SIMPLE CONDITIONS FOR MATRICES TO BE BOUNDED OPERATORS ON l_{p}

DAVID BORWEIN

Abstract

The two theorems proved yield simple yet reasonably general conditions for triangular matrices to be bounded operators on l_{p}. The theorems are applied to Nörlund and weighted mean matrices.

1. Introduction. Suppose throughout that

$$
1<p<\infty, \quad \frac{1}{p}+\frac{1}{q}=1
$$

and that $A:=\left(a_{n k}\right)_{n, k \geq 0}$ is a triangular matrix of non-negative real numbers, that is $a_{n k} \geq$ 0 for $n, k \geq 0$, and $a_{n k}=0$ for $n>k$. Let l_{p} be the Banach space of all complex sequences $x=\left(x_{n}\right)_{n \geq 0}$ with norm

$$
\|x\|_{p}:=\left(\sum_{n=0}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}<\infty
$$

and let $B\left(l_{p}\right)$ be the Banach algebra of all bounded linear operators on l_{p}. Thus $A \in B\left(l_{p}\right)$ if and only if $A x \in l_{p}$ whenever $x \in l_{p}, A x$ being the sequence with n-th term $(A x)_{n}:=$ $\sum_{k=0}^{n} a_{n k} x_{k}$. Let

$$
\|A\|_{p}:=\sup _{\|x\|_{p} \leq 1}\|A x\|_{p}
$$

so that $A \in B\left(l_{p}\right)$ if and only if $\|A\|_{p}<\infty$, in which case $\|A\|_{p}$ is the norm of A.
We shall prove the following two theorems:
THEOREM 1. Suppose that

$$
\begin{align*}
M_{1} & :=\sup _{n \geq 0} \sum_{k=0}^{n} a_{n k}<\infty, \tag{1}\\
M_{2} & :=\sup _{\substack{0 \leq k \leq n / 2 \\
n \geq 0}}(n+1) a_{n k}<\infty, \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
M_{3}:=\sup _{k \geq 0} \sum_{n=k}^{2 k} a_{n k}<\infty . \tag{3}
\end{equation*}
$$

This research was supported in part by the Natural Sciences and Engineering Council of Canada. Received by the editors June 20, 1996.
AMS subject classification: Primary: 47B37, 47A30; secondary: 40G05.
Key words and phrases: Triangular matrices, Nörlund matrices, weighted means, operators on l_{p}. (c) Canadian Mathematical Society 1998.

Then $A \in B\left(l_{p}\right)$ and $\|A\|_{p} \leq \mu_{1}^{1 / q} \mu_{2}^{1 / p}$, where

$$
\mu_{1} \leq 2^{1 / p} M_{1}+q M_{2} \quad \text { and } \quad \mu_{2} \leq M_{3}+q M_{2} .
$$

THEOREM 2. Suppose that (1) holds, and that

$$
\begin{equation*}
a_{n k} \leq M_{4} a_{n j} \quad \text { for } 0 \leq k \leq j \leq n \tag{4}
\end{equation*}
$$

where M_{4} is a positive number independent of k, j, n. Then $A \in B\left(l_{p}\right)$ and

$$
\max \left(a_{00}, \frac{\lambda q}{M_{4}}\right) \leq\|A\|_{p} \leq q M_{1} M_{4}^{q-1}
$$

where $\lambda:=\liminf n a_{n 0}$.
These theorems yield simple yet fairly general conditions for $A \in B\left(l_{p}\right)$. In Section 4 we shall illustrate their scope by applying them to Nörlund and weighted mean matrices.
2. Lemmas. We require the following known results:

Lemma 1 (SEE [4, THEOREM 2]). If

$$
\mu_{1}:=\sup _{n \geq 0} \sum_{k=0}^{n} a_{n k}\left(\frac{n+1}{k+1}\right)^{1 / p}<\infty \quad \text { and } \quad \mu_{2}:=\sup _{k \geq 0} \sum_{n=k}^{\infty} a_{n k}\left(\frac{k+1}{n+1}\right)^{1 / q}<\infty,
$$

then $A \in B\left(l_{p}\right)$ and $\|A\|_{p} \leq \mu_{1}^{1 / q} \mu_{2}^{1 / p}$.
LEMMA 2 (SEE [10, LEMMA 4] AND [8, LEMMA 1]). If $q>1$ and $z_{n} \geq 0$ for $n=k, k+1, \ldots$, where k is a non-negative integer, then

$$
\left(\sum_{n=k}^{\infty} z_{n}\right)^{q} \leq q \sum_{n=k}^{\infty} z_{n}\left(\sum_{j=n}^{\infty} z_{j}\right)^{q-1} .
$$

3. Proofs of the theorems.

Proof of Theorem 1. Let $s:=1 / p, t:=1 / q$, and let μ_{1}, μ_{2} be as in Lemma 1. Then, by (2),

$$
\begin{aligned}
(n+1)^{s} \sum_{0 \leq k \leq n / 2} \frac{a_{n k}}{(k+1)^{s}} & \leq\left(\sup _{0 \leq k \leq n / 2} a_{n k}\right)(n+1)^{s} \sum_{0 \leq k \leq n / 2} \frac{1}{(k+1)^{s}} \\
& \leq\left(\sup _{0 \leq k \leq n / 2} a_{n k}\right) \frac{(n+1)^{s}(n+2)^{1-s}}{(1-\mathrm{s}) 2^{1-s}} \leq \frac{M_{2}}{1-\mathrm{s}}=q M_{2}
\end{aligned}
$$

and, by (1),

$$
(n+1)^{\mathrm{s}} \sum_{n / 2<k \leq n} \frac{a_{n k}}{(k+1)^{\mathrm{s}}} \leq \frac{(n+1)^{\mathrm{s}} 2^{\mathrm{s}}}{(n+2)^{\mathrm{s}}} M_{1} \leq 2^{s} M_{1} .
$$

Hence

$$
\mu_{1} \leq 2^{s} M_{1}+q M_{2}
$$

Also, by (2),

$$
\begin{aligned}
(k+1)^{\mathrm{t}} \sum_{n=2 k+1}^{\infty} \frac{a_{n k}}{(n+1)^{\mathrm{t}}} & \leq M_{2}(k+1)^{\mathrm{t}} \sum_{n=2 k+1}^{\infty} \frac{1}{(n+1)^{\mathrm{t}+1}} \\
& \leq M_{2}(k+1)^{\mathrm{t}} \int_{2 k}^{\infty} \frac{d x}{(x+1)^{t+1}}=M_{2} \frac{q(k+1)^{\mathrm{t}}}{(2 k+1)^{\mathrm{t}}} \leq q M_{2}
\end{aligned}
$$

and, by (3),

$$
(k+1)^{\mathrm{t}} \sum_{n=k}^{2 k} \frac{a_{n k}}{(n+1)^{\mathrm{t}}} \leq M_{3} .
$$

Hence

$$
\mu_{2} \leq q M_{2}+M_{3}
$$

The desired conclusion now follows from Lemma 1.
PROOF OF THEOREM 2. Our proof is modelled on the proof given by Johnson, Mohapatra and Ross of Theorem 1 in [9]. Let T be the transpose of A. We shall use the familiar result that $A \in B\left(l_{p}\right)$ if and only if $T \in B\left(l_{q}\right)$ and $\|A\|_{p}=\|T\|_{q}$. Let $y=T x$ where $x=\left(x_{n}\right)$ is a real non-negative sequence in l_{q}. Then, by Lemma 2, (4), and Hölder's inequality,

$$
\begin{aligned}
\|y\|_{q}^{q} & =\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty} a_{n k} x_{n}\right)^{q} \leq q \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} a_{n k} x_{n}\left(\sum_{j=n}^{\infty} a_{j k} x_{j}\right)^{q-1} \\
& \leq q M_{4}^{q-1} \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} a_{n k} x_{n}\left(\sum_{j=n}^{\infty} a_{j n} x_{j}\right)^{q-1}=q M_{4}^{q-1} \sum_{n=0}^{\infty} x_{n} y_{n}^{q-1} \sum_{k=0}^{n} a_{n k} \\
& \leq q M_{1} M_{4}^{q-1} \sum_{n=0}^{\infty} x_{n} y_{n}^{q-1} \leq q M_{1} M_{4}^{q-1}\left(\sum_{n=0}^{\infty} x_{n}^{q}\right)^{1 / q}\left(\sum_{n=0}^{\infty} y_{n}^{q}\right)^{1 / p} \\
& =q M_{1} M_{4}^{q-1}\|x\|_{q}\|y\|_{q}^{q / p} .
\end{aligned}
$$

It follows that $\|y\|_{q} \leq q M_{1} M_{4}^{q-1}\|x\|_{q}$, and hence that $\|T\|_{q}=\|A\|_{p} \leq q M_{1} M_{4}^{q-1}$.
To establish the lower estimate for $\|A\|_{p}$, fix $\delta \in(0,1)$ and choose a positive integer N so large that $n a_{n 0}>\delta \lambda$ for all $n \geq N$. Suppose $M>N$ and define $x=\left(x_{n}\right)$ by setting $x_{n}:=n^{-1 / p}$ for $N \leq n \leq M$, and $x_{n}:=0$ otherwise. Then, by (4),

$$
\begin{aligned}
\|A x\|_{p}^{p} & \geq \sum_{n=N}^{M}\left(\sum_{k=N}^{n} a_{n k} x_{k}\right)^{p} \geq\left(\frac{\delta \lambda}{M_{4}}\right)^{p} \sum_{n=N}^{M}\left(\frac{1}{n} \sum_{k=N}^{n} k^{-1 / p}\right)^{p} \\
& \geq\left(\frac{\delta \lambda}{M_{4}}\right)^{p} \sum_{n=N}^{M}\left(\frac{1}{n} \int_{N}^{n} x^{-1 / p} d x\right)^{p}=\left(\frac{\delta \lambda q}{M_{4}}\right)^{p} \sum_{n=N}^{M} \frac{1}{n}\left(1-\left(\frac{N}{n}\right)^{1 / q}\right)^{p} \\
& =\left(\frac{\delta \lambda q}{M_{4}}\right)^{p} \rho_{M} \sum_{n=N}^{M} \frac{1}{n}=\left(\frac{\delta \lambda q}{M_{4}}\right)^{p} \rho_{M}\|x\|_{p}^{p}
\end{aligned}
$$

where $\rho_{M} \rightarrow 1$ as $M \rightarrow \infty$. It follows that $\|A\|_{p} \geq \frac{\delta \lambda q}{M_{4}}$ and hence, since δ can be arbitrarily close to 1 in $(0,1)$, that $\|A\|_{p} \geq \frac{\lambda q}{M_{4}}$. Finally, for the unit coordinate sequence $e_{0}=(1,0,0, \ldots)$, we have $\left\|A e_{0}\right\|_{p} \geq a_{00}\left\|e_{0}\right\|_{p}$, so that $\|A\|_{p} \geq a_{00}$.
4. Examples involving Nörlund and weighted mean matrices. Let $a:=\left(a_{n}\right)$ be a sequence of real non-negative numbers with $a_{0}>0$, and let $A_{n}:=a_{0}+a_{1}+\cdots+a_{n}$.

The Nörlund matrix N_{a} is defined to be the triangular matrix $\left(a_{n k}\right)$ with $a_{n k}:=\frac{a_{n-k}}{A_{n}}$ for $0 \leq k \leq n$, and $a_{n k}:=0$ for $k>n$.

The weighted mean matrix M_{a} is defined to be the triangular matrix $\left(a_{n k}\right)$ with $a_{n k}:=$ $\frac{a_{k}}{A_{n}}$ for $0 \leq k \leq n$, and $a_{n k}:=0$ for $k>n$.

Observe that

$$
\sum_{k=0}^{n} \frac{a_{n-k}}{A_{n}}=1 \quad \text { and } \quad \sum_{n=k}^{2 k} \frac{a_{n-k}}{A_{n}} \leq \frac{1}{A_{k}} \sum_{n=k}^{2 k} a_{n-k}=1,
$$

so that the Nörlund matrix N_{a} automatically satisfies conditions (1) and (3) of Theorem 1 with $M_{1}=1$ and $M_{3} \leq 1$. The weighted mean matrix M_{a} also satisfies (1) with $M_{1}=1$.

Example 1. Suppose that

$$
\begin{equation*}
M_{2}^{\prime}:=\sup _{n \geq 0} \frac{(n+1) a_{n}}{A_{n}}<\infty . \tag{5}
\end{equation*}
$$

It is immediate that, for the Nörlund matrix N_{a}, (2) implies (5) with $M_{2}^{\prime} \leq M_{2}$. On the other hand we have, for $0 \leq k \leq n / 2$,

$$
\frac{(n+1) a_{n-k}}{A_{n}}=\frac{(n+1-k) a_{n-k}}{A_{n-k}} \cdot \frac{A_{n-k}}{A_{n}} \cdot \frac{n+1}{n+1-k} \leq 2 \frac{(n+1-k) a_{n-k}}{A_{n-k}} \leq 2 M_{2}^{\prime},
$$

so that (5) implies (2) with $M_{2} \leq 2 M_{2}^{\prime}$ for the Nörlund matrix N_{a}.
It follows now from Theorem 1 that, subject to (5), $N_{a} \in B\left(l_{p}\right)$ and $\left\|N_{a}\right\|_{p} \leq \mu_{1}^{1 / q} \mu_{2}^{1 / p}$, where

$$
\mu_{1} \leq 2^{1 / p}+2 q M_{2}^{\prime} \quad \text { and } \quad \mu_{2} \leq 1+2 q M_{2}^{\prime} .
$$

This result was proved directly by Borwein and Cass in [3] with a slightly different and better estimate for the upper bound of the operator norm. See also [2] and [7] for related results.

Example 2. Suppose that $\left(a_{n}\right)$ is non-increasing. It is immediate that this implies (5) with $M_{2}^{\prime} \leq 1$, but it also implies (4) with $M_{4}=1$ for the Nörlund matrix N_{a}. Hence either Theorem 1 or Theorem 2 yields that $N_{a} \in B\left(l_{p}\right)$, and Theorem 2 shows that

$$
\max (1, \lambda q) \leq\left\|N_{a}\right\|_{p} \leq q,
$$

where $\lambda:=\lim \inf \frac{n a_{n}}{A_{n}}$. This result was proved as Theorem 1 by Johnson, Mohapatra and Ross in [9]. Our Theorem 2 is clearly a generalization of their theorem.

EXAMPLE 3. Suppose that $\left(a_{n}\right)$ is non-decreasing. Evidently the weighted mean matrix M_{a} satisfies (4) with $M_{4}=1$. It follows from Theorem 2 that $M_{a} \in B\left(l_{p}\right)$ with $\left\|M_{a}\right\|_{p} \leq q$. This result was first proved by Cartlidge [6] by an entirely different method. See also [1], [5] and [7] for related and more general results.

The preceding examples involved proofs of known results. For the next example we use Theorem 2 to prove a new result which combines Examples 2 and 3. Let $a:=\left(a_{n}\right)$, $b:=\left(b_{n}\right)$ be sequences of real non-negative numbers with $a_{0}>0, b_{0}>0$, and let $c_{n}:=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}$. The generalized Nörlund matrix $N_{a, b}$ is defined to be the triangular matrix $\left(a_{n k}\right)$ with $a_{n k}:=\frac{a_{n-k} b_{k}}{c_{n}}$ for $0 \leq k \leq n$, and $a_{n k}:=0$ for $k>n$.

EXAMPLE 4. Suppose $\left(a_{n}\right)$ is non-decreasing and $\left(b_{n}\right)$ is non-increasing. Then $N_{a, b} \in$ $B\left(l_{p}\right)$ and $\max (1, \lambda q) \leq\left\|N_{a, b}\right\|_{p} \leq q$, where $\lambda:=\lim \inf \frac{n a_{n} b_{0}}{c_{n}}$.

Proof. Evidently the matrix $N_{a, b}$ satisfies (1) and (4) with $M_{1}=M_{4}=1$. The desired conclusions follow from Theorem 2.

References

1. D. Borwein, Generalized Hausdorff matrices as bounded operators on l_{p}. Math. Z. 183(1983), 483-487. 2. \qquad Nörlund operators on l_{p}. Canad. Math. Bull. 36(1993), 8-14.
2. D. Borwein and F. P. Cass, Nörlund matrices as bounded operators on l_{p}. Arch. Math. 42(1984), 464-469.
3. D. Borwein and A. Jakimovski, Matrix Operators on l_{p}. Rocky Mountain J. Math. 9(1979), 463-476.
4. D. Borwein and X. Gao, Generalized Hausdorff and weighted mean matrices as operators on l_{p}. J. Math. Anal. Appl. 178(1993), 517-528.
5. J. M. Cartlidge, Weighted Mean Matrices as Operators on l_{p}. Ph. D. thesis, Indiana University, 1978.
6. F. P. Cass and W. Kratz, Nörlund and weighted mean matrices as operators on l_{p}. Rocky Mountain J. Math. 20(1990), 59-74.
7. G. S. Davies and G. M. Petersen, On an inequality of Hardy's (II). Quart. J. Math. Oxford 15(1964), 35-40.
8. P. D. Johnson jr., R. N. Mohapatra and D. Ross, Bounds for the operator norms of some Nörlund matrices. Proc. Amer. Math. Soc. 124(1996), 543-547.
9. J. Németh, Generalizations of the Hardy-Littlewood inequality. Acta Sci. Math. (Szeged) 32(1971), 259299.

Department of Mathematics
University of Western Ontario
London, Ontario
N6A 5B7

