired, be re-phrased as results concerning the 
ring sum in a Boolean ring with a unit. 
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Remark (ii). Since d(a> b) = ab' + a'b = (a + b) (a' + b')y 

à'(a, b) = ab + a'b' = (a' + b) (a + b'). 

Remark (iii). The "distance function" is invariant with respect to comple­
mentation; that is, d(a, b) = d(a\ b'). 

Remark (iv). The first element1 of B acts as an "origin" with respect to the 
"distance function"; that is, d(0, a) — a. 

THEOREM 1.1. The l 'distance function'' ' has the following properties : 

1. Symmetry: d(a, b) = d(b, a). 

2. Vanishing: d(a, b) = 0 if and only if a = b. 

3. Triangle inequality: d(a, c) C d(a, b) + d(b, c). 

Proof. Part 1 is obvious and it is trivial to verify that d(a, a) = 0 for part 2. 
Suppose now that d(a, b) = 0. Thenaô ' = a'b = 0. Taking complements in 
ab' = 0, one finds that a' + b = 1. Hence a' = V and a = b. 

To prove part 3 take 

(d(a, b) + d(b, c) d{ay c) = (ab' + a'b + be' + b'c) (ac' + a'c) 
= a'bc + a'b'c + ab'c' + abc' = a'c(b + b') + ac'(b' + b) = a'c + ac' 
= d(a,c). 

2. Betweenness. 
DEFINITION. An element b is between a and c provided 

d(a, c) = d(a, b) + d(b, c). 

Pitcher and Smiley [10] have laid the foundations for a theory of betweenness 
in general lattices based on the condition of Glivenko [5, 6]; that is, b is 
G-between a and c provided 

(G) ab + be = b = (a + b) {b + c). 

We shall show that these two varieties of betweenness are equivalent in B. 

LEMMA 2.1. The element b is G-between a and c if and only if b' is G-between 
a' and c'. 

Proof. This result follows from complementation in condition (G). 

THEOREM 2.1. The element b is between a and c if and only if b is G-between 
a and c. 

Proof. Suppose first that b is G-between a and c. Then 

ab + be = b = (a + b) (b + c) 

and by Lemma 2.1, a'b' + b'c' = V = (a' + V) (V + c'). 

^ h e symbols 0 and 1 denote the first and last elements of B. 
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Now d(a, b) + d(b, e) = a'b + ab' + b'c + be' = b(a' + c') + b'{a + c) 
= (ab + be) (a' + e') + (a'b'+ b'c') (a + e) 
= a'bc + abc' + ab'c' + a'b'c 
= a'c(b + V) + ac'(b + b') = a'c + ac' = d(a,c). 

Hence b is between a and c. 
Suppose now that b is between a and c. Then 

a'b + ab' + b'c + be' = a'c + ac'. 

Taking meets in this equation with a, a', b, and &' respectively it is found that 

(1) ab' + ab'c + abc' = ac', 
(2) a'ft + a'6'c + a'fc' = a'c, 
(3) a'J + 6c' = a ; ^ + afc', 
(4) ab' + b'c = a'6'c + ab'c'. 

Taking meets in 1 with V, c, and c' respectively; in 2 with b, c, and c' re­
spectively; in 3 with c'; and in 4 with c one obtains: 

(5) ab' + ab'c = ab'c', 
(6) aft'c + a&'c = 0, 
(7) ab'c' + abc' = ac', 
(8) a'b + a'fa' = a'bc, 
(9) a'^c + a'i'c = a'c, 

(10) a'fec' + a'bc' = 0, 
(11) a'ôc' + be' = abc', 
(12) ab'c + b'c = a'6'c. 

From (6) and (10) one obtains: 

(13) ab'c = 0, 
(14) a'bc' = 0. 

From (13) and (5), (14) and (8), (14) and (11), and (13) and (12), respectively, 
one finds that: 

(15) ab' = ab'c' or ab' C C, 
(16) a'b = a'bc or a'b C c 
(17) 6c' = abc' or &c' C a. 
(18) b'c = a'b'c or b'c C a'. 

Combining (7), (15), and (17), and then combining (9), (16), and (18) one 
obtains : 

(19) ab' + be' = ac', 
(20) a'6 + 6'c = a'c. 

(Note that we have in effect "factored" d(a, c) = d(a, b) + d(b, c) into 
equations (19) and (20)). 
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Complementation in (19) and (20) yields: 

(21) (a' + b) {V + c) = a' + c, 
(22) (a + V) (b + c') = a + c'. 

Taking meets between (21) and (22) yields 

(23) abc + a'Vc' = ac + a'c'. 

Taking meets in (23) with ac and a'cf respectively we find that : 

(24) abc — ac or ac C b, 
(25) a'Vc9 = a V or a'c' C 6'. 

From (24), b = b + ac = (a + b) (b + c). Hence 

(26) 6 = (a + b) (b + c). 

Complementation in (25) yields a + b + c = a + c or b (Z a + c so that 
6 = b(a + c) — ab + 6c. Hence 

(27) 6 = ab + be. 

Then combining (26) and (27) we find 

(G) ab + be = 6 = (a + b) (b + c). 

Hence 6 is G-between a and c. 
Remark (i). All of the properties of G-betweenness in general lattices 

demonstrated by Pitcher and Smiley [10] are valid for betweenness in B. 
Remark (ii). If B is a metric lattice [1] then betweenness in B is equivalent 

to metric betweenness (in the wide sense) since Glivenko [5, 6] showed that 
metric betweenness (in the wide sense) and G-betweenness are equivalent in 
any metric lattice. 

Remark (iii). Betweenness in B is equivalent to each of the following: 

(G) ab + be =b = (a + b) (b + c), 
(G*) ab + be = b = b + ac, 
(G**) b(a + c) = b = {a + b) (b + c). 

Proof. Equivalence of betweenness and (G) was demonstrated in Theorem 
2.1. I t is obvious that (G), (G*), and (G**) are pairwise equivalent in any 
distributive lattice (in fact, L. M. Blumenthal and the writer have shown that 
these conditions are pairwise equivalent in any modular lattice [2]). 

3. The group of motions of B. Superposability properties. 

DEFINITIONS. Let E and F be subsets of B. E is congruent to F, written 
£ ~ F, provided there is a single-valued mapping/: E—>F such that for a, b 6 £ , 
d(J(a)*f(P)) = rf(a, b). I t is easily seen that the mapping/ is then biuniform 
and that F is congruent to E by the mapping/"1 : F—*E. The mapping/ (or/"1) 
is then called a congruence between E and F. 
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A motion of B is a congruence of B with itself. It is clear that these motions 
form a group of transformations. This group is called transitive (simply 
transitive) provided there is a motion of B sending any given element of B into 
any other given element. Two subsets, E and F, are called superposable, 
written E ~ F, provided there is a motion of B mapping one onto the other. 
Clearly E « F if E ~ F. 

B is said to have the property of n-element superposability provided that if 
E and F are each sets of n elements and E ~ F then E ~ F. 

B is said to have the property of free mobility provided any congruence 
between any two subsets of B may be extended to a motion of B; that is, 
provided there is a motion of B which induces the original congruence between 
the two given sets. 

THEOREM 3.1. B has the property of two-element super posability. 

Proof. Let a, b ~ m,n. Define a mapping of JB, 
f(x) = mn(xab + x'a'b') + m'n'ix'ab + xa'b') 

+ mn'(xab' + x'a'b) + m'n(xa'b + x'ab'). 

This mapping is single valued and sends a into m and b into n. 
For example, 

f{a) « mniab + a'b') + mn'(ab' + a'b) 
= mn(mn + ra'w') + mn'(mn' + w'w) 
= ww + mw' = m. 

By laborious expansion and collection of meets one may verify that 

d(f(x)J(y)) 
= Kx)f(y)+f'(x)f(y) 
= {x'y + xy') {{ab + a'V) {mn + m'n') + {a'b + aft') (m'n + m»')) 
= (#':y + xyr) {ab + a'è' + a'b + aô') = x'y + xy' = d(#,:y) 

so that f{x) is a congruence of B with itself. 
Remark. The group of motions of B is transitive as a direct consequence of 

Theorem 3.1. 

THEOREM 3.2. 5 Aas the property of free mobility. 

Proof. Let E and F be any two congruent subsets of B and letg: E—>Fbe 
this congruence. If E contains less than three distinct elements the proof 
reduces to an application of Theorem 3.1. Otherwise, select a, b G E, a 5̂  b. 
Then a,b ~ g(a), g(b) andf(x) as defined in the proof of Theorem 3.1 sends 
a into g(a) and b into g(b). Butf(x) is a motion of J3 so it remains only to 
verify that / induces g on E. Let then c Ç E. Since g is a congruence, 
a, 6, c « g(a), g(&), 2(c). 
From the six relations 

a'b + ab1 = g'(a)g(b) + g(a)g'{b), ab + a'V = g(a)«(ft) + g W ( 6 ) , 
a'* + a^ = g'(a)g(<;) + g(a)g'(*0, ac + a V = *(a)«(c) + g'(a)g'(<0, 
Vc + be' = g ' ( % « + g(b)g'(c), be + Vc' = g{b)g{c) + g'(b)g'(c) 
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resulting from this congruence, one obtains 

abc + a'b'c' = g(a)g(b)g(c) + g'(a)g'(b)g'(c), 
abc' + a'b'c = g(a)g(b)g'(c) + g'(a)g'(b)g (c), 
ab'c + a'bc' = g(a)g'(b)g(c) + g'(a)g (b)g'(c), 
a'bc + ab'c' = g'{a)g(b)g{c) + g (a)g'(b)g'(c). 

Then 

Ac) = g(a)g(b)(g(a)g(b)g(c) + g'{a)g'{b)g'{c)) 
+ g'(a)g'(b)(g(a)g(b)g'(c) + g'(a)g'(b)g(c)) 
+ g'(a)g(b)(g'(a)g(b)g(c) + g(a)g'(b)g'(c)) 
+ g(a)g'(b)(g(a)g'(b)g(c) + g'(a)g(b)g'(c)) 
= g(a)g(b)g(c) + g'(a)g'(b)g(c) + g(a)g'(b)g(c) + g'(a)g(b)g(c) 
= g(c) (g(a)g(b) + g'(a)g'(b) + g(a)g'(b) + g'(a)g(b)) 
= g(c). 

Hence / induces g on E, and Theorem 3.2 is proved. 

4. Other properties of ''distance" in B. 

THEOREM 4.1. Let a, b£B and d(a, b) =c. Then d(a, c)—b and d(b, c) =a. 
Proof. d(a, b) = a'b + aV= c so that a'b = a'c. d'(a, b) = c' = ab + a'b' 

so that ab — acf. Hence b = ab + o>rb = acf + a'c = d(a, c). Similarly one 
shows that a = d(b, c). 

THEOREM 4.2. Let c 6 B and a G B. There is exactly one element b of B so 
that d(a, b) = c. This is sometimes stated by saying that any given element forms 
a metric basis for B. 

Proof. Let b = d(ay c). Then by Theorem 4.1, c = d(a, b). Hence there 
is at least one such element b. Suppose that d(a, x) = c. Then by Theorem 
4.1, x = d(a, c) = b so that the element b is unique. 

Remark. Isosceles and equilateral triples, common structures in metric 
spaces, are shown by Theorem 4.2 to be absent from B. 

5. The ' 'metric characterization" of B. 

DEFINITION. Let S be an abstract set, to each pair of elements a, P of 
which is attached an element d(a} /3) of B such that d(a, fi) = 0 if and only if 
a = /3, and d(a> /3) = d(/3, a). Such a set will be called a B-metrized space. 

B is said to have congruence order n with respect to the class of B-metrized 
spaces provided any B-metrized space is congruently contained (congruent to 
a subset of) in B whenever each n elements of the space are congruently con­
tained in B. The smallest integer n for which B has congruence order n is 
called the best congruence order of B. In the following theorem small greek 
letters will denote elements of a B-metrized space. 

THEOREM 5.1. Let B be any autometrized Boolean algebra. The best con­
gruence order of B with respect to the class of B-metrized spaces is three. 
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Proof. We shall first show that B has congruence order three and then that 
this is the best congruence order of B. 

Let 2 be any B-metrized space with more than two distinct elements 
(otherwise the proof is trivial), and suppose that each three elements of 2 are 
congruent with three elements of B. Select a, £ Ç 2 , a 7^ 13. Then a, 0 ~ 
a,b Ç 5 . Let fÇ S . Now a, /3, £ ~ ai, &i, xi G B. But ai, frx ~ a, & by Theorem 
3.1. Let x be the image of x\ under this motion. Then a, ft, £ ~ a, 6, # and we 
have established a single-valued mapping x = x(£) of S into B. I t remains 
to show that "distances'' are preserved. Let £, rj Ç S and let x, y be the 
elements of B corresponding to f, rj under the previously defined mapping. 
Now a, £, 77 — #2, x2, 3>2 G 2? by hypothesis. But a, x ~ a, £. Hence by 
Theorem 3.1, a, x ~ f l 2 , x2. Let y3 be the image of y2 under the motion 
sending a2 into a and x2 into x. Then a, y$ ~ a2, 3>2 ~ a, 77 = a, ;y. Hence by 
Theorem 4.2, j 3 = y so that a, x, y ~ a2, x2, y2 ~ a, £, 97 and d(x, y) = d(£, rj). 
This establishes that S is congruently contained in B and that B has con­
gruence order three. 

The example consisting of three elements a, ft, y with d(a, ft) = d(ft, y) — 
d(a, 7) = a, d(a, a) = d((t, 0) = ^(7, 7) = 0 where a is any element of B 
different from 0 shows that B cannot have congruence order less than three 
since any proper subset of this B-metrized space is congruently contained in 
B but the space itself forms an equilateral triple and so cannot be congruently 
contained in B which is free from equilateral triples. 
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