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SIMPLE CONDITIONS FOR MATRICES
TO BE BOUNDED OPERATORS ON lp

DAVID BORWEIN

ABSTRACT. The two theorems proved yield simple yet reasonably general condi-
tions for triangular matrices to be bounded operators on lp. The theorems are applied to
Nörlund and weighted mean matrices.

1. Introduction. Suppose throughout that

1 Ú p Ú 1,
1
p

+
1
q
≥ 1,

and that A :≥ (ank)n,k½0 is a triangular matrix of non-negative real numbers, that is ank ½

0 for n, k ½ 0, and ank ≥ 0 for n Ù k. Let lp be the Banach space of all complex sequences
x ≥ (xn)n½0 with norm

kxkp :≥
� 1X

n≥0
jxnj

p
�1Ûp

Ú 1,

and let B(lp) be the Banach algebra of all bounded linear operators on lp. Thus A 2 B(lp)
if and only if Ax 2 lp whenever x 2 lp, Ax being the sequence with n-th term (Ax)n :≥Pn

k≥0 ankxk. Let
kAkp :≥ sup

kxkp�1
kAxkp,

so that A 2 B(lp) if and only if kAkp Ú 1, in which case kAkp is the norm of A.
We shall prove the following two theorems:

THEOREM 1. Suppose that

(1) M1 :≥ sup
n½0

nX
k≥0

ank Ú 1,

(2) M2 :≥ sup
0�k�nÛ2

n½0

(n + 1)ank Ú 1,

and

(3) M3 :≥ sup
k½0

2kX
n≥k

ank Ú 1.
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Then A 2 B(lp) and kAkp � ñ
1Ûq
1 ñ

1Ûp
2 , where

ñ1 � 21ÛpM1 + qM2 and ñ2 � M3 + qM2.

THEOREM 2. Suppose that (1) holds, and that

(4) ank � M4anj for 0 � k � j � n,

where M4 is a positive number independent of k, j, n. Then A 2 B(lp) and

max
�

a00,
ïq
M4

�
� kAkp � qM1Mq�1

4 ,

where ï :≥ lim inf nan0.

These theorems yield simple yet fairly general conditions for A 2 B(lp). In Section 4
we shall illustrate their scope by applying them to Nörlund and weighted mean matrices.

2. Lemmas. We require the following known results:

LEMMA 1 (SEE [4, THEOREM 2]). If

ñ1 :≥ sup
n½0

nX
k≥0

ank

�n + 1
k + 1

�1Ûp
Ú 1 and ñ2 :≥ sup

k½0

1X
n≥k

ank

� k + 1
n + 1

�1Ûq
Ú 1,

then A 2 B(lp) and kAkp � ñ
1Ûq
1 ñ

1Ûp
2 .

LEMMA 2 (SEE [10, LEMMA 4] AND [8, LEMMA 1]). If q Ù 1 and zn ½ 0 for
n ≥ k, k + 1, . . . , where k is a non-negative integer, then

� 1X
n≥k

zn

�q
� q

1X
n≥k

zn

�1X
j≥n

zj

�q�1
.

3. Proofs of the theorems.

PROOF OF THEOREM 1. Let s :≥ 1Ûp, t :≥ 1Ûq, and let ñ1, ñ2 be as in Lemma 1.
Then, by (2),

(n + 1)s X
0�k�nÛ2

ank

(k + 1)s
�
�

sup
0�k�nÛ2

ank

�
(n + 1)s X

0�k�nÛ2

1
(k + 1)s

�
�

sup
0�k�nÛ2

ank

� (n + 1)s(n + 2)1�s

(1� s)21�s
�

M2

1� s
≥ qM2;

and, by (1),

(n + 1)s X
nÛ2Úk�n

ank

(k + 1)s
�

(n + 1)s2s

(n + 2)s
M1 � 2sM1.
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Hence
ñ1 � 2sM1 + qM2.

Also, by (2),

(k + 1)t
1X

n≥2k+1

ank

(n + 1)t
� M2(k + 1)t

1X
n≥2k+1

1
(n + 1)t+1

� M2(k + 1)t
Z 1

2k

dx

(x + 1)t+1 ≥ M2
q(k + 1)t

(2k + 1)t
� qM2;

and, by (3),

(k + 1)t
2kX

n≥k

ank

(n + 1)t
� M3.

Hence
ñ2 � qM2 + M3.

The desired conclusion now follows from Lemma 1.

PROOF OF THEOREM 2. Our proof is modelled on the proof given by Johnson, Moha-
patra and Ross of Theorem 1 in [9]. Let T be the transpose of A. We shall use the familiar
result that A 2 B(lp) if and only if T 2 B(lq) and kAkp ≥ kTkq. Let y ≥ Tx where
x ≥ (xn) is a real non-negative sequence in lq. Then, by Lemma 2, (4), and Hölder’s
inequality,

kykq
q ≥

1X
k≥0

� 1X
n≥k

ankxn

�q
� q

1X
k≥0

1X
n≥k

ankxn

�1X
j≥n

ajkxj

�q�1

� qMq�1
4

1X
k≥0

1X
n≥k

ankxn

�1X
j≥n

ajnxj

�q�1
≥ qMq�1

4

1X
n≥0

xnyq�1
n

nX
k≥0

ank

� qM1Mq�1
4

1X
n≥0

xnyq�1
n � qM1Mq�1

4

� 1X
n≥0

xq
n

�1Ûq� 1X
n≥0

yq
n

�1Ûp

≥ qM1Mq�1
4 kxkqkykqÛp

q .

It follows that kykq � qM1Mq�1
4 kxkq, and hence that kTkq ≥ kAkp � qM1Mq�1

4 .
To establish the lower estimate for kAkp, fix é 2 (0, 1) and choose a positive integer

N so large that nan0 Ù éï for all n ½ N. Suppose M Ù N and define x ≥ (xn) by setting
xn :≥ n�1Ûp for N � n � M, and xn :≥ 0 otherwise. Then, by (4),

kAxkp
p ½

MX
n≥N

� nX
k≥N

ankxk

�p
½

�
éï

M4

�p MX
n≥N

�1
n

nX
k≥N

k�1Ûp
�p

½

�
éï

M4

�p MX
n≥N

�1
n

Z n

N
x�1Ûp dx

�p
≥

�
éïq
M4

�p MX
n≥N

1
n

 
1�

�N
n

�1Ûq
!p

≥

�
éïq
M4

�p
öM

MX
n≥N

1
n
≥

�
éïq
M4

�p
öMkxkp

p,

https://doi.org/10.4153/CMB-1998-002-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-002-7


OPERATORS ON lp 13

where öM ! 1 as M ! 1. It follows that kAkp ½
éïq
M4

and hence, since é can be

arbitrarily close to 1 in (0, 1), that kAkp ½
ïq
M4

. Finally, for the unit coordinate sequence
e0 ≥ (1, 0, 0, . . .), we have kAe0kp ½ a00ke0kp, so that kAkp ½ a00.

4. Examples involving Nörlund and weighted mean matrices. Let a :≥ (an) be
a sequence of real non-negative numbers with a0 Ù 0, and let An :≥ a0 + a1 + Ð Ð Ð + an.

The Nörlund matrix Na is defined to be the triangular matrix (ank) with ank :≥ an�k
An

for 0 � k � n, and ank :≥ 0 for k Ù n.
The weighted mean matrix Ma is defined to be the triangular matrix (ank) with ank :≥

ak
An

for 0 � k � n, and ank :≥ 0 for k Ù n.
Observe that

nX
k≥0

an�k

An
≥ 1 and

2kX
n≥k

an�k

An
�

1
Ak

2kX
n≥k

an�k ≥ 1,

so that the Nörlund matrix Na automatically satisfies conditions (1) and (3) of Theorem 1
with M1 ≥ 1 and M3 � 1. The weighted mean matrix Ma also satisfies (1) with M1 ≥ 1.

EXAMPLE 1. Suppose that

(5) M0
2 :≥ sup

n½0

(n + 1)an

An
Ú 1.

It is immediate that, for the Nörlund matrix Na, (2) implies (5) with M0
2 � M2. On the

other hand we have, for 0 � k � nÛ2,

(n + 1)an�k

An
≥

(n + 1� k)an�k

An�k
Ð

An�k

An
Ð

n + 1
n + 1� k

� 2
(n + 1� k)an�k

An�k
� 2M0

2,

so that (5) implies (2) with M2 � 2M0
2 for the Nörlund matrix Na.

It follows now from Theorem 1 that, subject to (5), Na 2 B(lp) and kNakp � ñ
1Ûq
1 ñ

1Ûp
2 ,

where
ñ1 � 21Ûp + 2qM0

2 and ñ2 � 1 + 2qM0
2.

This result was proved directly by Borwein and Cass in [3] with a slightly different and
better estimate for the upper bound of the operator norm. See also [2] and [7] for related
results.

EXAMPLE 2. Suppose that (an) is non-increasing. It is immediate that this implies
(5) with M0

2 � 1, but it also implies (4) with M4 ≥ 1 for the Nörlund matrix Na. Hence
either Theorem 1 or Theorem 2 yields that Na 2 B(lp), and Theorem 2 shows that

max(1,ïq) � kNakp � q,

where ï :≥ lim inf nan
An

. This result was proved as Theorem 1 by Johnson, Mohapatra and
Ross in [9]. Our Theorem 2 is clearly a generalization of their theorem.
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EXAMPLE 3. Suppose that (an) is non-decreasing. Evidently the weighted mean ma-
trix Ma satisfies (4) with M4 ≥ 1. It follows from Theorem 2 that Ma 2 B(lp) with
kMakp � q. This result was first proved by Cartlidge [6] by an entirely different method.
See also [1], [5] and [7] for related and more general results.

The preceding examples involved proofs of known results. For the next example we
use Theorem 2 to prove a new result which combines Examples 2 and 3. Let a :≥ (an),
b :≥ (bn) be sequences of real non-negative numbers with a0 Ù 0, b0 Ù 0, and let
cn :≥ a0bn + a1bn�1 + Ð Ð Ð + anb0. The generalized Nörlund matrix Na,b is defined to be
the triangular matrix (ank) with ank :≥ an�kbk

cn
for 0 � k � n, and ank :≥ 0 for k Ù n.

EXAMPLE 4. Suppose (an) is non-decreasing and (bn) is non-increasing. Then Na,b 2

B(lp) and max(1,ïq) � kNa,bkp � q, where ï :≥ lim inf nanb0
cn

.

PROOF. Evidently the matrix Na,b satisfies (1) and (4) with M1 ≥ M4 ≥ 1. The
desired conclusions follow from Theorem 2.
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