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Abstract
In numerical linear algebra, a well-established practice is to choose a norm that exploits the structure of the
problem at hand to optimise accuracy or computational complexity. In numerical polynomial algebra, a single norm
(attributed to Weyl) dominates the literature. This article initiates the use of 𝐿𝑝 norms for numerical algebraic
geometry, with an emphasis on 𝐿∞. This classical idea yields strong improvements in the analysis of the number
of steps performed by numerous iterative algorithms. In particular, we exhibit three algorithms where, despite
the complexity of computing 𝐿∞-norm, the use of 𝐿𝑝-norms substantially reduces computational complexity: a
subdivision-based algorithm in real algebraic geometry for computing the homology of semialgebraic sets, a well-
known meshing algorithm in computational geometry and the computation of zeros of systems of complex quadratic
polynomials (a particular case of Smale’s 17th problem).
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1. Introduction

In numerical analysis, it matters how we measure errors. Change the metric we measure the perturbations
with, and a well-conditioned input may turn badly conditioned (a remarkable example is in [22]). Because
of this, a careful choice of how we measure errors is a fundamental step in the design and analysis of
algorithms. A main example is numerical linear algebra, where it is commonplace to carefully choose a
matrix norm depending on the problem at hand: the goal is to exploit the structure of the problem and
optimise computational efficiency.

Unlike numerical linear algebra, a single norm – the Weyl norm – prevails in numerical algebraic
geometry. The nice properties of the Weyl norm, ease of computing and unitary invariance, explain this
prevalence. Nevertheless, the absence of complexity analyses using other norms in numerical algebraic
geometry reflects badly on the theoretical strength of our analyses, which appear to rely on a specific
choice of metric.

In this paper, we aim to show that using other norms is possible in numerical algebraic geometry.
To do so, we consider an 𝐿∞-norm in the space of polynomial systems and show how this leads to
numerical algorithms and a complexity framework analogous to the one we have with the Weyl norm.
Furthermore, we show that the change of norms leads to significant improvements in complexity bounds
thanks to the better probabilistic behaviour of this 𝐿∞ norm with respect to the Weyl norm. We show
this in three relevant cases: 1) computation of the homology of algebraic sets, 2) the Plantinga-Vegter
algorithm and 3) the homotopy continuation method for quadratic polynomial systems.

We now discuss in more detail the aspects we have mentioned in passing to put our results in
context within the wider setting of complexity theory for numerical algorithms and numerical algebraic
geometry.

Complexity paradigm. The behaviour of numerical algorithms varies from input to input. This phe-
nomenon is due not necessarily to the algorithms themselves but rather to the numerical sensitivity –
how much the output varies with respect to a perturbation of the input – of the input we are process-
ing. The numerical sensitivity of an input is captured by the so-called condition number. Then, in turn,
condition numbers allow one to analyse numerical algorithms and explain why numerical algorithms
handle some inputs faster than others.

Central to our paper is the fact that the choice of the metric under which we measure perturbations
determines the condition number of the data. An example of this is given by the polynomial 𝑋𝑑 − 1,
which is well-conditioned (for the zero finding problem) with respect to the standard norm in equation
(2.2) but badly conditioned with respect to the Weyl norm in equation (2.3) [14, Example 14.3].

A drawback of condition-based complexity analyses is that, as we don’t know a priori the condition
of the input at hand, we cannot foresee the running time for this input. We can nonetheless get an idea of
how the algorithm behaves in general by randomising the input. This allows one to obtain probabilistic
estimates for the practical performance of the numerical algorithm.
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Again, we note that the metric we choose to measure perturbations affects the probabilistic models
we consider. This is so because probabilistic parameters such as the variance are always given with
respect to some metric, so when we change the metric, we change the values of these parameters.

We refer to [14] for a more detailed overview of this complexity paradigm based on condition
numbers. In the rest of the paper, we will show how this complexity framework works for each of the
three cases mentioned above.

Choice of the norm. Arguably, one disadvantage of the 𝐿∞-norm is that we don’t have an efficient
way to approximate ‖ ‖∞. For polynomials in 𝑛 + 1 homogeneous variables whose degrees are bounded
by D, our current fastest algorithm takes time polynomial in D and exponential in n. However, the
computation of ‖ ‖∞ amounts to a polynomial optimisation problem, and efficient algorithms exist for
particular classes of polynomials. This is the case, for example, with sums of squares [43, 10], sparse
polynomials [31, 21] and other structures [5]. Unrestricted efficient algorithms are not expected to be
designed because it is well-known that polynomial optimisation reduces to the feasibility problem over
the reals, and the latter is NPR-complete. Nonetheless, for most applications we only need a coarse
approximation of ‖ ‖∞, which allows for some optimism.

Our choice of the 𝐿∞-norm is due to the inequalities shown in Kellogg’s theorem (Theorem 2.13),
which we haven’t found for other 𝐿𝑝-norms. A way around Kellogg’s theorem for general 𝐿𝑝-norms
would certainly lead to new results regarding the use of these norms in algorithm analysis.

Despite the high cost of computing the 𝐿∞ norm, its use may yield substantially better cost bounds
for some algorithms. This improvement rests on two facts:

1. For a homogeneous polynomial f with 𝑛+ 1 variables and degree D, we always have ‖ 𝑓 ‖∞ ≤ ‖ 𝑓 ‖𝑊 ,
and for a random homogeneous polynomial 𝔣, we have ‖𝔣‖∞ �

√
𝑛 log D, whereas ‖𝔣‖𝑊 ∼

(𝑛+D
𝑛

) 1
2 .

An analogous situation holds for polynomial systems (see Theorem 4.28 and Proposition 4.32).
2. Condition numbers with respect to the 𝐿∞-norm yield condition-based complexity estimates (i.e.,

cost bounds in terms of both n, D and a condition number) almost identical to those obtained using
the condition numbers with respect to the Weyl norm (see Section 3).

In this way, the reduction in the probabilistic estimates in passing to ‖ ‖∞ from ‖ ‖𝑊 immediately
translates to reductions in the magnitude of the corresponding condition numbers and, in turn, reductions
in the complexity estimates.

Considered algorithms. We showcase three algorithms where despite the high cost of computing the
𝐿∞-norm, the reductions in the total cost bounds remain significant.

Firstly, in Section 4.1, we consider a family of algorithms (we refer to them as grid-based) that solve
various problems in real algebraic and semialgebraic geometry. The best numerical algorithms for these
problems have exponential complexity. In Section 4.1, we replace the Weyl norm by ‖ ‖∞ in the design
of one such algorithm (to compute Betti numbers); and in Section 4.3, we show a decrease in its cost
bounds. We take advantage of the fact that there is only one norm computation, and it is done, so to
speak, along the way. The gain in the reduction of the estimate for the number of iterations directly
yields a reduction in the total cost bound (see Corollary 4.31).

Secondly, in Section 4.2, we consider the Plantinga-Vegter algorithm as it is described and analysed
in [23]. Again, we replace the Weyl norm by ‖ ‖∞ in the algorithm’s design results in improved cost
bounds. And again, the computation of ‖ ‖∞ is not a burden as it is done only once, and its cost is
dominated by that of the rest of the algorithm. The Plantinga-Vegter algorithm is usually considered
with 𝑛 = 2 or 𝑛 = 3. Remark 4.35 exhibits the improvement achieved on average complexity bounds for
these two cases. For larger values of n, the improvement is more substantial.

Thirdly, in Section 5, we consider the problem of computing a zero of a system of complex quadratic
equations. For this question, a particular case of Smale’s 17th problem, we consider the algorithms
proposed in [9, 13] and, again, design versions of them where the Weyl norm is replaced by ‖ ‖∞. Again,
this results in a small but measurable reduction in the cost bounds (from 𝑛7 to 𝑛6.875). A crucial fact in
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achieving this is that even though n is general, we can find an efficient way to compute ‖ ‖∞ using the
fact that D = 2.

In all three cases, we are able to show that the use of 𝐿∞-norm yields a clear reduction in the
estimates for the expected number of iterations. We believe this is a common pattern. But in general, the
reduction in the number of steps does not immediately translate into a reduction in total computational
cost. This motivates the search for efficient algorithms that (roughly) approximate ‖ ‖∞ and for a better
understanding of the complexity and accuracy of computing with 𝐿𝑝-norms in polynomial spaces.

Organisation of the paper. In Section 2, we define the norms that will be considered in this paper and
work out several examples. We also recall basic properties of these norms and highlight their differences
from the Weyl norm. Then, in Section 3, we define condition numbers M and K that scale with the
𝐿∞-norm. These condition numbers are similar to their widely used Weyl versions 𝜇norm and 𝜅 (for
complex and real problems, respectively). We also prove in Section 3 that the main properties of 𝜇norm
and 𝜅 – those allowing them to feature in condition-based cost estimates – hold for M and K. Section
4.1, Section 4.2 and Section 5 are the home of three algorithms that are designed using 𝐿∞-scaled
condition numbers. We compare the cost bounds of these algorithms to those of their Weyl counterparts
and highlight computational gains.

We conclude in Appendix A with a minor digression. Because a natural habitat for functional norms
is spaces of continuous functions, we consider extensions of the real condition number 𝜅 to the space
𝐶1 [𝑞] := 𝐶1(S𝑛,R𝑞), and we prove (somehow unexpectedly) Condition Number Theorems for these
extensions. We do not analyse algorithms here. We nonetheless point out that substantial literature on
algorithms on spaces of continuous functions exists [57, 50, 48], where these theorems might be useful.

2. Norms for polynomials

Let F be either R or C. Let also 𝑛, 𝑑 ∈ N, 𝑛, 𝑑 ≥ 1. We denote by HF𝑑 [1] the linear space of
homogeneous polynomials of degree d in the 𝑛 + 1 variables 𝑋0, 𝑋1, . . . , 𝑋𝑛 with coefficients in F. Let
𝒅 = (𝑑1, . . . , 𝑑𝑞) ∈ N𝑞 and 𝑛 ∈ N as above. We denote by HF

𝒅
[𝑞] the space HF𝑑1

[1] × · · · ×HF𝑑𝑞 [1]. If
F is clear from the context, or if it is not relevant to the argument, we will omit the superscript. We will
use the following conventions for dimension counting:

𝑁𝑖 :=
(
𝑛 + 𝑑𝑖
𝑑𝑖

)
= dimFHF𝑑𝑖 [1] and 𝑁 :=

𝑞∑
𝑖=1

(
𝑛 + 𝑑𝑖
𝑑𝑖

)
= dimFHF𝒅 [𝑞] .

We also use D := max{𝑑1, . . . , 𝑑𝑞} and denote by Δ the 𝑞× 𝑞 diagonal matrix with 𝑑𝑖 in its ith diagonal
entry.

In all that follows, S𝑛 := {𝑥 ∈ R𝑛+1 | ‖𝑥‖2 = 1} will be the (real) n-sphere and P𝑛 := C𝑛+1/C∗
the complex projective space of dimension n. We note that there will be no ambiguity, as the sphere
is the usual space to work with real polynomials and the projective space is the usual one for complex
polynomials.

Remark 2.1. In what follows, we will write 𝑧 ∈ P𝑛 instead of [𝑧] ∈ P𝑛, and we will assume that the
representative 𝑧 ∈ C𝑛+1 always satisfies ‖𝑧‖2 = 1. This simplifies the form of many of our definitions.
This convention can be made without loss of generality as every point inP𝑛 has a representative of norm 1.

2.1. Euclidean norms

The simplest norm considered on HR
𝒅
[𝑞] is the one induced by the standard Euclidean inner product in

a monomial basis. Every 𝑓 ∈ HF𝑑 [1] can be uniquely represented as

𝑓 =
∑
|𝛼 |=𝑑

𝑓𝛼𝑋
𝛼, (2.1)
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where 𝛼 = (𝛼0, . . . , 𝛼𝑛) ∈ N𝑛+1 and |𝛼 | = 𝛼0 + · · · + 𝛼𝑛. The norm induced by the standard Euclidean
inner product is therefore

‖ 𝑓 ‖std :=
√ ∑

|𝛼 |=𝑑
| 𝑓𝛼 |2. (2.2)

For 𝑓 = ( 𝑓1, . . . , 𝑓𝑞) ∈ H𝒅 [𝑞], the norm extends as ‖ 𝑓 ‖2
std := ‖ 𝑓1‖2

std + · · · + ‖ 𝑓𝑞 ‖
2
std.

The most commonly used norm on H𝒅 [𝑞] is the Weyl norm. For a polynomial as in equation (2.1),
this is given by

‖ 𝑓 ‖𝑊 :=

√√√ ∑
|𝛼 |=𝑑

(
𝑑

𝛼

)−1
| 𝑓𝛼 |2, (2.3)

where
(𝑑
𝛼

)
is the multinomial coefficient 𝑑!

𝛼0!...𝛼𝑛! . Again, for 𝑓 ∈ H𝒅 [𝑞], this extends by ‖ 𝑓 ‖2
𝑊 :=

‖ 𝑓1‖2
𝑊 + · · · + ‖ 𝑓𝑞 ‖2

𝑊 . The Weyl norm is also induced by an inner product, and this inner product is
invariant under the action of the unitary group (respectively, the orthogonal group when the underlying
field is R). It is straightforward to check that, for 𝑓 ∈ H𝒅 [𝑞],

‖ 𝑓 ‖𝑊 ≤ ‖ 𝑓 ‖std ≤ max
𝑖≤𝑞

max
|𝛼 |=𝑑𝑖

(
𝑑𝑖
𝛼

)
‖ 𝑓 ‖𝑊 .

Here, and in all that follows, for any 𝑥 ∈ S𝑛 and 𝑓 ∈ H𝒅 [𝑞], D𝑥 𝑓 : T𝑥S
𝑛 → R𝑞 is the derivative of

f at x restricted to the tangent space T𝑥S
𝑛 of S𝑛 at x. A similar convention applies in the complex case

replacing S𝑛 and T𝑥S
𝑛 by P𝑛 and T𝑧P

𝑛. The following property (see [14, Proposition 16.16]) is one
of the most important properties of the Weyl norm from the viewpoint of the complexity of numerical
algorithms.

Proposition 2.2. For all 𝑥 ∈ S𝑛, the map

H𝒅 [𝑞] 
 𝑓 ↦→ ev𝑥 𝑓 :=
(
𝑓 (𝑥),Δ− 1

2 D𝑥 𝑓
)

is an orthogonal projection from H𝒅 [𝑞] endowed with the Weyl norm onto R𝑞 ×T𝑥S
𝑛 � R𝑞+𝑛 equipped

with the standard Euclidean norm. An analogous statement holds in the complex case.

2.2. Functional norms

We will consider functional norms that arise from evaluating polynomials at points on the sphere.
One might consider other norms (as we do in Section A), but 𝐿𝑝-norms suffice for obtaining the
computational improvements we aim for. Although in the sequel we will only use the 𝐿∞-norm, we
present the full family of 𝐿𝑝-norms since we consider that these norms will be useful in the future.
Moreover, presenting the full family of 𝐿𝑝-norms allows us to appreciate how the 𝐿∞ differs from and
relates to these other norms.

We will consider the two following classes of L-norms on H𝒅 [𝑞]:

(R) Real 𝐿𝑝-norm: For 𝑝 ∈ [1,∞],

‖ 𝑓 ‖R𝑝 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max
𝑥∈S𝑛

‖ 𝑓 (𝑥)‖∞ = max
𝑥∈S𝑛

max
𝑖
| 𝑓𝑖 (𝑥) | if 𝑝 = ∞(

E
𝔵∈S𝑛

‖ 𝑓 (𝔵)‖ 𝑝𝑝
)1/𝑝

=

(
E

𝔵∈S𝑛

(
𝑞∑
𝑖=1

| 𝑓𝑖 (𝔵) |𝑝
))1/𝑝

otherwise,

where the expectations are taken over the uniform distribution of the n-dimensional sphereS𝑛 ⊆ R𝑛+1.
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(C) Complex 𝐿𝑝-norm: For 𝑝 ∈ [1,∞],

‖ 𝑓 ‖C𝑝 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max
𝑧∈P𝑛

‖ 𝑓 (𝑧)‖∞ = max
𝑧∈P𝑛

max
𝑖
| 𝑓𝑖 (𝑧) | if 𝑝 = ∞(

E
𝔷∈P𝑛

‖ 𝑓 (𝔷)‖ 𝑝𝑝
)1/𝑝

=

(
E

𝔷∈P𝑛

(
𝑞∑
𝑖=1
| 𝑓𝑖 (𝔷) |𝑝

))1/𝑝

otherwise,

where the expectations are taken over the uniform distribution of the complex n-dimensional projec-
tive space P𝑛 := P𝑛

C
.

Remark 2.3. In the case of a single polynomial, the definitions above become simpler. For 𝑓 ∈ H𝒅 [1],

‖ 𝑓 ‖R𝑝 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
𝑥∈S𝑛

| 𝑓 (𝑥) | if 𝑝 = ∞(
E

𝔵∈S𝑛
| 𝑓 (𝔵) |𝑝

)1/𝑝
otherwise

and ‖ 𝑓 ‖C𝑝 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
𝑧∈P𝑛

| 𝑓 (𝑧) | if 𝑝 = ∞(
E

𝔷∈P𝑛
| 𝑓 (𝔷) |𝑝𝑝

)1/𝑝
otherwise,

which amount to taking the p-mean of | 𝑓 | over, respectively, S𝑛 and P𝑛.

In general, we will omit the superscript when the context is clear. It will be common for us to work
with the norms ‖ ‖R𝑝 in HR

𝒅
[𝑞] and the norms ‖ ‖C𝑝 in HC

𝒅
[𝑞].1

Our definition has some arbitrary choices. These are motivated by the following two properties:

(D) For 𝑝 ∈ [1,∞] and 𝑓 ∈ H𝒅 [𝑞],

‖ 𝑓 ‖R𝑝 =
���(‖ 𝑓1‖R𝑝 , . . . , ‖ 𝑓𝑞 ‖R𝑝 )���

𝑝
and ‖ 𝑓 ‖C𝑝 =

���(‖ 𝑓1‖C𝑝 , . . . , ‖ 𝑓𝑞 ‖C𝑝 )���
𝑝
.

This identity is why we take the p-mean of the p-norm of 𝑓 (𝑥) instead of taking the p-mean of a
fixed norm.

(I) We have actions of the qth power of the (real) orthogonal group, 𝒪(𝑛 + 1)𝑞 , on HR
𝒅
[𝑞], given by

(𝐴, 𝑓 ) ↦→ ( 𝑓 𝐴𝑖𝑖 ) := ( 𝑓𝑖 (𝐴𝑖𝑋)). Similarly, we have an action of the qth power of the unitary group,
𝒰(𝑛 + 1)𝑞 , on HC

𝒅
[𝑞]. The norms ‖ ‖R𝑝 and ‖ ‖C𝑝 are invariant under these actions.

We perform some simple computations to have a better grasp of the introduced norms.

Example 2.4 (Monomials). We consider the value of the norms for a monomial 𝑋𝛼 ∈ H𝑑 [1] of degree
d. In this case, we have that for 𝑝 ∈ [1,∞),

‖𝑋𝛼‖R𝑝 =
����
Γ
(
𝑛+1

2

) ∏𝑛
𝑖=0 Γ

(
𝑝𝛼𝑖+1

2

)
𝜋
𝑛+1

2 Γ
(
𝑝𝑑+𝑛+1

2

) ����
1
𝑝

and ‖𝑋𝛼‖C𝑝 =
����𝑛!

∏𝑛
𝑖=0 Γ

( 𝑝𝛼𝑖
2 + 1

)
Γ
(
𝑝𝑑
2 + 𝑛 + 1

) ����
1
𝑝

,

where Γ is Euler’s Gamma function, and that

‖𝑋𝛼‖R∞ = ‖𝑋𝛼‖C∞ =
𝑛∏
𝑖=0

(𝛼𝑖
𝑑

) 𝛼𝑖
2
=

√√
1
𝑑𝑑

𝑛∏
𝑖=0

𝛼𝛼𝑖
𝑖 .

For the calculations of 𝐿𝑝-norms of monomials, we refer the reader to [36]. Although the calculation
is only illustrated over the reals in the reference, the complex case is similar. For the second one, note
that for monomials, real and complex ∞-norms are equivalent. Once this is clear, we are just using the
method of Lagrange multipliers to compute the maximum over the sphere.

1Observe, however, that ‖ ‖R𝑝 are also norms for HC
𝒅
[𝑞] since a complex homogeneous polynomial cannot vanish on the real

sphere without being zero.

https://doi.org/10.1017/fms.2022.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.89


Forum of Mathematics, Sigma 7

Example 2.5 (Linear functions). Let 1 = (1, 1, . . . , 1) ∈ N𝑞 and 𝑓 ∈ H1 [𝑞]. Then f can be identified
with a matrix A of size 𝑞 × (𝑛 + 1). We can see that

‖ 𝑓 ‖∞ = ‖𝐴‖2,∞ := sup
𝑥≠0

‖𝐴𝑥‖∞
‖𝑥‖2

,

where ‖ ‖2,∞ is the operator norm, where the domain vector space has the usual Euclidean norm ‖ ‖2
and the codomain the ∞-norm ‖ ‖∞.

For 𝑝 ∈ [1,∞),

‖ 𝑓 ‖R𝑝 = ‖𝑋0‖R𝑝
���(‖𝐴1‖2, . . . , ‖𝐴𝑞 ‖2

)���
𝑝

and ‖ 𝑓 ‖C𝑝 = ‖𝑋0‖C𝑝
���(‖𝐴1‖2, . . . , ‖𝐴𝑞 ‖2

)���
𝑝
,

where 𝐴𝑖 is the ith row of A and 𝑋0 is a variable (and hence ‖𝑋0‖F𝑝 is given by the expressions in
Example 2.4). Note that

��(‖𝐴1‖2, . . . , ‖𝐴𝑞 ‖2
)��

𝑝
is just the p-norm of the vector of 2-norms of the rows

of A.
Example 2.6 (Sum of squares). Let 𝑓 :=

∑𝑛
𝑖=0 𝑋

2
𝑖 ∈ H2 [1]. As this function is constant on the real

sphere, we have that for all 𝑝 ∈ [1,∞],

‖ 𝑓 ‖R𝑝 = 1.

However, on P𝑛, f does not behave as a constant function as it has a positive dimensional zero set. Again,
arguing as in [36], we can conclude that

‖ 𝑓 ‖C𝑝 =

(
1

𝜋𝑛+1
𝑛!

(𝑛 + 𝑝)!

∫
𝑧∈C𝑛+1

| 𝑓 (𝑧) |𝑝e−|𝑧 |
2
) 1
𝑝

for 𝑝 ∈ [1,∞). Now, if p is even, we can obtain the expression

‖ 𝑓 ‖C𝑝 =
�����
(
𝑛 + 2

2

)−1 ∑
𝛼∈N𝑛+1
|𝛼 |=𝑝/2

(
𝑝/2
𝛼

)2 (
𝑝

2𝛼

)−1�����
1
𝑝

after writing | 𝑓 (𝑧) |𝑝 = 𝑓 (𝑧)
𝑝
2 𝑓 (𝑧)

𝑝
2 , expanding and using separation of variables. In particular, for

𝑝 = 2, we obtain that

‖ 𝑓 ‖C2 =

√
2

𝑛 + 2
≠ 1.

This shows how the norms ‖ ‖C𝑝 may be smaller than their corresponding norm ‖ ‖R𝑝 for 𝑝 ∈ [1,∞).
Example 2.7 (Cosine polynomials). Let 𝑑 ≥ 2, and consider the family of homogeneous polynomials

𝑐𝑑 :=
�𝑑/2�∑
𝑘=0

(
𝑑

2𝑘

)
(−1)𝑘𝑋𝑑−2𝑘𝑌2𝑘 =

1
2
(𝑋 + 𝑖𝑌 )𝑑 + 1

2
(𝑋 − 𝑖𝑌 )𝑑 ∈ H𝑑 [1] .

Since 𝑐𝑑 (cos 𝜃, sin 𝜃) = cos 𝑑𝜃, we have that

‖𝑐𝑑 ‖R∞ = 1.

Also, 𝑐𝑑 is unitarily equivalent to 2 𝑑2 −1 (𝑋𝑑 + 𝑌 𝑑). Hence

‖𝑐𝑑 ‖C∞ = 2
𝑑
2 −1,

since ‖𝑋𝑑 + 𝑌 𝑑 ‖C∞ = 1 for 𝑑 ≥ 2. This shows that for degrees 𝑑 ≥ 3, the norms ‖ ‖R∞ and ‖ ‖C∞ disagree
on real polynomials.

https://doi.org/10.1017/fms.2022.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.89


8 F. Cucker, A. A. Ergür and J. Tonelli-Cueto

The following proposition lists simple inequalities between the functional norms. For a converse of
some of the inequalities below, where the 𝐿∞ norm is bounded in terms of 𝐿𝑝 norms, see [6].

Proposition 2.8. Let 1 ≤ 𝑝 < 𝑝′ < ∞ and F ∈ {R,C}. Then for all 𝑓 ∈ HF
𝒅
[𝑞], the following

inequalities hold:

1

𝑞
1
𝑝

‖ 𝑓 ‖F𝑝 ≤
1

𝑞
1
𝑝′
‖ 𝑓 ‖F𝑝′ ≤ ‖ 𝑓 ‖F∞ ≤ ‖ 𝑓 ‖C∞.

Sketch of proof. It is a direct consequence of the inequalities between p-means. �

The Weyl norm is essentially a scaled version of the complex 𝐿2 norm.

Proposition 2.9. Let 𝑓 ∈ HC
𝒅
[𝑞]. Then

‖ 𝑓 ‖𝑊 =

√√
𝑞∑
𝑖=1

𝑁𝑖
(
‖ 𝑓𝑖 ‖C2

)2
.

In particular, for 𝑓 ∈ HC
𝒅
[1],

‖ 𝑓 ‖C𝑊 =
√
𝑁 ‖ 𝑓 ‖C2 .

Sketch of proof. We only need to show this in the case 𝑞 = 1. Now both the Weyl norm and the complex
𝐿2-norm are unitarily invariant Hermitian norms of HC𝑑 . For the Weyl norm, see [14, Theorem 16.3];
for the complex 𝐿2-norm, this is property (I). Since HC𝑑 is an irreducible representation of 𝒰(𝑛 + 1),
this means the two norms are equal up to a constant. Using Example 2.4 with 𝑓 = 𝑋𝑑

0 , one can check
that this constant is

√
𝑁 . �

From Proposition 2.2, we get the following result.

Proposition 2.10. Let F ∈ {R,C} and 𝑓 ∈ H𝒅 [𝑞]. Then for all 𝑝 ≥ 2,

‖ 𝑓 ‖F𝑝 ≤ ‖ 𝑓 ‖𝑊 .

Sketch of proof. By Proposition 2.2, 𝑓 ↦→ 𝑓 (𝑥) is an orthogonal projection with respect to the Weyl
norm, so ‖ 𝑓 (𝑥)‖2 ≤ ‖ 𝑓 ‖𝑊 . Hence, for every 𝑥 ∈ 𝑆𝑛−1, ‖ 𝑓 (𝑥)‖𝑝 ≤ ‖ 𝑓 (𝑥)‖2 ≤ ‖ 𝑓 ‖𝑊 , where the first
inequality follows from Minkowski’s inequality. �

We finish this subsection by noting how the 𝐿∞-norms relate to the Weyl norm. We note that this is
related to the so-called best rank-one approximation of a symmetric tensor [1, 59]; the inequality for the
real case below was already present in [59, Theorem 2.4].

Proposition 2.11. Let 𝑓 ∈ H𝒅 [𝑞]. Then

‖ 𝑓 ‖C∞ ≤ ‖ 𝑓 ‖𝑊 ≤
√
𝑁 ‖ 𝑓 ‖C∞.

If 𝑓 ∈ HR
𝒅
[𝑞], then

‖ 𝑓 ‖R∞ ≤ ‖ 𝑓 ‖𝑊 ≤ (𝑛 + 1)
D
2 ‖ 𝑓 ‖R∞.

Proof. The first part follows from Proposition 2.9 and 2.10. The left-hand side of the second part uses
Proposition 2.10.

Now, for 𝑓 ∈ H𝑑 [1], Corollary 2.20 implies that for each 𝛼, | 𝑓𝛼 | =
��� 1
𝛼! D𝑥 𝑓

��� ≤ (𝑑
𝛼

)
. The right-hand

inequality follows from here. �
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Example 2.12. Proposition 2.11 is almost optimal for 𝑛 = 1. In [1], it was shown that for the cosine
polynomials 𝑐𝑑 of Example 2.7, we have

‖𝑐𝑑 ‖𝑊 = 2
𝑑−1

2

and that 𝑐𝑑 is the real polynomial of real 𝐿∞ norm 1 with largest Weyl norm. Curiously, in this case,
the Weyl norm and the complex 𝐿∞ are almost equal, the former being the latter times

√
2.

2.3. Kellogg’s theorem

We will denote by D the operation of taking all partial derivatives with respect to all variables: that is,
𝑓 ↦→ D 𝑓 is a linear map H𝒅 [𝑞] → H𝒅−1 [(𝑛 + 1)𝑞], and for 𝑥 ∈ F𝑛+1, D𝑥 𝑓 : F𝑛+1 → F𝑞 is a linear
map. We will write D𝑋 𝑓 , with a capital X, to emphasise that we view D𝑋 𝑓 as a polynomial tuple in
H𝒅−1 [(𝑛 + 1)𝑞]; and we will write D𝑥 𝑓 , with a lowercase x, to emphasise that we view D𝑥 𝑓 as the
linear map F𝑛+1 → F𝑞 defined at the point x. We also recall that D𝑥 𝑓 is the tangent map T𝑥S

𝑛 → R𝑞
in the real case and the tangent map T𝑥P

𝑛 → C𝑞 in the complex case.
The following result plays the role of Proposition 2.2 for the infinity norm instead of the Weyl one.

It is a reformulation of a well-known inequality proved in [40].
Theorem 2.13 (Kellogg’s inequality). Let F ∈ {R,C}, 𝑓 ∈ HF

𝒅
[𝑞] and 𝑣 ∈ F𝑛+1; then���Δ−1D𝑋 𝑓 𝑣

���F
∞
≤ ‖ 𝑓 ‖F∞‖𝑣‖.

Corollary 2.14. Let 𝑓 ∈ HF
𝒅
[𝑞] and 𝑧 ∈ S𝑛 (if F = R) or 𝑧 ∈ P𝑛 (if F = C). Then

max
{
‖ 𝑓 (𝑧)‖∞,

��Δ−1D𝑧 𝑓
��

2,∞

}
≤ ‖ 𝑓 ‖F∞.

Before proving Theorem 2.13 and Corollary 2.14, we discuss some features of these results.
Remark 2.15. We note that the left-hand side in Corollary 2.14 is not optimal. In general, we have that

‖Δ−1D𝑥 𝑓 ‖2,∞ = max
𝑖

√
| 𝑓𝑖 (𝑥) |2 +

1
𝑑2
𝑖

‖D𝑥 𝑓𝑖 ‖2
2,∞.

The following examples show how the bound of Theorem 2.13 looks in a few particular cases.
Example 2.16. Consider the cosine polynomials 𝑐𝑑 of Example 2.7. A direct computation shows that

1
𝑑

D𝑋 𝑐𝑑 𝑣 = 𝑣𝑋 𝑐𝑑−1 − 𝑣𝑌 𝑠𝑑−1,

where 𝑠𝑑−1 := − 𝑖
2 (𝑋 + 𝑖𝑌 )

𝑑−1 + 𝑖
2 (𝑋 − 𝑖𝑌 ) is the sine polynomial for which 𝑠𝑑 (cos 𝜃, sin 𝜃) = sin 𝑑𝜃.

In the real case, this gives ���� 1
𝑑

D𝑋 𝑐𝑑𝑣

����R
∞
= ‖𝑣‖2 = ‖𝑐𝑑 ‖R∞‖𝑣‖2,

using the Cauchy-Schwarz inequality. In the complex case, 1
𝑑D𝑋 𝑐𝑑𝑣 = 𝑣𝑋 𝑐𝑑−1 − 𝑣𝑌 𝑠𝑑−1 is unitarily

equivalent to

2 𝑑−1
2

𝑑

[
(𝑣𝑋 − 𝑖𝑣𝑌 )𝑋𝑑−1 + (𝑣𝑋 + 𝑖𝑣𝑌 )𝑌 𝑑−1] .

Now,
��(𝑣𝑋 − 𝑖𝑣𝑌 )𝑥𝑑−1 + (𝑣𝑋 + 𝑖𝑣𝑌 )𝑦𝑑−1

�� ≤ √2‖𝑣‖2 (|𝑥 |𝑑−1+ |𝑦 |𝑑−1) ≤ ‖𝑣‖2 for 𝑑 ≤ 3, and v real when
|𝑥 |2 + |𝑦 |2 ≤ 1. Thus
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𝑑

D𝑋 𝑐𝑑𝑣

����C
∞
=

2𝑑

𝑑
‖𝑣‖2 =

√
2
𝑑
‖𝑐𝑑 ‖C∞‖𝑣‖2.

This shows that the real version of Kellogg’s theorem is tight for 𝑐𝑑 , but the complex version
is not.

Example 2.17. The reverse situation is true for the polynomial 𝑋𝑑
0 . One can see that���� 1

𝑑
D𝑋𝑋

𝑑
0 𝑒0

����C
∞
= ‖𝑋𝑑

0 ‖
C

∞.

Now it is the complex Kellogg’s theorem that is tight. We note, however, that one might still improve
Corollary 2.14. For example, is it possible to substitute Δ by Δ

1
2 in this corollary?

Remark 2.18. Examples 2.16 and 2.17 motivate the search of a randomised Kellogg’s theorem that
holds with high probability for random polynomials and has a tighter right-hand side.

Proof of Theorem 2.13. We only prove the real case. The complex case is proven analogously (see [40,
Section 8] for the complex version of the results we use in the real case).

By [40, Theorem IV], we have that for all i and all 𝑥 ∈ S𝑛,$$$D𝑥 𝑓𝑖𝑣
$$$ ≤ 𝑑𝑖 ‖ 𝑓𝑖 ‖R∞‖𝑣‖,

since D𝑥 𝑓𝑖𝑣 is the directional derivative of f at x in the direction of v. Therefore, for all 𝑥 ∈ S𝑛,���Δ−1D𝑥 𝑓 𝑣
���
∞
= max

𝑖

1
𝑑𝑖

$$$D𝑥 𝑓 𝑣
$$$ ≤ max

𝑖
‖ 𝑓𝑖 ‖R∞‖𝑣‖ = ‖ 𝑓 ‖R∞‖𝑣‖.

Now
���Δ−1D𝑋 𝑓 𝑣

���R
∞
= max𝑥∈S𝑛 ‖Δ−1D𝑥 𝑓 𝑣‖∞ by definition of ‖ ‖R∞, so we are done. �

Remark 2.19. We note that the application of [40, Theorem IV] using the scaling with the diagonal
matrix was not used in [33, Theorem 2.4] and [34]. This can be used to improve by a factor of the degree
some of the bounds there.

Proof of Corollary 2.14. We only prove the real case, the proof for the complex case being essentially
the same. Recall that by Euler’s formula for homogeneous functions,

Δ−1D𝑥 𝑓 𝑥 = 𝑓 (𝑥). (2.4)

In this way, for 𝑥 ∈ S𝑛, 𝜆 ∈ R and 𝑤 ∈ T𝑥S
𝑛 = 𝑥⊥,

Δ−1D𝑥 𝑓 (𝜆𝑥 + 𝑤) = 𝜆 𝑓 (𝑥) + Δ−1D𝑥 𝑓 𝑤.

When 𝜆𝑥 + 𝑤 = 𝑥, this expression yields 𝑓 (𝑥); and when 𝜆𝑥 + 𝑤 = 𝑤, it yields Δ−1D𝑥 𝑓 𝑤. In this way,

max
𝜆𝑥+𝑤≠0

‖Δ−1D𝑥 𝑓 (𝜆𝑥 + 𝑤)‖∞√
|𝜆 |2 + ‖𝑤‖2

≥ max
{
‖ 𝑓 (𝑥)‖∞, max

𝑣 ∈T𝑥S𝑛\0

‖Δ−1D𝑥𝑣‖∞
‖𝑣‖

}
.

The left-hand side is bounded by ‖ 𝑓 ‖R∞ by Theorem 2.13, and the right-hand side equals
max{‖ 𝑓 (𝑥)‖∞, ‖Δ−1D𝑥 𝑓 ‖2,∞}. Thus the desired inequality follows. �

Following the notations introduced above, we will write D𝑘
𝑥 𝑓 to denote the kth derivative map of

𝑓 ∈ H𝒅 [𝑞] at 𝑥 ∈ F𝑛+1. This is the k-multilinear map (F𝑛+1)𝑘 → F𝑞 given by the kth derivatives of f
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at x. Also, D𝑘
𝑋 𝑓 (𝑣1, . . . , 𝑣𝑘 ), where 𝑣1, . . . , 𝑣𝑘 ∈ F𝑛+1 will denote the corresponding polynomial tuple

in H𝒅−𝑘1 [𝑞]. For a real k-multilinear map 𝐴 : (R𝑛)𝑘 → R𝑞 , we define

‖𝐴‖R2,∞ := sup
𝑣1 ,...,𝑣𝑘≠0

‖𝐴(𝑣1, . . . , 𝑣𝑘 )‖∞
‖𝑣1‖ · · · ‖𝑣𝑘 ‖

. (2.5)

We define ‖𝐴‖C2,∞ for a complex k-multilinear map 𝐴 : (C𝑛)𝑘 → C𝑞 in a similar manner. Note that for
𝑘 > 2, by the following corollary and Example 2.7,���� 1

𝑘!
D𝑘

0 𝑐𝑘

����C
2,∞

= ‖𝑐𝑘 ‖C∞ = 2
𝑘
2 −1 > 1 = ‖𝑐𝑘 ‖R∞ =

���� 1
𝑘!

D𝑘
0 𝑐𝑘

����R
2,∞

,

so for real A, ‖𝐴‖R2,∞ and ‖𝐴‖C2,∞ are not necessarily equal and can differ by a factor exponential in k.
The following corollary (which is closely related to [59, Theorem 2.1]) will be useful later.

Corollary 2.20. Let 𝑓 ∈ HF
𝒅
[𝑞] and 𝑧 ∈ S𝑛 (if F = R) or 𝑧 ∈ P𝑛 (if F = C). Then for all 𝑘 ≥ 1 and

𝑣1, . . . , 𝑣𝑘 ∈ F𝑛+1, ���� 1
𝑘!
Δ−1D𝑘

𝑋 𝑓 (𝑣1, . . . , 𝑣𝑘 )
����
∞
≤ 1

𝑘

(
D − 1
𝑘 − 1

)
‖ 𝑓 ‖F∞‖𝑣1‖ · · · ‖𝑣𝑘 ‖.

In particular,
��� 1
𝑘!Δ

−1D𝑘
𝑧 𝑓

���
2,∞

≤ 1
𝑘

(D−1
𝑘−1

)
‖ 𝑓 ‖F∞.

Proof. It follows from Theorem 2.13 by induction, followed by an application of Corollary 2.14. �

Remark 2.21. Although the results in this section were proved only for ‖ ‖F∞, some of them can be
generalised to other norms. For example, similar results can be obtained for ‖ ‖R2 (see [52]) and certainly
for other norms. We defer to future work the application of these extensions to the analysis of numerical
algorithms in algebraic geometry. We also note that Corollary 2.14 for F = R can be generalised to
smooth real algebraic varieties other than the sphere (see [11]).

3. Condition numbers for the 𝐿∞-norm

In this section, we will consider condition numbers that capture ‘how near to being singular’ a system
𝑓 ∈ H𝒅 [𝑞] is at a point 𝑥 ∈ S𝑛. We will define condition numbers and develop a geometric understanding
of them for the 𝐿∞-norms defined in the preceding section.

Recall the local and global versions of the real condition number 𝜅 used in [25, 26, 27, 28]. For
𝑓 ∈ HR

𝒅
[𝑞] and 𝑥 ∈ S𝑛, they are defined by

𝜅( 𝑓 , 𝑥) :=
‖ 𝑓 ‖𝑊√

‖ 𝑓 (𝑥)‖2
2 +

��D𝑥 𝑓 †Δ1/2
��−2

2,2

and 𝜅( 𝑓 ) := sup
𝑦∈S𝑛

𝜅( 𝑓 , 𝑦). (3.1)

Here, for a surjective linear map A, 𝐴† := 𝐴∗(𝐴𝐴∗)−1 denotes its Moore-Penrose inverse [14, Section
1.6]. Also recall the 𝜇-condition number introduced by Shub and Smale [53]: for 𝑓 ∈ HC

𝒅
[𝑞] and 𝜁 ∈ P𝑛,

𝜇( 𝑓 , 𝜁) is defined by

𝜇norm ( 𝑓 , 𝜁) := ‖ 𝑓 ‖𝑊
���D𝜁 𝑓

†Δ1/2
���

2,2
. (3.2)

Remark 3.1. By convention, we assume that ‖𝐴†‖2,2 = ∞ when A is not surjective. We do this because
for 𝐴 ∈ C𝑞×𝑛 surjective, ��𝐴†��−1

2,2 = 𝜎𝑞 (𝐴),

https://doi.org/10.1017/fms.2022.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.89


12 F. Cucker, A. A. Ergür and J. Tonelli-Cueto

where 𝜎𝑞 is the qth singular value. As the latter is continuous, this choice guarantees that 𝐴 ↦→ ‖𝐴†‖−1
2,2

is continuous.

Following these ideas, we define the real local condition number of 𝑓 ∈ HR
𝒅
[𝑞] at 𝑥 ∈ S𝑛 as

K( 𝑓 , 𝑥) :=
√
𝑞‖ 𝑓 ‖R∞

max
{
‖ 𝑓 (𝑥)‖,

��D𝑥 𝑓 †Δ
��−1

2,2

} (3.3)

and the real global condition number of 𝑓 ∈ HR
𝒅
[𝑞] as

K( 𝑓 ) := sup
𝑦∈S𝑛

K( 𝑓 , 𝑦). (3.4)

And we define the complex local condition number of 𝑓 ∈ HC
𝒅
[𝑞] at 𝜁 ∈ P𝑛 as

M( 𝑓 , 𝜁) = √𝑞‖ 𝑓 ‖C∞
��D𝜁 𝑓

†Δ
��

2,2 (3.5)

and the complex global condition number of 𝑓 ∈ HC
𝒅
[𝑞] (with 𝑞 ≤ 𝑛) as

M( 𝑓 ) := sup{M( 𝑓 , 𝜁) | 𝜁 ∈ P𝑛, 𝑓 (𝜁) = 0}. (3.6)

We can see that K is a variant of 𝜅 and M is a variant of 𝜇norm. We note that the main difference lies
in the fact that we are substituting all occurrences of ‖ ‖𝑊 with occurrences of ‖ ‖∞. The fact that we
use a different scaling factor (Δ1/2 instead of Δ) or different norms for vectors (‖ ‖∞ instead of ‖ ‖2 and
so on) only affects these quantities up to a

√
2𝑞D factor. This has little consequence for complexity. We

will be more explicit in Proposition 4.27. Note that despite these changes, we still have that the local
condition numbers, K and M, become ∞ at a singular zero and that they are finite otherwise.

The remainder of this section is devoted to proving the main properties of K and M, which are the
reason we defined these numbers the way we did. The properties we will show are those needed for a
condition-based complexity analyses of the algorithms in Sections 4 and 5 following the lines of the
analyses in [25, 28, 15, 16, 17] (see also [55]) and [14, Chapter 17].

3.1. Properties of the real condition number K

Recall (see, e.g., [14, Definition 16.35]) that for 𝑓 ∈ H𝒅 [𝑞] and 𝑥 ∈ S𝑛, the Smale’s projective gamma
is given by

𝛾( 𝑓 , 𝑥) := sup
𝑘≥2

���� 1
𝑘!

D𝑥 𝑓
†D𝑘

𝑥 𝑓

���� 1
𝑘−1

,

where ‖ ‖ = ‖ ‖2,2 is the operator norm (with respect to Euclidean norms) of a multilinear map.

Theorem 3.2. Let 𝑓 ∈ HR
𝒅
[𝑞] and 𝑥 ∈ S𝑛. The following holds:

◦ Regularity inequality: Either

‖ 𝑓 (𝑥)‖
√
𝑞‖ 𝑓 ‖R∞

≥ 1
K( 𝑓 , 𝑥) or

√
𝑞‖ 𝑓 ‖R∞

��D𝑥 𝑓
†Δ

��
2,2 ≤ K( 𝑓 , 𝑥).

In particular, if K( 𝑓 , 𝑥) ‖ 𝑓 (𝑥) ‖√
𝑞 ‖ 𝑓 ‖R∞

< 1, then D𝑥 𝑓 : T𝑥S
𝑛 → R𝑞 is surjective and its pseudoinverse

(D𝑥 𝑓 )† exists.
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◦ 1st Lipschitz property: The maps

HR
𝒅
[𝑞] → [0,∞)

𝑔 ↦→
‖𝑔‖R∞

K(𝑔, 𝑥)
and

HR
𝒅
[𝑞] → [0,∞)

𝑔 ↦→
‖𝑔‖R∞
K(𝑔)

are 1-Lipschitz with respect to the real 𝐿∞-norm. In particular,

K( 𝑓 , 𝑥) ≥ 1 and K( 𝑓 ) ≥ 1.

◦ 2nd Lipschitz property: The map

S
𝑛 → [0, 1]

𝑦 ↦→ 1
K( 𝑓 , 𝑦)

is D-Lipschitz with respect to the geodesic distance on S𝑛.
◦ Higher derivative estimate: If K( 𝑓 , 𝑥) | 𝑓 (𝑥) |‖ 𝑓 ‖R∞

< 1, then

𝛾( 𝑓 , 𝑥) ≤ 1
2
(D − 1)K( 𝑓 , 𝑥).

We now discuss the role of the above properties.
Regularity inequality. The regularity inequality guarantees that when K( 𝑓 , 𝑥) < ∞, either x is far

away from the zero set of f or D𝑥 𝑓
† exists and is well-defined. The latter is important because it allows

us to do various geometric arguments that rely on this pseudoinverse being defined or, equivalently, on
D𝑥 𝑓 being surjective. In the particular case of K, we could state it with equalities (see its proof below),
but we leave the statement with inequalities as this is the one holding for 𝜅 as well and it is enough for
our purposes.

1st Lipschitz property. The main use of the 1st Lipschitz inequality is to control the variation of K
with respect to f. This property implies that

1 − ‖ 𝑓 − 𝑓 ‖R∞
‖ 𝑓 ‖R∞

1 + K( 𝑓 , 𝑥) ‖ 𝑓 − 𝑓 ‖
R

∞
‖ 𝑓 ‖R∞

K( 𝑓 , 𝑥) ≤ K
(
𝑓 , 𝑥

)
≤

1 + ‖ 𝑓 − 𝑓 ‖
R

∞
‖ 𝑓 ‖R∞

1 − K( 𝑓 , 𝑥) ‖ 𝑓 − 𝑓 ‖
R

∞
‖ 𝑓 ‖R∞

K( 𝑓 , 𝑥) (3.7)

whenever K( 𝑓 , 𝑥) ‖ 𝑓 − 𝑓 ‖
R

∞
‖ 𝑓 ‖R∞

< 1. This formula shows how the condition number of an approximation of
f relates to that of f.

2nd Lipschitz property. The 2nd Lipschitz property allows us to gauge the variation of K with
respect to x. In this sense, it is very similar to the first Lipschitz property, and it implies that

1
1 + K( 𝑓 , 𝑥)distS(𝑥, 𝑥)

K( 𝑓 , 𝑥) ≤ K( 𝑓 , 𝑥) ≤ 1
1 − K( 𝑓 , 𝑥)distS(𝑥, 𝑥)

K( 𝑓 , 𝑥) (3.8)

whenever K( 𝑓 , 𝑥)distS (𝑥, 𝑥) < 1. Here distS denotes the geodesic distance in S𝑛.
Higher derivative estimate. Smale’s projective gamma, 𝛾( 𝑓 , 𝜁), controls many aspects of the local

geometry around a zero 𝜁 of the function f, notably, in the case 𝑞 = 𝑛, the radius of the basin of attraction
at 𝜁 of Newton’s operator 𝑁 𝑓 associated with f. Recall (see [14, Definition 16.34]) that we say 𝑥 ∈ S𝑛
is an approximate zero of 𝑓 ∈ H𝒅 [𝑛] with associated zero 𝜁 ∈ S𝑛 when for all 𝑘 ≥ 1, the kth iteration
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𝑁 𝑘
𝑓 of 𝑁 𝑓 satisfies

distS (𝑁 𝑘
𝑓 , 𝑥) ≤

(
1
2

)2𝑘−1
distS (𝑥, 𝜁).

We have the following result (see [14, Theorem 16.38 and Table 16.1]).

Theorem 3.3. Let 𝑓 ∈ H𝒅 [𝑛] and 𝜁 ∈ S𝑛 such that 𝑓 (𝜁) = 0. Let 𝑧 ∈ S𝑛 be such that distS (𝑧, 𝜁) ≤ 1
45

and distS(𝑧, 𝜁)𝛾( 𝑓 , 𝜁) ≤ 0.17708. Then z is an approximate zero of f with associated zero 𝜁 .

The computation of 𝛾( 𝑓 , 𝑥) appears to require all the derivatives of f. The higher derivative estimate
allows one to estimate 𝛾( 𝑓 , 𝑥) in terms of the first derivative only.

Proof of Theorem 3.2. Regularity inequality. By definition,

1
K( 𝑓 , 𝑥) = max

{
‖ 𝑓 (𝑥)‖
√
𝑞‖ 𝑓 ‖R∞

,
1

√
𝑞‖ 𝑓 ‖R∞

��D𝑥 𝑓 †Δ
��

2,2

}
.

Hence either 1
K( 𝑓 ,𝑥) =

‖ 𝑓 (𝑥) ‖√
𝑞 ‖ 𝑓 ‖R∞

or K( 𝑓 , 𝑥) = √𝑞‖ 𝑓 ‖R∞
��D𝑥 𝑓

†Δ
��

2,2, which finishes the proof.
1st Lipschitz property. We have that

‖𝑔‖R∞
K(𝑔, 𝑥) = max

{
‖𝑔(𝑥)‖
√
𝑞

,
𝜎𝑞

(
Δ−1D𝑥𝑔

)
√
𝑞

}
.

Hence, we only need to show that 𝑔 ↦→ ‖𝑔(𝑥)‖/√𝑞 and 𝑔 ↦→ 𝜎𝑞
(
Δ−1D𝑥𝑔

)
/√𝑞 are 1-Lipschitz. Now,$$$$ ‖𝑔(𝑥)‖√

𝑞
− ‖𝑔̃(𝑥)‖

√
𝑞

$$$$ ≤ ‖(𝑔 − 𝑔̃)(𝑥)‖
√
𝑞

≤ ‖(𝑔 − 𝑔̃)(𝑥)‖∞ ≤ ‖𝑔 − 𝑔̃‖R∞,

by the reverse triangle inequality, ‖ ‖ ≤ √𝑞‖ ‖∞ and the definition of the real 𝐿∞-norm; and$$$$$𝜎𝑞 (Δ−1D𝑥𝑔
)

√
𝑞

−
𝜎𝑞

(
Δ−1D𝑥 𝑔̃

)
√
𝑞

$$$$$ ≤
��Δ−1D𝑥 (𝑔 − 𝑔̃)

��
2,2√

𝑞
≤

��Δ−1D𝑥 (𝑔 − 𝑔̃)
��
∞,2‖𝑔 − 𝑔̃‖R∞,

because 𝜎𝑞 is 1-Lipschitz with respect to ‖ ‖2,2, ‖ ‖ ≤ √𝑞‖ ‖∞ and Kellogg’s inequality (Theorem 2.13).
Thus our claims follow.

The claim for 𝑔 ↦→ ‖𝑔‖R∞/K(𝑔) follows from the fact that the minimum of a family of 1-Lipschitz
functions is 1-Lipschitz and from

‖𝑔‖R∞
K(𝑔) = min

𝑥∈S𝑛
‖𝑔‖R∞

K(𝑔, 𝑥) .

For the lower bound, just note that

‖ 𝑓 ‖R∞
K( 𝑓 , 𝑥) =

$$$$ ‖ 𝑓 ‖R∞K( 𝑓 , 𝑥) −
‖0‖R∞

K(0, 𝑥)

$$$$ ≤ ‖ 𝑓 − 0‖R∞ = ‖ 𝑓 ‖R∞

by the proven Lipschitz property, so K( 𝑓 , 𝑥) ≥ 1. Similarly with K( 𝑓 ).
2nd Lipschitz property. Without loss of generality, assume that ‖ 𝑓 ‖R∞ = 1 after scaling f by an

appropriate constant; note that this does not change the value of K. Let 𝑦, 𝑦̃ ∈ S𝑛 and 𝑢 ∈ 𝒪(𝑛 + 1) be
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the planar rotation taking y into 𝑦̃. Then$$$$ 1
K( 𝑓 , 𝑦) −

1
K( 𝑓 , 𝑦̃)

$$$$ = $$$$ 1
K( 𝑓 , 𝑦) −

1
K( 𝑓 𝑢 , 𝑦)

$$$$ ≤ ‖ 𝑓 − 𝑓 𝑢 ‖R∞,

where 𝑓 𝑢 := 𝑓 (𝑢𝑋) and where the equality follows from the fact that the 𝐿∞-norm is orthogonally
invariant along with the inequality from the 1st Lipschitz property.

Now, arguing as when proving the 1st Lipschitz property, we have that for all 𝑧 ∈ S𝑛,

| 𝑓 (𝑧) − 𝑓 (𝑢𝑧) | ≤ D distS(𝑧, 𝑢𝑧).

By the choice of u, we have that distS(𝑧, 𝑢𝑧) ≤ distS (𝑦, 𝑦̃). Therefore ‖ 𝑓 − 𝑓 𝑢 ‖R∞ ≤ D distS (𝑦, 𝑦̃), and
we are done.

We note that a variational argument showing that both 𝑦 ↦→ ‖𝑔(𝑦)‖/√𝑞 and 𝑦 ↦→ 𝜎𝑞 (Δ−1D𝑦 𝑓 ))/
√
𝑞

are Lipschitz is possible. This argument would be almost identical to the one used for proving the 1st
Lipschitz property but varying the point in the sphere instead of the polynomial. We use the above
argument since it is simpler and gives a slightly better bound.

Higher derivative estimate. Again, without loss of generality, we assume that ‖ 𝑓 ‖R∞ = 1, since
multiplying f by a scalar affects neither the value of K nor Smale’s projective gamma. Then���� 1

𝑘!
D𝑥 𝑓

†D𝑘
𝑥 𝑓

���� ≤ ��D𝑥 𝑓
†Δ

��
2,2

����Δ−1

𝑘!
D𝑘
𝑥 𝑓

����
2,2

(inequalities for operator norms)

≤ √𝑞
��D𝑥 𝑓

†Δ
��

2,2

����Δ−1

𝑘!
D𝑘
𝑥 𝑓

����
2,∞

‖ ‖/√𝑞 ≤ ‖ ‖∞

≤ K( 𝑓 , 𝑥)
����Δ−1

𝑘!
D𝑘
𝑥 𝑓

����
2,∞

(assumption + regularity inequality)

≤ 1
𝑘

(
D − 1
𝑘 − 1

)
K( 𝑓 , 𝑥). (Corollary 2.20)

Taking (𝑘 −1)th roots, we have that K( 𝑓 , 𝑥) 1
𝑘−1 ≤ K( 𝑓 , 𝑥), since K( 𝑓 , 𝑥) ≥ 1 by Corollary 2.14, and that(

1
𝑘

(
D − 1
𝑘 − 1

)) 1
𝑘−1

≤ D − 1
2

,

using that 1
𝑘

(D−1
𝑘−1

)
≤ (D − 1)𝑘−1/2𝑘−1. Putting this together, we obtain the desired bound for Smale’s

projective gamma. �

The following proposition, which we state here for the sake of completeness, will be proved in
Section A.

Proposition 3.4. Let 𝑓 ∈ HR
𝒅
[𝑞] and 𝑥 ∈ S𝑛. Then

‖ 𝑓 ‖R∞
distR∞( 𝑓 ,ΣR𝒅,𝑥 [𝑞])

≤ K( 𝑓 , 𝑥) ≤ 2

√√
𝑞∑
𝑖=1

𝑑2
𝑖

‖ 𝑓 ‖R∞
distR∞( 𝑓 ,ΣR𝒅,𝑥 [𝑞])

and

‖ 𝑓 ‖R∞
distR∞( 𝑓 ,ΣR𝒅 [𝑞])

≤ K( 𝑓 ) ≤ 2

√√
𝑞∑
𝑖=1

𝑑2
𝑖

‖ 𝑓 ‖R∞
distR∞( 𝑓 ,ΣR𝒅 [𝑞])

,

https://doi.org/10.1017/fms.2022.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.89


16 F. Cucker, A. A. Ergür and J. Tonelli-Cueto

where distR∞ is the distance induced by ‖ ‖R∞,

ΣR𝒅,𝑥 [𝑞] :=
{
𝑔 ∈ HR𝒅 [𝑞] | 𝑔(𝑥) = 0, rank D𝑥𝑔 < 𝑞

}
, and ΣR𝒅 [𝑞] :=

⋃
𝑥∈S𝑛

ΣR𝒅,𝑥 [𝑞] .

3.2. Properties of the complex condition number M

In the complex case, Theorem 3.2 takes the form of the following result, whose proof is identical, so
we omit it. We do not consider a regularity inequality for M since over complex numbers one usually
considers M( 𝑓 , 𝜁) for a zero 𝜁 of f (or a point nearby).

Theorem 3.5. Let 𝑓 ∈ HC
𝒅
[𝑞] and 𝜁 ∈ P𝑛. The following holds:

◦ 1st Lipschitz property: The maps

HC
𝒅
[𝑞] → [0,∞)
𝑔 ↦→ ‖𝑔 ‖C∞

M(𝑔,𝜁 )
and

HC
𝒅
[𝑞] → [0,∞)
𝑔 ↦→ ‖𝑔 ‖C∞

M(𝑔)

are 1-Lipschitz with respect to the complex 𝐿∞-norm. In particular,

M( 𝑓 , 𝜁) ≥ 1 and M( 𝑓 ) ≥ 1.

◦ 2nd Lipschitz property: The map

P
𝑛 → [0, 1]

𝜂 ↦→ 1
M( 𝑓 , 𝜂)

is D-Lipschitz with respect to the geodesic distance distP on P𝑛.
◦ Higher derivative estimate: We have

𝛾( 𝑓 , 𝜁) ≤ 1
2
(D − 1)M( 𝑓 , 𝜁).

We finish with the following proposition, which combines the 1st and 2nd Lipschitz properties of
M, as it will play a fundamental role in our analysis of linear homotopy in Section 5. We note that this
proposition is to M what [14, Proposition 16.55] is to 𝜇norm.

Proposition 3.6. Let 𝑓 , 𝑓 ∈ HC
𝒅
[𝑞], 𝜁, 𝜁 ∈ P𝑛 and 𝜀 ∈ (0, 1). If

M( 𝑓 , 𝜁)max
{

2‖ 𝑓 − 𝑓 ‖R∞
‖ 𝑓 ‖C∞

,D distP(𝜁, 𝜁)
}
≤ 𝜀

4
,

then

1
1 + 𝜀M( 𝑓 , 𝜁) ≤ M

(
𝑓 , 𝜁

)
≤ (1 + 𝜀)M( 𝑓 , 𝜁).

Proof. Note that$$$$$ 1
M( 𝑓 , 𝜁) −

1
M

(
𝑓 , 𝜁

) $$$$$ ≤
$$$$$ 1
M( 𝑓 , 𝜁) −

1
M

(
𝑓 , 𝜁

) $$$$$ +
$$$$$ 1
M

(
𝑓 , 𝜁

) − 1
M

(
𝑓 , 𝜁

) $$$$$.
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For the first term in the sum, we have$$$$$ 1
M( 𝑓 , 𝜁) −

1
M

(
𝑓 , 𝜁

) $$$$$ =
$$$$$$$ 1

M
(

𝑓

‖ 𝑓 ‖C∞
, 𝜁

) − 1

M
(

𝑓

‖ 𝑓 ‖C∞
, 𝜁

)
$$$$$$$ ≤

���� 𝑓

‖ 𝑓 ‖C∞
− 𝑓

‖ 𝑓 ‖C∞

����C
∞

by the 1st Lipschitz property of M (Theorem 3.5). Now,���� 𝑓

‖ 𝑓 ‖C∞
− 𝑓

‖ 𝑓 ‖C∞

����C
∞
≤

���� 𝑓

‖ 𝑓 ‖C∞
− 𝑓

‖ 𝑓 ‖C∞

����C
∞
+
���� 𝑓

‖ 𝑓 ‖C∞
− 𝑓

‖ 𝑓 ‖C∞

����C
∞
≤

2‖ 𝑓 − 𝑓 ‖C∞
‖ 𝑓 ‖C∞

.

For the second term, we have$$$$$ 1
M

(
𝑓 , 𝜁

) $$$$$ +
$$$$$ 1
M

(
𝑓 , 𝜁

) − 1
M

(
𝑓 , 𝜁

) $$$$$ ≤ D distP (𝜁, 𝜁)

by the 2nd Lipschitz property of M (Theorem 3.5).
Hence, we have $$$$$ 1

M( 𝑓 , 𝜁) −
1

M
(
𝑓 , 𝜁

) $$$$$ ≤ 2‖ 𝑓 − 𝑓 ‖C∞
‖ 𝑓 ‖C∞

+ D distP (𝜁, 𝜁).

By assumption, after multiplying by M( 𝑓 , 𝜁), we have$$$$$1 − M( 𝑓 , 𝜁)
M

(
𝑓 , 𝜁

) $$$$$ ≤ 𝜀

2

so, from

1 − M( 𝑓 , 𝜁)
M

(
𝑓 , 𝜁

) ≤ 𝜀

2
and

M( 𝑓 , 𝜁)
M

(
𝑓 , 𝜁

) − 1 ≤ 𝜀

2
,

we get

1
1 + 𝜀

2
M( 𝑓 , 𝜁) ≤ M

(
𝑓 , 𝜁

)
≤ 1

1 − 𝜀
2

M( 𝑓 , 𝜁).

Since 𝜀 < 1, the desired inequalities follow. �

4. Numerical algorithms in real algebraic geometry

There is a growing literature on numerical algorithms that addresses basic computational tasks in real
algebraic geometry, such as counting real zeros [25, 26, 27], computing homology of algebraic [28]
and semialgebraic sets [15, 16, 17], and meshing real curves and surfaces [49, 23]. These works rely on
condition numbers to control precision and estimate computational complexity.

In this section, we show how the complexity estimates in these works are improved by using the real
𝐿∞-norm in the algorithm’s design. These improvements rely on three observations:

1. The only properties of the real condition number 𝜅 that are used in the complexity analyses are those
stated in Theorem 3.2: the regularity inequality, the 1st and 2nd Lipschitz properties and the higher
derivative estimate. As these properties hold as well for K, an almost identical condition-based cost
analysis can be derived when we pass from the Weyl norm to the real 𝐿∞-norm and from 𝜅 to K. We
showcase this in Section 4.1 and Section 4.2.
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2. When we consider random input models, the gains in the complexity estimates become more evident.
In Section 4.3, we show that the ratio of the new K to 𝜅 is typically of the order of

√
𝑛/
√
𝑁 for a

random polynomial system. Since 𝑁 ∼ 𝑛𝑑 for 𝑛 > 𝑑 and 𝑁 ∼ 𝑑𝑛 for 𝑑 > 𝑛, this yields a significant
reduction in the complexity estimates.

3. Computing the Weyl norm is cheaper than computing the real 𝐿∞-norm, but this does not affect
the overall complexity: We only compute the 𝐿∞-norm once, and the cost of this computation is
dominated by that of the remaining steps.

In what follows, we will focus on algorithms dealing with real algebraic sets. The algorithms we
have in mind are the ones in [25, 26, 27, 28] and the Plantinga-Vegter algorithm [49] as described and
analysed in [24] (compare to [23]). Our condition number K as defined in the preceding section will
improve the overall computational complexity of these algorithms. Similar results can be obtained for
the algorithms dealing with semialgebraic sets in [15, 16, 17] (compare to [55]) using natural extensions
K and K∗ of the condition numbers 𝜅 and 𝜅∗ used in these papers.

4.1. A grid-based algorithm and its condition-based complexity

A grid-based algorithm is a subdivision-based method that constructs a grid to discretise the original
problem and solves the latter by working on the grid points only (selecting and finding proximity
relations between its points). The algorithms in [25, 26, 27], [28] and [15, 16, 17] (compare to [55]) are
grid-based. Their basic structure is (simplifying to the extreme) the following:

1. Estimate the condition number of the problem (with a sequence of grids of increasing fineness).
2. Create an extra grid (if necessary) whose mesh is determined by the condition number.
3. Select points in the grid, and use them to obtain a solution to the problem.

In general, grid-based algorithms have complexity Ω(D𝑛). This fact allows us to estimate the norm
‖ 𝑓 ‖R∞ of the data f without affecting the overall complexity of the algorithms. Moreover, the fact that K
is smaller than 𝜅 results in a cost reduction.

In this subsection, we focus on an algorithm for the computation of the Betti numbers of a spherical
algebraic set. This covers the case of counting zeros of a square polynomial system treated in [25, 26, 27]
and the computation of the Betti numbers of a projective real variety [28]. For simplicity of exposition,
we omit some computational aspects: 1) our presentation of the algorithms follows the construction-
selection paradigm of [15, 16, 17] instead of the inclusion-exclusion paradigm of [25, 26, 27, 28]. This
makes the exposition of the algorithms easier without compromising their computational complexity. 2)
We focus on Betti numbers to avoid describing the more involved computation of torsion coefficients in
the homology groups. 3) We deal with neither parallelisation nor finite precision. The interested reader
can find details about these in the cited references.

The backbone of existing grid-based algorithms in numerical real algebraic geometry [25, 26, 27,
28, 15, 16, 17] is an effective construction of spherical nets. The basic construction was done originally
in [25] and is based on projecting the uniform grid in the boundary of a unit cube onto the unit sphere.

Recall that a (spherical) 𝛿-net is a finite subset G ⊂ S𝑛 such that for all 𝑥 ∈ S𝑛, distS (𝑥, G) < 𝛿. We
will omit the term ‘spherical’ as all nets we consider are so.

Proposition 4.1. There is an algorithm GRID that on input (𝑛, 𝑘) ∈ N × N, outputs a 2−𝑘 -net G𝑘 ⊂ S𝑛
with

|G𝑘 | = O
(
2𝑛 log 𝑛+𝑛𝑘

)
.

The cost of this algorithm is O
(
2𝑛 log 𝑛+𝑛𝑘 ) .

Remark 4.2. The grid construction in Proposition 4.1, which occurs in [25, 26, 27, 28, 15, 16, 17],
is not optimal. This is due to the 2𝑛 log 𝑛 factor in the estimates, which can be decreased to 2O (𝑛) . An
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algorithm doing this – that is, constructing a spherical 2−𝑘 -net of size 2O (𝑛)2𝑘 (𝑛+1) in 2O (𝑛)2𝑘 (𝑛+1) -
time – is given in [2, Theorem 1.9(1)]. We use the suboptimal result of Proposition 4.1 to focus on the
effect of just changing the norm when comparing the old and new versions of the algorithms. But we
observe here that by using the nets in [2], one can remove the log(𝑛) factors in the exponents.

4.1.1. Computation of ‖ ‖R∞
The following is an easy consequence of Kellogg’s theorem.

Proposition 4.3. Let 𝑓 ∈ HR
𝒅
[𝑞] and G ⊂ S𝑛 be a 𝛿-net. If D𝛿 <

√
2, then

max
𝑥∈G

‖ 𝑓 (𝑥)‖∞ ≤ ‖ 𝑓 ‖R∞ ≤ 1
1 − D2

2 𝛿2
max
𝑥∈G

‖ 𝑓 (𝑥)‖∞.

Proof. We only need to show the right-hand inequality, the other being trivial. Without loss of generality,
assume that 𝑞 = 1: that is, f is a homogeneous polynomial of degree D.

Let 𝑥∗ be the maximum of | 𝑓 | on S𝑛, 𝑥 ∈ G such that distS (𝑥∗, 𝑥) ≤ 𝛿 and [0, 1] 
 𝑡 ↦→ 𝑥𝑡 the
geodesic on S𝑛 going from 𝑥∗ to x with constant speed. Then for the function 𝑡 ↦→ 𝑀 (𝑡) := 𝑓 (𝑥𝑡 ), we
have that |𝑀 (1) | ≤ |𝑀 (0) | + |𝑀 ′(0) | + max𝑠∈[0,1] 𝑀 ′′ (𝑠)

2 by Taylor’s theorem. Furthermore, |𝑀 (0) | =
| 𝑓 (𝑥∗) | = ‖ 𝑓 ‖R∞, |𝑀 (1) | = | 𝑓 (𝑥) | and 𝑀 ′(0) = 0. The latter is because 𝑥∗ is an extremal point of f and
so of M. Now

𝑀 ′′(𝑡) = D2
𝑥𝑡 𝑓 ( �𝑥𝑡 , �𝑥𝑡 ) − D 𝑓 (𝑥𝑡 )distS (𝑥∗, 𝑥)2,

since �𝑥𝑡 = −distS (𝑥∗, 𝑥)2𝑥𝑡 , as 𝑥𝑡 is a geodesic on S𝑛 of constant speed distS(𝑥∗, 𝑥) and D𝑥𝑡 𝑓 (𝑥𝑡 ) =
D 𝑓 (𝑥𝑡 ) by Euler’s formula in equation (2.4). Then by Corollary 2.20,

max
𝑠∈[0,1]

|𝑀 ′′(𝑠) |
2

≤
(
D
2

)
‖ 𝑓 ‖R∞ +

D
2
‖ 𝑓 ‖R∞ =

D2

2
‖ 𝑓 ‖R∞.

Thus ‖ 𝑓 ‖R∞ ≤ | 𝑓 (𝑥) | + D2

2 ‖ 𝑓 ‖
R
∞𝛿

2, and the desired inequality follows. �

Remark 4.4. Proposition 4.3 is a slight improvement of [33, Lemma 2.5].

Proposition 4.3 suggests the following algorithm.

Algorithm 4.1: NormApproxR
Input : 𝑓 ∈ HR

𝒅
[𝑞], 𝑘 ∈ N

G ← Grid(𝑛, �(𝑘 − 1)/2 + log D�)
𝑡 ←

(
1 − 2−𝑘

)−1 max{‖ 𝑓 (𝑥)‖∞ | 𝑥 ∈ G}

Output : 𝑡 ∈ [0,∞)
Postcondition:

(
1 − 2−𝑘

)
𝑡 ≤ ‖ 𝑓 ‖R∞ ≤ 𝑡

Proposition 4.5. Algorithm NormApproxR is correct. On input ( 𝑓 , 𝑘) ∈ HR
𝒅
[𝑞] ×N, its cost is bounded

by

O
(
2𝑛 log 𝑛D𝑛2

(𝑘+1)𝑛
2 𝑁

)
.

Proof. This is a direct consequence of Propositions 4.1 and 4.3 and the fact that f can be evaluated at
𝑥 ∈ S𝑛 with O(𝑁) arithmetic operations (see [14, Lemma 16.31]). �
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Remark 4.6. The ideas here can also be applied to compute ‖ 𝑓 ‖C∞.

4.1.2. Estimation of K
In many grid-based algorithms, the estimation of condition numbers is done implicitly along the way;
this does not affect the overall computational cost, and it makes for an easier understanding of these
algorithms. The next proposition is the core of the estimation of K. Note that the mesh of the grid needed
to estimate K depends on K itself.

Proposition 4.7. Let 𝑓 ∈ HR
𝒅
[𝑞] and G ⊂ S𝑛 be a 𝛿-net. If

𝛿 D max
𝑥∈G

K( 𝑓 , 𝑥) < 1,

then

max
𝑥∈G

K( 𝑓 , 𝑥) ≤ K( 𝑓 ) ≤ 1
1 − 𝛿 D max𝑥∈G K( 𝑓 , 𝑥) max

𝑥∈G
K( 𝑓 , 𝑥).

Proof. We only have to prove the right-hand side inequality since the other one is obvious. Let 𝑥∗ ∈ S𝑛
such that K( 𝑓 ) = K( 𝑓 , 𝑥∗) and 𝑥 ∈ G such that distS ( 𝑓 , 𝑥) ≤ 𝛿. Then by the 2nd Lipschitz property
(Theorem 3.2), we have

1
K( 𝑓 , 𝑥) −

1
K( 𝑓 , 𝑥∗)

≤ D distS (𝑥∗, 𝑥) ≤ D 𝛿.

Hence 1/K( 𝑓 , 𝑥∗) ≤ (1 − 𝛿 D K( 𝑓 , 𝑥))/K( 𝑓 , 𝑥), and the desired inequality follows from the
hypothesis. �

Proposition 4.7 suggests the following algorithm, which involves only one 𝐿∞-norm computation.

Algorithm 4.2: K-Estimate
Input : 𝑓 ∈ H𝒅 [𝑞], 𝑘 ∈ N, 𝑏 ∈ N ∪ {∞}

𝑡 ← NormApproxR( 𝑓 , 𝑘 + 1)
ℓ ← 0
repeat

ℓ ← ℓ + 1
𝐾 ← max{√𝑞𝑡/max{‖ 𝑓 (𝑥)‖, ‖D𝑥 𝑓

†Δ ‖−1} | 𝑥 ∈ Grid(𝑛, ℓ)}
until D𝐾2−ℓ ≤ 2−(𝑘+1) or 2𝑏 ≤ 𝐾

if 2𝑏 ≤ 𝐾 then
return fail

else
K ← (1 − 2−𝑘 )−1𝐾
return K

Output : fail or K ∈ (0,∞)
Postcondition: 2𝑏 ≤ K( 𝑓 ), if fail;

(1 − 2−𝑘 )K( 𝑓 ) ≤ K ≤ K( 𝑓 ), otherwise

Proposition 4.8. Algorithm K-Estimate is correct. On input ( 𝑓 , 𝑘, 𝑏) ∈ HR
𝒅
[𝑞] × N × (N ∪ {∞}), its

cost is bounded by

2O (𝑛(𝑘+log 𝑛))𝐷𝑛𝑁 min{K( 𝑓 )𝑛, 2𝑛𝑏}.
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Proof. The correctness follows from Propositions 4.5 and 4.7 and (1 − 2−(𝑘+1) )2 > 1 − 2−𝑘 .
The cost of the first line of the algorithm is bounded by Proposition 4.5. The number of evaluations of

√
𝑞𝑡/max{‖ 𝑓 (𝑥)‖, ‖D𝑥 𝑓

†Δ ‖−1}

in the ℓth iteration of the loop is given by Proposition 4.1. We need O(𝑁 + 𝑛3) operations for each such
evaluation, by [14, Proposition 16.32].

In this way, if the loop runs ℓ0 iterations, it performs a total of

O(2𝑛 log 𝑛 (𝐷𝑛2
(𝑘+2)𝑛

2 𝑁 + 2𝑛(ℓ0+1) (𝑁 + 𝑛3)))

operations.
If the algorithm outputs K, then ℓ0 = �𝑘 + log D + logK − log(1 − 2−𝑘 )�. Moreover, from the

correctness, logK − log(1 − 2−𝑘 ) ≤ log K( 𝑓 ), so ℓ0 ≤ 𝑘 + 1 + log D + log K( 𝑓 ).
If the algorithm outputs fail, then the first criterion had to fail, so as long as the second criterion fails

too, we have

ℓ < 𝑘 + log D + 𝑏.

So, in this case, ℓ0 ≤ 𝑘 + 1 + log D + log 𝑏.
We conclude from the bounds above and some straightforward computations. �

By setting k to 7 and 𝑏 = ∞, we have the following important corollary.

Corollary 4.9. There is an algorithm K-Estimate∗ that on input ( 𝑓 ) ∈ HR
𝒅
[𝑞] computes K ∈ [1,∞)

such that

0.99K ≤ K( 𝑓 ) ≤ K.

This algorithm halts if and only if K( 𝑓 ) < ∞, and its cost is bounded by

2O (𝑛 log 𝑛)𝐷𝑛𝑁K( 𝑓 )𝑛.

4.1.3. Complexity analysis of grid-based algorithms using K
To get the grid method to work, we need two ingredients: a method for selecting the points in the grid
near the geometric object of interest and a way of controlling distances between these two sets.

Theorem 4.10 (Construction-selection). Let 𝑓 ∈ HR
𝒅
[𝑞] and G ⊆ S𝑛 be a 𝛿-net. If

4D2K( 𝑓 )2𝛿 < 1

and 𝑄 ∈ R is such that 0.99𝑄 ≤ ‖ 𝑓 ‖R∞ ≤ 𝑄, then

dist𝐻
({
𝑥 ∈ G | ‖ 𝑓 (𝑥)‖√

𝑞𝑄
< D 𝛿

}
,ZS ( 𝑓 )

)
< 2DK( 𝑓 )𝛿,

where dist𝐻 (𝐴, 𝐵) := max{sup{dist(𝑎, 𝐵) | 𝑎 ∈ 𝐴}, sup{dist(𝑏, 𝐴) | 𝑏 ∈ 𝐵}} is the Hausdorff distance.

Following [35], recall that the medial axis Δ𝑋 of a closed set 𝑋 ⊂ R𝑛 is the set

Δ𝑋 := {𝑝 ∈ R𝑛 | #{𝑥 ∈ 𝑋 | dist(𝑝, 𝑥) = dist(𝑝, 𝑋)} ≥ 2}

consisting of those points for which there is more than one nearest point in X and that the reach 𝜏(𝑋)
of X is the quantity
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𝜏(𝑋) := dist(𝑋,Δ𝑋 )

measuring the size of the neighbourhood of X within which the nearest point projection is well-defined.
If X is finite, then Δ𝑋 is the union of the boundaries of the cells of the Voronoi diagram of X, and 𝜏(𝑋)
is half the minimum distance between two distinct points of X. Thus, when ZS ( 𝑓 ) is zero-dimensional,
2𝜏(ZS ( 𝑓 )) is the separation of the zeros of f in the sphere.

Theorem 4.11. Let 𝑓 ∈ HR
𝒅
[𝑞]. Then

𝜏(ZS ( 𝑓 )) ≥
1

7DK( 𝑓 ) .

Proof of Theorem 4.10. Let 𝑥0 ∈ ZS( 𝑓 ). Then there is some 𝑥1 ∈ G such that distS (𝑥0, 𝑥1) ≤ 𝛿. Let
[0, 1] 
 𝑡 ↦→ 𝑥𝑡 be the geodesic joining them. By Taylor’s theorem,

‖ 𝑓 (𝑥1)‖ ≤ ‖ 𝑓 (𝑥0)‖ + 𝛿 sup
𝑠∈[0,1]

‖D𝑥 𝑓 ‖,

so, by Kellogg’s theorem (Corollary 2.14) and 𝑓 (𝑥0) = 0, we have that ‖ 𝑓 (𝑥1) ‖√
𝑞 ‖ 𝑓 ‖R∞

≤ D 𝛿. Hence ‖ 𝑓 (𝑥1) ‖√
𝑞𝑄 ≤

D 𝛿 and

dist
(
𝑥0,

{
𝑥 ∈ G | ‖ 𝑓 (𝑥)‖√

𝑞𝑄
≤ D 𝛿

})
≤ dist(𝑥0, 𝑥1) ≤ distS (𝑥0, 𝑥1) ≤ 𝛿.

Now let 𝑥2 ∈ G be such that ‖ 𝑓 (𝑥2) ‖√
𝑞𝑄 < D 𝛿. Then

‖ 𝑓 (𝑥2)‖√
𝑞‖ 𝑓 ‖R∞

< 1.02D 𝛿 ≤ 1
4DK( 𝑓 )2

<
1

K( 𝑓 , 𝑥2)
, (4.1)

the second inequality by our hypothesis. Because of the regularity inequality (Theorem 3.2), we must
then have √𝑞‖ 𝑓 ‖R∞‖D𝑥2 𝑓

†Δ1/2‖ ≤ K( 𝑓 , 𝑥2). It follows that

‖D𝑥2 𝑓
† 𝑓 (𝑥2)‖𝛾( 𝑓 , 𝑥2) <

K( 𝑓 , 𝑥2)√
𝑞‖ 𝑓 ‖R∞

𝛾( 𝑓 , 𝑥2) ≤
1
2

DK( 𝑓 )2 ‖ 𝑓 (𝑥2)‖√
𝑞‖ 𝑓 ‖R∞

<
1.02

2
D2K( 𝑓 )2𝛿 <

1.02
8

< 0.13071 . . .

where we used the higher derivative estimate (Theorem 3.2) in the first line and equation (4.1) and the
hypothesis in the second. This means Smale’s 𝛼-criterion holds for 𝑥2 and 𝑓 |T𝑥0S

𝑛 by [29, Théorème
128]. Hence there is 𝑥3 ∈ T𝑥2S

𝑛 such that 𝑓 (𝑥3) = 0 and

dist(𝑥2, 𝑥3) ≤ 1.64‖D𝑥2 𝑓
† 𝑓 (𝑥2)‖ ≤ 1.64 · 1.02 DK( 𝑓 )𝛿 < 2DK( 𝑓 )𝛿.

Since dist(𝑥2, 𝑥3/‖𝑥3‖) = arctan dist(𝑥2, 𝑥3) ≤ dist(𝑥2, 𝑥3), we are done. �

Remark 4.12. The proof also shows the convergence of Newton’s method associated with 𝑓 |T𝑥S𝑛 for
every 𝑥 ∈ G such that ‖ 𝑓 (𝑥) ‖√

𝑞 ‖ 𝑓 ‖R∞
≤ D 𝛿. Hence, we can refine our approximations if needed.

Sketch of proof of Theorem 4.11. The proof is very similar to the one of [15, Theorem 4.12]. By [15,
Lemma 2.7] and [15, Theorem 3.3], we have that

𝜏(ZS ( 𝑓 )) ≥ min
{
1,

1
14 max{𝛾( 𝑓 , 𝑥) | 𝑥 ∈ ZS ( 𝑓 )}

}
.

Hence, by the higher derivative estimate (Theorem 3.2), the desired bound follows. �
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The following theorem is a variant of the so-called Niyogi-Smale-Weinberger theorem [47, Proposi-
tion 7.1].
Theorem 4.13. Let 𝑓 ∈ HR

𝒅
[𝑞], G ⊂ S𝑛 be a 𝛿-net and 𝑄 ∈ R be such that 0.99𝑄 ≤ ‖ 𝑓 ‖R∞ ≤ 𝑄. If

90D2K( 𝑓 )2𝛿 < 1, then for every

𝜀 ∈
(
6DK( 𝑓 )𝛿, 1

14DK( 𝑓 )

)
,

the sets ZS ( 𝑓 ) and ⋃{
𝐵(𝑥, 𝜀) | 𝑥 ∈ G, ‖ 𝑓 (𝑥)‖√

𝑞𝑄
< D𝛿

}
are homotopically equivalent. In particular, they have the same Betti numbers.
Proof. This is just [15, Theorem 2.8] combined with Theorems 4.10 and 4.11. �

We can now describe the algorithm. We will call a black box Betti for computing the Betti numbers
of a union of balls. This is a standard procedure in topological data analysis [32].

Algorithm 4.3: PolyBetti∞
Input : 𝑓 ∈ H𝒅 [𝑞]
Precondition : 𝑞 ≤ 𝑛, 𝑓 has no singular zeros (i.e. K( 𝑓 ) < ∞)

𝑄 ← NormApproxR( 𝑓 , 7)
K ← K-Estimate∗ ( 𝑓 )
ℓ ← 7 + �2 log D + 2 logK�
G ← Grid(𝑛, ℓ)
X ← {𝑥 ∈ G | ‖ 𝑓 (𝑥)‖ < √𝑞 D𝑄2−ℓ }
𝜀 ← 3/(50DK)
(𝛽0, . . . , 𝛽𝑛) ← Betti(X , 𝜀)
return 𝛽0, . . . , 𝛽𝑛

Output : 𝛽0, . . . , 𝛽𝑛 ∈ N
Postcondition: 𝛽0, . . . , 𝛽𝑛 are the Betti numbers of ZS ( 𝑓 )

Proposition 4.14. Algorithm PolyBetti∞ is correct, and its cost is bounded by

2O (𝑛2 log 𝑛)𝐷10𝑛2
K( 𝑓 )10𝑛2

.

Proof. Correctness is a consequence of Theorem 4.13 and the fact that the computed Q satisfies
0.99𝑄 ≤ ‖ 𝑓 ‖R∞ ≤ 𝑄 by Proposition 4.5.

For the complexity, we apply Proposition 4.3 for the first line, Corollary 4.9 for the second line and
Proposition 4.1 for the fourth and fifth lines. We know that Betti has cost O

(
2O (𝑛 log 𝑛) |X |5𝑛

)
(see [28,

Section 5] for example) and that |X | = O(2𝑛 log 𝑛D2𝑛K( 𝑓 )2𝑛), by Proposition 4.1. Note that we have
eliminated N from the bounds. We have done so using the fact that as 𝑞 ≤ 𝑛 (by the precondition of the
input), 𝑁 ≤ 2𝑛 log 𝑛D𝑛.

We note that our bound uses K ≤ 1.02K( 𝑓 ) to get the cost dependent on K( 𝑓 ) instead of on the
computed estimate K. �

The complexity estimate in Proposition 4.14 does not differ much from those in other grid-based
algorithms. We will see in Section 4.3, however, that the occurrence of K in the place of 𝜅 leads to
substantial improvements when one goes beyond the worst-case framework and considers random input
models.
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4.2. Complexity of the Plantinga-Vegter algorithm

The ideas above can also be applied to the Plantinga-Vegter algorithm [49]. In a recent work [24]
(compare to [23]), we performed an extensive analysis of this algorithm, including details for finite
precision arithmetic. So we will be brief here, referring the reader to [24] for details, and will only focus
on the (exact) interval version of the algorithm.

4.2.1. The Plantinga-Vegter subdivision algorithm
Let P𝑑 be the space of polynomials in 𝑋1, . . . , 𝑋𝑛 of degree at most d. The Plantinga-Vegter algorithm
[49]2 is a subdivision-based algorithm for obtaining a piecewise linear approximation of the zero set
of 𝑓 ∈ P𝑑 inside [−𝑎, 𝑎]𝑛. As customary, we will focus on the complexity analysis of the subdivision
routine only. The idea is to iteratively subdivide some boxes – that is, sets of the form 𝐵 = 𝑚(𝐵) +
[−𝑤(𝐵)/2, 𝑤(𝐵)/2]𝑛 (here 𝑚(𝐵) ∈ R𝑛 is the centre of B and 𝑤(𝐵) > 0 is its width) – in [−𝑎, 𝑎]𝑛 until
every box B in the subdivision satisfies the following condition:

𝐶 𝑓 (𝐵) : either 0 ∉ 𝑓 (𝐵) or 0 ∉ 〈∇ 𝑓 (𝐵),∇ 𝑓 (𝐵)〉,

where 〈 , 〉 is the standard inner product and ∇ 𝑓 is the gradient vector of f. Once this criterion is
satisfied by all boxes in the subdivision, the Plantinga-Vegter algorithm returns a topologically accurate
approximation of the zero set of f in the region [𝑎,−𝑎]𝑛 and halts (see [49] (𝑛 ≤ 3) and [37] (arbitrary n)
for details on how this is done).

For 𝑓 ∈ P𝑑 , we define

‖ 𝑓 ‖∞ := max{| 𝑓 h(𝑥) | | 𝑥 ∈ S𝑛} = ‖ 𝑓 h‖R∞,

where 𝑓 h ∈ H𝑑 [1] is the homogenisation of f. Taking the maps (2.3), (2.4), (2.5) in [24] and substituting
on them the Weyl norm by the real 𝐿∞-norm, we get

ℎ(𝑥) = 1
‖ 𝑓 ‖∞(1 + ‖𝑥‖2) (𝑑−1)/2 and ℎ′(𝑥) = 1

𝑑‖ 𝑓 ‖∞(1 + ‖𝑥‖2)𝑑/2−1 (4.2)

together with

𝑓̂ : 𝑥 ↦→ ℎ(𝑥) 𝑓 (𝑥) = 𝑓 (𝑥)
‖ 𝑓 ‖∞(1 + ‖𝑥‖2) (𝑑−1)/2 (4.3)

and

∇̂ 𝑓 : 𝑥 ↦→ ℎ′(𝑥)D 𝑓 (𝑥) = ∇ 𝑓 (𝑥)
𝑑‖ 𝑓 ‖∞(1 + ‖𝑥‖2)𝑑/2−1 . (4.4)

One can use these maps to produce interval approximations as we do in [24]. For 𝑋 ⊆ R𝑚, we denote
by �𝑋 the set of boxes contained in X. Recall that an interval approximation of 𝑓 : R𝑛 → R

𝑞 is a
function � 𝑓 : �R𝑛 → �R𝑞 that maps boxes in R𝑛 to boxes in R𝑞 in such a way that 𝑓 (𝐵) ⊆ � 𝑓 (𝐵).
Proposition 4.15. Let 𝑓 ∈ P𝑑 . Then

�[ℎ 𝑓 ] : 𝐵 ↦→ 𝑓̂ (𝑚(𝐵)) + (1 + 𝑑)
√
𝑛

[
−𝑤(𝐵)

2
,
𝑤(𝐵)

2

]
is an interval approximation of ℎ 𝑓 and

�[‖ℎ′D 𝑓 ‖] : 𝐵 ↦→ ‖∇̂ 𝑓 (𝑚(𝐵))‖ + 𝑑
√
𝑛

[
−𝑤(𝐵)

2
,
𝑤(𝐵)

2

]
is an interval approximation of ‖ℎ′D 𝑓 ‖.

2The original algorithm [49] only dealt with dimensions two and three. For the extension to dimensions four or higher, see [37].

https://doi.org/10.1017/fms.2022.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.89


Forum of Mathematics, Sigma 25

Sketch of proof. Using the bounds from Kellogg’s theorem (Theorem 2.13) and its corollaries, we can
easily deduce (as is done in the proof of Theorem 3.2) that the maps

𝑔/‖𝑔‖R∞ : S𝑛 → [−1, 1] and D𝑔(𝑣)/(𝑑‖𝑔‖R∞‖𝑣‖) : S𝑛 → [−1, 1]

are d- and (𝑑 − 1)-Lipschitz (with respect to the geodesic distance) for 𝑔 ∈ HR𝑑 [1]. �

We now argue as in [24, Section 4], but using these Lipschitz properties, to prove that 𝑓 and ∇̂ 𝑓

are (1 + 𝑑)- and d-Lipschitz, respectively. For the latter, we use the fact that for 𝑣 ∈ R𝑛, D𝑋 𝑓 h
(
0
𝑣

)
=

(〈∇ 𝑓 , 𝑣〉)hand that ‖∇̂ 𝑓 ‖ is d-Lipschitz if 〈∇̂ 𝑓 , 𝑣〉 is so for every 𝑣 ∈ S𝑛−1.

Using the interval approximations and their Lipschitz properties in Proposition 4.15, we can rewrite
the condition 𝐶 𝑓 (𝐵). We only need to use [24, Lemma 4.2] for the second clause of the condition.

Theorem 4.16. Let 𝐵 ∈ �R𝑛. If the condition

𝐶�𝑓 (𝐵) :
$$$ 𝑓̂ (𝑚(𝐵))$$$ > 2𝑑

√
𝑛𝑤(𝐵) or

���∇̂ 𝑓 (𝑚(𝐵))
��� > 2

√
2𝑑
√
𝑛𝑤(𝐵)

is satisfied, then 𝐶 𝑓 (𝐵) is true.

The subdivision procedure of the Plantinga-Vegter algorithm thus takes the following form, where
StandardSubdivision is a procedure that, given a box, divides it into 2𝑛 equal boxes. Recall that
�[−𝑎, 𝑎]𝑛 is the set of boxes within [−𝑎, 𝑎]𝑛.

Algorithm 4.4: PV-Interval∞
Input : 𝑓 ∈ P𝑑

𝑎 ∈ (0,∞)
Precondition : Z ( 𝑓 ) is smooth inside [−𝑎, 𝑎]𝑛

𝑄 ← NormApproxR( 𝑓 , 7)
S̃ ← {[−𝑎, 𝑎]𝑛}
S ← ∅
repeat

Take 𝐵 in S̃
S̃ ← S̃ \ {𝐵}
if | 𝑓 (𝑚(𝐵)) | > 2𝑑

√
𝑛𝑤(𝐵)𝑄(1 + ‖𝑚(𝐵)‖2) 𝑑−1

2 then
S ← S ∪ {𝐵}

else if ‖∇ 𝑓 (𝑚(𝐵))‖ > 2
√

2𝑑
√
𝑛𝑤(𝐵)𝑄(1 + ‖𝑚(𝐵)‖2) 𝑑2 −1 then

S ← S ∪ {𝐵}
else

S̃ ← S̃ ∪ StandardSubdivision(𝐵)
until S̃ = ∅
return S

Output : Subdivision S ⊆ �[−𝑎, 𝑎]𝑛 of [−𝑎, 𝑎]𝑛
Postcondition: For all 𝐵 ∈ S , 𝐶 𝑓 (𝐵) is true

4.2.2. Complexity of PV-Interval∞
Without much effort, [24, Proposition 5.1] transforms into the following proposition. The essential step
is multiplying the inequalities in that proposition by ‖ 𝑓 h‖𝑊 /‖ 𝑓 ‖∞.
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Proposition 4.17. Let 𝑓 ∈ P𝑑 and 𝑥 ∈ R𝑛. Then either$$$ 𝑓̂ (𝑥)$$$ > 1
2
√

2𝑑 K( 𝑓 h,�(𝑥))
or

���∇̂ 𝑓 (𝑥)
��� > 1

2
√

2𝑑 K( 𝑓 h,�(𝑥))
,

where �(𝑥) = 1√
1+‖𝑥 ‖2

(
1
𝑥

)
∈ S𝑛.

With Proposition 4.17 and the Lipschitz properties shown for 𝑓 and ∇̂ 𝑓 , one can produce a local size
bound for 𝐶�𝑓 (𝐵). This is a function that, evaluated at a point x, gives a lower bound on the volume of
any possible box containing x and not satisfying the predicate 𝐶 ′

𝑓 (𝐵).

Theorem 4.18. The map

𝑥 ↦→ 1/
(
23/2𝑑

3
2
√
𝑛K( 𝑓 h,�(𝑥))

)𝑛
is a local size bound for 𝐶�𝑓 (of Theorem 4.16).

Then using the continuous amortisation of [20, 18, 19] (see [24, Theorem 6.1]), we conclude the
following, which takes into account the cost of calling NormApproxR (Proposition 4.3).

Theorem 4.19. The number of boxes in the final subdivision S of PV-Interval∞ on input ( 𝑓 , 𝑎) is at
most

𝑑
3
2 𝑛 max{1, 𝑎𝑛}2

1
2 𝑛 log 𝑛+11𝑛

E
𝔵∈[−𝑎,𝑎]𝑛

(
K( 𝑓 h,�(𝔵))𝑛

)
.

The number of arithmetic operations performed by PV-Interval∞ on input ( 𝑓 , 𝑎) is at most

O
(
𝑑

3
2 𝑛+1 max{1, 𝑎𝑛}2

1
2 𝑛 log 𝑛+11𝑛𝑁 E

𝔵∈[−𝑎,𝑎]𝑛

(
K( 𝑓 h,�(𝔵))𝑛

))
.

The condition-based estimates in Theorem 4.19 are very similar to those of [24, Theorem 6.3]. It is
important to observe that only one norm computation is performed by PV-Interval∞ (in its very first
step) and that the cost of this computation is already included in the cost bound in Theorem 4.19. We
will see in Section 4.3.3 that the occurrence of K in the place of 𝜅 results in significant improvements in
overall complexity when we consider average or smoothed analysis.

4.3. Probabilistic analysis of algorithms

In the preceding sections, we have shown that existing grid-based and subdivision-based algorithms that
use (in their design and/or analysis) 𝜅 can be modified to use K instead. Moreover, we have shown that
the condition-based complexity estimates in terms of K are similar to those in terms of 𝜅. In this section,
we will show that when we consider random inputs, in contrast, the cost (expected or in probability)
substantially decreases.

We first introduce the randomness model along with some useful probabilistic results. Then we prove
a general comparison result showing that when substituting 𝜅 by K, one can expect to reduce the size of
the condition number by a factor of

√
𝑁 . Finally, we apply these estimates to both PolyBetti and the

Plantinga-Vegter algorithm and highlight the complexity improvements.
For most algorithms in real algebraic geometry, condition-based estimates show a dependence on

either 𝜅𝑛 or K𝑛. When this occurs, the complexity estimates improve by a factor of the form 𝑁
𝑛
2 when

we pass from 𝜅 to K. The final complexity estimates thus change from having an exponent quadratic in
n to an exponent quasilinear in n.
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4.3.1. The randomness model: dobro random polynomials
Given a random variable 𝔵 ∈ R, we say that:

(i) 𝔵 is centred if E 𝔵 = 0.
(ii) 𝔵 is subgaussian if there is a constant 𝐾 > 0 such that for all 𝑝 ≥ 1,

(E |𝔵 |𝑝)
1
𝑝 ≤ 𝐾

√
𝑝.

The smallest K satisfying this condition is called the 𝜓2-norm of 𝔵 and is denoted ‖𝔵‖𝜓2 .
(iii) 𝔵 has the anti-concentration property with constant 𝜌 if for all 𝑢 ∈ R and 𝜀 > 0,

P(|𝔵 − 𝑢 | < 𝜀) ≤ 2𝜌𝜀.

Note that this is equivalent to 𝔵 having a density (with respect to the Lebesgue measure) bounded
by 𝜌.

We now extend to tuples the class of real random polynomials introduced in [23].
Definition 4.20. A dobro random polynomial tuple 𝔣 ∈ HR

𝒅
[𝑞] with parameters K and 𝜌 is a tuple of

random polynomials

���
∑
|𝛼 |=𝑑1

(
𝑑1
𝛼

) 1
2

𝔠1,𝛼𝑋
𝛼, . . . ,

∑
|𝛼 |=𝑑𝑞

(
𝑑𝑞
𝛼

) 1
2

𝔠𝑞,𝛼𝑋
𝛼���

such that the 𝔠𝑖,𝛼 are independent centred subgaussian random variables with 𝜓2-norm at most K and
anti-concentration property with constant 𝜌.
Remark 4.21. Probabilistic estimates for a dobro polynomial 𝔣 will depend on 𝐾𝜌. This product is
invariant under scalar multiplication of 𝔣 since 𝜆𝔣 is dobro with parameters |𝜆 |𝐾 and 𝜌/|𝜆 |. Moreover,
note that3 6𝐾𝜌 ≥ 1.
Example 4.22. A dobro random polynomial tuple 𝔣 ∈ HR

𝒅
[𝑞] such that the 𝔠𝛼 are are independent and

identically distributed normal random variables of mean zero and variance one is called a KSS (real)
polynomial tuple.4 In this case, we can take 𝐾𝜌 = 2/

√
𝜋.

Example 4.23. A dobro random polynomial tuple 𝔣 ∈ HR
𝒅
[𝑞] such that the 𝔠𝛼 are are independent and

identically distributed uniform random variables in [−1, 1] is a Weyl uniform (real) polynomial tuple.
In this case, we can take 𝐾𝜌 = 1/2.

We now state and prove several probabilistic results that will be used later.
Proposition 4.24 (Subgaussian tail bounds). Let 𝔵 ∈ R be a random variable.

1. If 𝔵 is subgaussian with 𝜓2-norm at most K, then for all 𝑡 > 0, P(|𝔵 | ≥ 𝑡) ≤ e1− 𝑡2
6𝐾2 .

2. If there are 𝐶 ≥ e and 𝐾 > 0 such that for all 𝑡 > 0, P(|𝔵 | ≥ 𝑡) ≤ 𝐶e−
𝑡2
𝐾2 , then 𝔵 is subgaussian with

𝜓2-norm at most 𝐾
(√

𝜋/2 +
√

2 ln𝐶
)
.

Proposition 4.25 (Hoeffding inequality). Let 𝔵 ∈ R𝑁 be a random vector such that its components 𝔵𝑖
are centred subgaussian random variables with 𝜓2-norm at most K and 𝑎 ∈ S𝑁−1. Then for all 𝑡 ≥ 0,

P𝔵 (|𝑎∗𝔵 | ≥ 𝑡) ≤ 2e−
𝑡2

11𝐾2 .

In particular, 𝑎∗𝔵 is a subgaussian random variable with 𝜓2-norm at most 5𝐾 .

3This follows from 2𝑡𝐾𝜌 ≥ P𝔵 ( |𝔵 | ≤ 𝐾𝑡) ≥ 1 − P𝔵 ( |𝔵 | > 𝐾𝑡) ≥ 1 − 2e−𝑡2/2 and optimising, where 𝔵 is subgaussian with
𝜓2-norm K and the anti-concentration property with constant 𝜌.

4In this definition, KSS refers to Kostlan-Shub-Smale. An alternative term is ‘Shub-Smale random polynomial tuple’, following
[4], but we use ‘KSS’ instead, as this is consistent with the use we have made of the term in the case of a single polynomial.
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Proposition 4.26 (Anti-concentration bound). Let 𝔵 ∈ R𝑁 be a random vector such that its components
𝔵𝑖 are independent random variables with anti-concentration property with constant 𝜌. Then for every
𝐴 ∈ R𝑘×𝑁 with rank k and measurable 𝑈 ⊆ R𝑘 ,

P𝔵 (𝐴𝔵 ∈ 𝑈) ≤
vol(𝑈) (

√
2𝜌)𝑘√

det(𝐴𝐴∗)
.

Proof of Proposition 4.24. This is just [58, Proposition 2.5.2] with improved constants.
For the first part, we give a proof since we don’t explicitly use the constants in the proof of [58,

Proposition 2.5.2]. Fix 𝜆 > 0. Then by Markov’s inequality and expanding the exponential as a power
series,

P(|𝔵 | ≥ 𝑡) = P
(
e𝜆

2𝔵2 ≥ e𝜆
2𝑡2

)
≤ e−𝜆

2𝑡2
∞∑
𝑝=0

𝜆2𝑝
E 𝔵 2𝑝

𝑝!
≤ e−𝜆

2𝑡2
∞∑
𝑝=0

(𝜆22𝑝𝐾2) 𝑝
𝑝!

.

Now, by setting the value of 𝜆 to 1√
6𝐾

, P(|𝔵 | ≥ 𝑡) ≤ e−
𝑡2

8𝐾2
∑∞

𝑝=0
(𝑝/3) 𝑝
𝑝! . The right-hand series is

convergent, and after adding the series numerically, we can see that
∑∞

𝑝=0
(𝑝/3) 𝑝
𝑝! = 2.625 . . . ≤ e, which

finishes the proof of the first part. Following the constants in the proof of [58, Proposition 2.5.2] directly
seems to give 4e � 10.8 in the denominator of the exponent instead of 6.

For the second, note that

E |𝔵 |𝑝 = 𝐾 𝑝 (2 ln𝐶)
𝑝
2 +

∫ ∞

0
𝑝𝑢𝑝−1e−

𝑢2
2𝐾 d𝑢,

which follows from

P(|𝔵 | > 𝑢) ≤
{

1 if 𝑢 ≤ 𝐾
√

2 ln𝐶

e−
𝑢2

2𝐾2 if 𝑢 ≥ 𝐾
√

2 ln𝐶,

dividing the integration domain into [0, 𝐾
√

2 ln𝐶] and [𝐾
√

2 ln𝐶,∞] and applying some straightfor-
ward calculations and bounds.

Now, applying the change of variables 𝑡 = 𝑢2

2𝐾 , we obtain∫ ∞

0
𝑝𝑢𝑝−1e−

𝑢2
2𝐾 d𝑢 = 𝑝𝐾 𝑝2

𝑝
2 −1Γ

( 𝑝
2

)
≤ 𝐾 𝑝

( 𝜋𝑝
2

) 𝑝
2
.

Hence

E |𝔵 |𝑝 ≤ 𝐾 𝑝

(
(2 ln𝐶)

𝑝
2 +

( 𝜋𝑝
2

) 𝑝
2
)
,

from which the second part follows. �

Proof of Proposition 4.25. This is a version of [58, Proposition 2.6.1]. Let us sketch a proof to see the
values of the chosen constants.

Let 𝔶 ∈ R be a centred random variable with 𝜓2-norm at most K. Arguing as in part ‘ii ⇒ iii’ of the
proof of [58, Proposition 2.5.2], we have that for all 𝜆 ∈ [−1/

√
2e, 1/

√
2e],

E e𝜆
2𝔶2 ≤ ee𝐾 2𝜆2

,
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using 𝑛! ≥
√

2𝜋(𝑛/𝑒)𝑛 and that for 𝑥 ∈ [−1/2, 1/2], we have 1 + 1√
2𝜋

𝑥2

1−𝑥2 ≤ e𝑥2/2. Then arguing as in
part ‘iii ⇒v’ of the proof of [58, Proposition 2.5.2], we get that for all 𝜆 ∈ R,

E e𝜆𝔶 ≤ ee𝐾 2𝜆2
. (4.5)

In this way, we have that

P(|𝑎∗𝔵 | ≥ 𝑡) ≤ 2P(𝑎∗𝔵 ≥ 𝑡) (symmetry)

= 2P(e𝑎∗𝔵 ≥ e𝑡)
≤ 2e−𝜆𝑡 E e𝜆𝑎

∗𝔵 (Markov’s inequality)

= 2e−𝜆𝑡
𝑁∏
𝑖=1
E e𝜆𝑎𝑖𝔵𝑖 (𝑎1𝔵1, . . . , 𝑎𝑁 𝔵𝑁 independent)

≤ 2e−𝜆𝑡
𝑁∏
𝑖=1

ee𝑎2
𝑖𝐾

2𝜆2 (4.5)

= 2e−𝜆𝑡+e𝐾 2𝜆2 (‖𝑎‖2 = 1).

Taking 𝜆 = 𝑡
2e𝐾 2 , we get the desired tail bound. The last claim immediately follows from

Proposition 4.24. �

Proof of Proposition 4.26. This is a rewriting of [51, Theorem 1.1] using [44] to get explicit constants.
This rewriting was first given in [56, Proposition 2.5]. We provide the argument for the sake of com-
pleteness.

By the SVD, we have 𝐴 = 𝑃Σ𝑄, where P is an isometry, Σ ∈ R𝑘×𝑘 a positive diagonal matrix and Q
an orthogonal projection. Hence

P𝔵 (𝐴𝔵 ∈ 𝑈) = P𝔵
(
𝑄𝔵 ∈ Σ−1𝑃∗𝑈

)
,

and since vol(Σ−1𝑃∗𝑈) = vol(𝑈)/detΣ = vol(𝑈)/
√

det(𝐴𝐴∗), we only have to prove the claim for the
case in which A is an orthogonal projection.

Now, by [51, Theorem 1.1] (see [44, Theorem 1.1] for getting the constant), we have that 𝐴𝔵 has
density bounded by

√
2𝜌. Thus P(𝐴𝔵 ∈ 𝑈) ≤ vol(𝑈) (

√
2𝜌)𝑘 , as we wanted to show. �

4.3.2. K vs. 𝜅: Measuring the effect of the 𝐿∞-norm on the grid method
The condition-based complexity estimates we obtained in this section essentially substitute the 𝜅 in the
cost estimates of the original algorithm by K. This way, the comparison between the two algorithms
reduces to estimate K/𝜅. The following proposition shows that, in turn, this amounts to looking at the
quotient ‖ 𝑓 ‖R∞/‖ 𝑓 ‖𝑊 .

Proposition 4.27. Let 𝑓 ∈ HR
𝒅
[𝑞] and 𝑥 ∈ S𝑛. Then

‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊

≤ K( 𝑓 , 𝑥)
𝜅( 𝑓 , 𝑥) ≤

√
2𝑞D

‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊

and

‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊

≤ K( 𝑓 )
𝜅( 𝑓 ) ≤

√
2𝑞D

‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊

.
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Proof. It follows from

K( 𝑓 , 𝑥)
𝜅( 𝑓 , 𝑥) =

√
𝑞
‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊

√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)2

max
{
‖ 𝑓 (𝑥)‖, 𝜎𝑞

(
Δ−1D𝑥 𝑓

)}
and

1
√

D
𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)
≤ 𝜎𝑞

(
Δ−1D𝑥 𝑓

)
≤ 𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)
. �

In general, we have that ‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊 ≤ 1, so the corresponding quotient of condition numbers worsens by

a factor of at most
√

2𝑞D. Our main result derives from the fact that ‖ 𝑓 ‖R∞
‖ 𝑓 ‖𝑊 is, for a substantial number

of f s, much smaller than 1: we can expect it to be smaller than
√
𝑛 ln(eD)/𝑁 with very high probability.

Recall that 𝐾𝜌 is a constant from the randomness model.

Theorem 4.28. Let 𝑞 ≤ 𝑛 + 1, 𝔣 ∈ HR
𝒅
[𝑞] be dobro with parameters K and 𝜌 and ℓ ∈ N. For any power

ℓ with 1 ≤ ℓ < 𝑁
2 , we have

E
𝔣

(
‖𝔣‖R∞
‖𝔣‖𝑊

)ℓ
≤

(
890

√
2𝐾𝜌

√
𝑛 ln(𝑒𝐷)ℓ

√
𝑁 − 2ℓ

)ℓ
.

In particular,

E
𝔣

‖𝔣‖R∞
‖𝔣‖𝑊

≤ O
(
𝐾𝜌

√
𝑛 ln(𝑒D)

𝑁

)
.

Remark 4.29. In the study of tensors, the quotients ‖𝔣‖R∞/‖𝔣‖𝑊 and their nonsymmetric analogue
play an important role. Because of this, we can consider Theorem 4.28 a symmetric analogue of the
results shown in [38] and [46]. In a paper under preparation by Kozhasov and the third author [41], the
probabilistic techniques introduced in this paper are developed further to study ‖𝔣‖R∞/‖𝔣‖𝑊 in several
settings.

Corollary 4.30. Let 𝑞 ≤ 𝑛 + 1 and 𝔣 ∈ HR
𝒅
[𝑞] be dobro with parameters K and 𝜌. Then for 1 ≤ ℓ < 𝑁

2 ,
we have

E
𝔣

(
K(𝔣)
𝜅(𝔣)

)ℓ
≤

(
1780
𝐾

𝜌
√
𝑞𝑛D ln(𝑒𝐷)ℓ

√
𝑁 − 2ℓ

)ℓ
.

Let PolyBetti𝑊 be the version of PolyBetti∞ using the Weyl norm and 𝜅. An analysis along the
lines of [28] (or [15]) shows that the cost of PolyBetti𝑊 is

2O (𝑛2 log 𝑛)D10𝑛𝜅( 𝑓 )10𝑛,

which is very similar to the cost bound for PolyBetti∞ in Proposition 4.14. Let us denote by
est-run-time(PolyBetti∞, 𝑓 ) and est-run-time(PolyBetti𝑊 , 𝑓 ) these cost bounds. It follows that

est-run-time(PolyBetti∞, 𝑓 )
est-run-time(PolyBetti𝑊 , 𝑓 ) ≤

(
K( 𝑓 )
𝜅( 𝑓 )

)10𝑛
.

Using Corollary 4.30 and Markov’s inequality, it is easy to prove the following estimate.
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Corollary 4.31. Let 𝑞 ≤ 𝑛 + 1, 𝑁 > 20𝑛 and 𝔣 ∈ HR
𝒅
[𝑞] be dobro with parameters K and 𝜌,

est-run-time(PolyBetti∞, 𝑓 )
est-run-time(PolyBetti𝑊 , 𝑓 ) ≤

(
5700
𝐾

𝜌𝑛
√
𝑞D ln(eD)

√
𝑁 − 20𝑛

)10𝑛

with probability at least 1 − 1/𝑁 . Note that for fixed n and large D, the ratio in the right-hand side is of
the order of

���
𝐾𝜌

√
ln(eD)
D

𝑛−1
2 ���

10𝑛

.

We proceed to prove Theorem 4.28.

Proposition 4.32. Let 𝔣 ∈ HR
𝒅
[𝑞] be dobro with parameters K and 𝜌. Then for all 𝑡 > 0,

P

(
‖𝔣‖R∞ ≥ 𝑡

)
≤ 𝑞

√
2𝜋
√
𝑛 + 1

(
eD
2

)𝑛
e−

𝑡2
17𝐾2 .

In particular, if 𝑞 ≤ 𝑛 + 1, for all ℓ ≥ 1,
(
E𝔣

(
‖𝔣‖R∞

)ℓ ) 1
ℓ ≤ 63𝐾

√
𝑛 ln(eD)ℓ.

Proof of Theorem 4.28. By the Cauchy-Schwarz inequality,

E
𝔣

(
‖𝔣‖R∞
‖𝔣‖𝑊

)ℓ
≤

√
E
𝔣

(
‖𝔣‖R∞

)2ℓ
√
E
𝔣

1
‖𝔣‖2ℓ

𝑊

.

The first term on the right is bounded by Proposition 4.32.
For the second term, we will use [45, Theorem 1.11]. We note that 𝔵 ∈ R𝑁 satisfies the small

ball assumption (SBA) with constant L [45, Assumption 1.1.] if for every 𝑘 ∈ {1, . . . , 𝑁 − 1}, every
orthogonal projection 𝑃 ∈ R𝑘×𝑁 , every 𝑦 ∈ R𝑘 and every 𝜀 > 0,

P

(
‖𝑃𝔵 − 𝑦‖2 ≤

√
𝑘𝜀

)
≤ (L𝜀)𝑘 .

By Proposition 4.26 (applied with coordinates orthogonal with respect to the Weyl inner product) and
Stirling’s approximation, we have that 𝔣 has the SBA with constant 2

√
𝜋𝑒𝜌. Thus, by [45, Theorem 1.11],

E
𝔣

1
‖𝔣‖2ℓ

𝑊

≤ (14𝜌)2ℓ E
𝔤

1
‖𝔤‖2ℓ

𝑊

,

where 𝔤 ∈ H𝒅 [𝑞] is KSS. Since 𝔤 is a Gaussian vector for all coordinate systems orthogonal with
respect to the Weyl inner product, ‖𝔤‖2

𝑊 is distributed according to a 𝜒2-distribution with N degrees of
freedom. Therefore,

E
𝔤

1
‖𝔤‖2ℓ

𝑊

=
∫ ∞

0
𝑡−ℓ

1
2 𝑁

2 Γ
(
𝑁
2
) 𝑡 𝑁2 −1e−

𝑡
2 d𝑡 =

Γ
(
𝑁
2 − ℓ

)
2ℓΓ

(
𝑁
2
) =

1
(𝑁 − 2) (𝑁 − 4) · · · (𝑁 − 2ℓ) .

The desired claim now follows. �

Proof of Proposition 4.32. Fix 𝛿 ∈ [0, 1/D]. By the proof of Proposition 4.3, we have that ‖𝔣‖R∞ > 𝑡

implies vol
{
𝑥 ∈ S𝑛 | ‖𝔣(𝑥)‖∞ ≥

(
1 − D2

2 𝛿2
)
𝑡
}
≥ vol 𝐵S (𝑥∗, 𝛿), where 𝑥∗ ∈ S𝑛 maximises ‖ 𝑓 (𝑥)‖∞.

Therefore,
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P

(
‖𝔣‖R∞ ≥ 𝑡

)
≤ P𝔣

(
P𝔵∈S𝑛

(
‖𝔣(𝔵)‖∞ ≥

(
1 − D2

2
𝛿2

)
𝑡

)
≥ vol 𝐵S (𝑥∗, 𝛿)/vol S𝑛

)
.

By [14, Lemma 2.25], [14, Lemma 2.31] and
∫ 𝛿

0 𝑛 sin𝑛−1 𝜃 d𝜃 ≥ (1 − 𝛿2/6)𝑛𝛿𝑛, we have that

vol𝑛 𝐵S (𝑥∗, 𝛿)/vol𝑛 S𝑛 ≥
(
1 − 𝛿2/6

)𝑛
√

2𝜋
√
𝑛 + 1

𝛿𝑛.

In this way,

P

(
‖𝔣‖R∞ ≥ 𝑡

)
≤ P𝔣

(
P𝔵∈S𝑛

(
‖𝔣(𝔵)‖∞ ≥

(
1 − D2

2
𝛿2

)
𝑡

)
≥

(
1 − 𝛿2/6

)𝑛
√

2𝜋
√
𝑛 + 1

𝛿𝑛

)
≤

√
2𝜋
√
𝑛 + 1(

1 − 𝛿2/6
)𝑛
𝛿𝑛
E
𝔣
P𝔵∈S𝑛

(
‖𝔣(𝔵)‖∞ ≥

(
1 − D2

2
𝛿2

)
𝑡

)
(Markov’s inequality)

≤
√

2𝜋
√
𝑛 + 1(

1 − 𝛿2/6
)𝑛
𝛿𝑛
E

𝔵∈S𝑛
P𝔣

(
‖𝔣(𝔵)‖∞ ≥

(
1 − D2

2
𝛿2

)
𝑡

)
(Tonelli’s theorem)

≤
√

2𝜋
√
𝑛 + 1(

1 − 𝛿2/6
)𝑛
𝛿𝑛

max
𝑥∈S𝑛
P𝔣

(
‖𝔣(𝑥)‖∞ ≥

(
1 − D2

2
𝛿2

)
𝑡

)
≤ 𝑞

√
2𝜋
√
𝑛 + 1(

1 − 𝛿2/6
)𝑛
𝛿𝑛

max
𝑖,𝑥∈S𝑛

P𝔣

(
|𝔣𝑖 (𝑥) |∞ ≥

(
1 − D2

2
𝛿2

)
𝑡

)
(Union bound).

In the coordinates of a monomial basis orthogonal for the Weyl inner product, the following holds:
(1) a dobro random polynomial 𝔣 looks like a random vector whose components are independent and
subgaussian of 𝜓2-norm at most K, and (2) evaluation at a point of the sphere, 𝔣(𝑥), becomes the inner
product with a vector of norm 1 (by Proposition 2.2). Hence, by Proposition 4.24,

P

(
‖𝔣‖R∞ ≥ 𝑡

)
≤ 𝑞

√
2𝜋
√
𝑛 + 1(

1 − 𝛿2/6
)𝑛
𝛿𝑛

exp

(
−
(
1 − D2

2
𝛿2

)2
𝑡2

11𝐾2

)
.

The claim follows taking 𝛿 = 5/(6D) and
(
1 − 1

2

(
5
6

)2
)

1
11 ≥ 1

17 . For the other inequalities on the

moments, use Proposition 4.24. �

4.3.3. Complexity of the Plantinga-Vegter algorithm
In [24] (compare to [23]), we proved the following result (which we are just adapting to the notation5 of
this paper).
Theorem 4.33 [24, Theorem 8.4 and Theorem 7.3]. Let 𝔣 ∈ HR

𝒅
[1] be dobro with parameters K and 𝜌.

For all 𝑥 ∈ S𝑛 and 𝑡 ≥ 𝑒,

P(𝜅(𝔣, 𝑥) ≥ 𝑡) ≤ 2
(

𝑁

𝑛 + 1

) 𝑛+1
2

(30𝐾𝜌)𝑛+1 ln
𝑛+1

2 𝑡

𝑡𝑛+1 .

In particular, for the Plantinga-Vegter algorithm with input 𝔣 over the domain [−𝑎, 𝑎]𝑛, the expected
number of hypercubes in the final subdivision is at most

𝑎𝑛D𝑛𝑁
𝑛+1

2 2𝑛 log 𝑛+13𝑛+ 3
2 log 𝑛+ 17

2 (𝐾𝜌)𝑛+1.

5There is a slight difference in the way the anti-concentration constant is defined in [24] and here.
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Our objective is the following theorem, which shows how the 𝑁
𝑛+1

2 factor vanishes from these
estimates when we pass from 𝜅 to K. This shows that the version of Plantinga-Vegter using K yields
better cost bounds than the one using 𝜅: that is, the one in [24].

Theorem 4.34. Let 𝔣 ∈ HR
𝒅
[1] be dobro with parameters K and 𝜌. For all 𝑥 ∈ S𝑛 and 𝑡 ≥ 𝑒,

P(K(𝔣, 𝑥) ≥ 𝑡) ≤ D
𝑛
2 (ln eD)

𝑛+1
2 26𝑛+4 (𝐾𝜌)𝑛+1 ln

𝑛+1
2 𝑡

𝑡𝑛+1 .

It follows that for every compact Ω ⊆ S𝑛,

E
𝔣
E

𝔵∈Ω
(K(𝔣, 𝔵)𝑛) ≤ D

𝑛
2 (ln eD)

𝑛+1
2 2

1
2 𝑛 log 𝑛+5𝑛+2 log(𝑛)+7 (𝐾𝜌)𝑛+1.

In particular, for the Plantinga-Vegter algorithm with input 𝔣 over the domain [−𝑎, 𝑎]𝑛, the expected
number of hypercubes in the final subdivision is at most

𝑎𝑛D
3𝑛
2 (ln eD)

𝑛+1
2 2

3
2 𝑛 log 𝑛+13𝑛+2 log(𝑛)+7.

Remark 4.35. Theorem 4.34 allows us to compare the efficiency of Plantinga-Vegter for the versions
based on the Weyl-norm and the ∞-norm. One can observe that (in the region of interest D > 𝑛) the
term 𝑁

𝑛
2 ∼ D 𝑛2

2 in the estimate for the Weyl-norm version is replaced with (D log D) 𝑛2 in the ∞-norm.
Basically, the exponent of D goes from O(𝑛2) to O(𝑛). If we focus on the original cases of interest
(compare to [49]) – that is, 𝑛 = 2 and 𝑛 = 3, with the average complexity analysis from [24] – it is
shown in Theorem 3.1 there that PV-Interval𝑊 has an average complexity of

O
(
𝑑8 max{1, 𝑎2}(𝐾𝜌)3

)
for 𝑛 = 2, and

O
(
𝑑13 max{1, 𝑎3}(𝐾𝜌)4

)
for 𝑛 = 3.

It follows from Theorems 4.19 and 4.34 that the average complexity of PV-Interval∞ is

O
(
𝑑7 log1.5(𝑑)max{1, 𝑎2}(𝐾𝜌)3

)
for 𝑛 = 2, and

O
(
𝑑10 log2(𝑑)max{1, 𝑎3}(𝐾𝜌)4

)
for 𝑛 = 3.

We next proceed to prove Theorem 4.34.

Proof of Theorem 4.34. Let 𝑢, 𝑡 ≥ 0, then

P𝔣 (K(𝔣, 𝑥) ≥ 𝑡)

≤ P𝔣
(
‖ 𝑓 ‖R∞ ≥ 𝑢 or max

{
|𝔣(𝑥) |, ‖D𝑥𝔣‖

D

}
≤ 𝑢

𝑡

)
(implication bound)

≤ P𝔣
(
‖ 𝑓 ‖R∞ ≥ 𝑢

)
+ P𝔣

(
max

{
|𝔣(𝑥) |, ‖D𝑥𝔣‖

D

}
≤ 𝑢

𝑡

)
, (union bound)

where we used the fact that for 𝑓 ∈ HR
𝒅
[1], K( 𝑓 , 𝑥) = ‖ 𝑓 ‖R∞/max{| 𝑓 (𝑥) |, ‖D𝑥 𝑓 ‖/D}.

On the one hand, P𝔣
(
‖ 𝑓 ‖R∞ ≥ 𝑢

)
is bounded by Proposition 4.32. On the other hand, the map

𝑓 ↦→
(
𝑓 (𝑥) D𝑥 𝑓

D

)
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has singular values 1, 1/
√

D, . . . , 1/
√

D in the coordinates of a monomial basis orthogonal with respect
to the Weyl inner product. And since in such a basis, a dobro polynomial is a vector whose coefficients
are independent and have the anti-concentration property with constant 𝜌, we deduce that

P𝔣

(
max

{
|𝔣(𝑥) |, ‖D𝑥𝔣‖

D

}
≤ 𝑢

𝑡

)
≤ D

𝑛
2 vol

{
(𝑥0, 𝑥) ∈ R𝑛+1 | |𝑥0 |, ‖𝑥‖ ≤ 𝑢/𝑡

} (√
2𝜌

)𝑛+1

≤ 𝜔𝑛D
𝑛
2

(√
2𝜌𝑢
𝑡

)𝑛+1

≤ 9𝑛D
𝑛
2

(
𝑢𝜌
√
𝑛

)𝑛+1 1
𝑡𝑛+1 ,

where 𝜔𝑛 is the volume of the unit n-ball, and we used Proposition 4.26 and Stirling’s estimation [14,
Equation (2.14)].

Hence, combining the inequalities above,

P𝔣 (K(𝔣, 𝑥) ≥ 𝑡) ≤
√

2𝜋(𝑛 + 1)
(

eD
2

)𝑛
e−

𝑢2
17𝐾2 + 9𝑛D

𝑛
2

(
𝑢𝜌
√
𝑛

)𝑛+1 1
𝑡𝑛+1 .

Taking 𝑡 ≥ 𝑒 and 𝑢 =
√

17𝐾
√
𝑛 ln(e2D) ln 𝑡 ≥

√
17𝐾

√
𝑛 ln D + (𝑛 + 1) ln 𝑡, we get

P𝔣 (K(𝔣, 𝑥) ≥ 𝑡) ≤
√

2𝜋(𝑛 + 1)
(2e)𝑛

1
𝑡𝑛+1 + 9𝑛D

𝑛
2

(√
17𝐾𝜌 ln

1
2 (e

2D)
)𝑛+1 ln

𝑛+1
2 𝑡

𝑡𝑛+1 .

This proves the first statement.
By Tonelli’s theorem, to prove the second statement, it is enough to bound E𝔣 K(𝔣, 𝑥)𝑛 for a fixed

𝑥 ∈ S𝑛. Now,

E
𝔣

K(𝔣, 𝑥)𝑛 =
∫ ∞

0
P𝔣

(
K(𝔣, 𝑥) ≥ 𝑡

1
𝑛

)
≤ e𝑛 +

∫ ∞

e𝑛
P𝔣

(
K(𝔣, 𝑥) ≥ 𝑡

1
𝑛

)
≤ e𝑛 +

∫ ∞

e𝑛
D
𝑛
2 ln

𝑛+1
2 (eD)26𝑛+4 (𝐾𝜌)𝑛+1 ln(𝑡 1

𝑛 ) 𝑛+1
2

𝑡1+
1
𝑛

d𝑡

≤ e𝑛 + D
𝑛
2 ln

𝑛+1
2 (eD)26𝑛+4 (𝐾𝜌)𝑛+1

∫ ∞

1

ln(𝑡 1
𝑛 ) 𝑛+1

2

𝑡1+
1
𝑛

d𝑡.

By changing variables, 𝑡 = e𝑠𝑛, we can see that∫ ∞

1

ln(𝑡 1
𝑛 ) 𝑛+1

2

𝑡1+
1
𝑛

d𝑡 = 𝑛Γ

(
𝑛 + 3

2

)
≤
√

2𝜋e 𝑛
√
𝑛 + 1

(
𝑛 + 1

2e

) 𝑛+1
2

,

where the inequality comes from Stirling’s approximation [14, Equation (2.14)]. Hence, we get

E
𝔣

K(𝔣, 𝑥)𝑛 ≤ e𝑛 +
√

2𝜋e𝑛
√
𝑛 + 1D

𝑛
2 ln

𝑛+1
2 (eD) 26𝑛+4

(2e) 𝑛+1
2
(
√
𝑛 + 1𝐾𝜌)𝑛+1

≤ 8𝑛
√
𝑛 + 1D

𝑛
2 ln

𝑛+1
2 (eD) 26𝑛+4

(2e) 𝑛+1
2
(
√
𝑛 + 1𝐾𝜌)𝑛+1.

The second statement now follows after some easy bounds. �

5. Linear homotopy for computing complex zeros

Smale’s 17th problem asks if a complex zero of n complex polynomial equations in 𝑛 + 1 homoge-
neous unknowns can be found on average polynomial time [54]. A probabilistic solution to Smale’s
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17th problem was given by Beltrán and Pardo in 2009 [7, 8]. The construction of Beltrán and Pardo was
probabilistic in the sense that they exhibited a randomised algorithm.

The distribution underlying the average-case analysis for the Beltrán-Pardo algorithm is the complex
version of the KSS distribution (see Example 4.22). Finally, the expected running time of Beltrán-Pardo’s
algorithm is polynomial in 𝑁 = dimCHC𝒅 [𝑛].

A generic square system of equations with degrees 𝑑1, 𝑑2, . . . , 𝑑𝑛 has D := 𝑑1 · · · · · 𝑑𝑛 many zeros,
and Smale’s 17th problems asks to compute one of these zeros. Following the initial work by Shub
and Smale [53], the hearth of Beltrán-Pardo solution is a linear homotopy: let’s call it ALH. It takes as
input the system f for which a zero is sought, along with an initial pair (𝑔, 𝜁) ∈ HC

𝒅
[𝑛] × P𝑛 satisfying

𝑔(𝜁) = 0. If we define 𝑞𝑡 := 𝑡 𝑓 + (1 − 𝑡)𝑔, for 𝑡 ∈ [0, 1], then generically, the segment [𝑔, 𝑓 ] in HC
𝒅
[𝑛]

lifts to a curve {(𝑞𝑡 , 𝜁𝑡 ) | 𝑡 ∈ [0, 1]} in the solution variety

V := {( 𝑓 , 𝜁) ∈ HC𝒅 [𝑛] × P
𝑛 | 𝑓 (𝜁) = 0}.

The idea of ALH, in a nutshell, is to ‘follow’ this curve (for which we know its origin (𝑔, 𝜁)) close
enough that we end up with an approximation to the zero 𝜁1 of 𝑓 = 𝑞1.

The breakthrough in [7, 8] was to come up with a randomised algorithm to produce the (long-sought)
initial pair (𝑔, 𝜁). To state this result, we endow V with the standard distribution 𝜌std defined via the
following procedure:

◦ Draw a complex KSS system 𝔣 ∈ HC
𝒅
[𝑛].

◦ Draw 𝜁 from the D zeros of 𝔣 with the uniform distribution.

For details on 𝜌std, see [14, Section 17.5]. The description of 𝜌std above is not constructive: it merely
describes the distribution. It is remarkable, however, that it is possible to efficiently sample from 𝜌std.

Proposition 5.1. ([14, Proposition 17.21]). There is a randomised algorithm that, with input n and 𝒅,
returns a pair (𝑔, 𝜁) ∈ V drawn from 𝜌std. The algorithm performs 2(𝑁 + 𝑛2 + 𝑛 + 1) draws of random
real numbers from the standard Gaussian distribution and 𝑂 (D𝑛𝑁 + 𝑛3) arithmetic operations.

With this randomisation procedure at hand, the structure of the algorithm to compute approximate
zeros is simple.

Algorithm 5.1: Solve
Input : 𝑓 ∈ H𝒅 [𝑛]
Precondition : 𝑓 ≠ 0

draw (𝑔, 𝜁) ∈ V from 𝜌std
run ALH on input ( 𝑓 , 𝑔, 𝜁)

Output : 𝑧 ∈ C𝑛+1
∗

Postcondition: 𝑧 is an approximate zero of 𝑓
Halting cond.: The lifting of [𝑔, 𝑓 ] at 𝜁 does not cut Σ̃ ⊆ V

Here Σ̃ := {( 𝑓 , 𝜁) ∈ V | det D𝜁 𝑓 = 0}. This set has complex codimension 1 in V . Hence, because
the lifting of the segment [𝑔, 𝑓 ] corresponding to 𝜁 has real dimension 1, generically, it does not cut Σ̃.
That is, algorithm Solve almost surely terminates for almost all inputs 𝑓 ∈ H𝒅 [𝑛].

Regarding complexity, the total cost of Solve is dominated by that of running ALH, which is given
by the number of steps K performed by the homotopy times the cost of each step. In previous work ([53,
7, 8, 13, 3] among others), the latter is essentially optimal as it is 𝑂 (𝑁 + 𝑛3) (which is 𝑂 (𝑁) if 𝑑𝑖 ≥ 2
for 𝑖 = 1, . . . , 𝑛). The former depends on the input at hand, and that is where average considerations
play a role. In [9, 13], ALH was implemented using the Weyl norm to compute step lengths. Its average
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number of iterations is 𝑂 (𝑛D3/2𝑁). The average total complexity of the resulting algorithm, let us call
it Solve𝑊 , is then 𝑂 (𝑛D3/2𝑁2).

The goal of this section is to analyse a version ALH∞ of ALH with step lengths based on ‖ ‖∞. We
show that this can be done in a straightforward manner and that, maybe surprisingly, the average number
of iterations of ALH with step lengths based on our new condition number is O(𝑛3D2 ln(𝑛D)): a bound
independent of N. Unfortunately, this gain is not decisive for a general input model due to the high cost
of computing ‖ ‖∞ norms.

Nonetheless, for the particular – but highly relevant – case of quadratic polynomials, we can efficiently
compute the ∞-norm. As a result, we derive bounds that show the expected complexity of Solve∞ is
smaller than the expected complexity of Solve𝑊 .

5.1. Description of the linear homotopy

The algorithm below is, essentially, the one in [13] and [14, Chapter 17]. The only change is in the
computation of the step-length Δ 𝑡 , where we replace the original (here distS denotes angle)

0.008535284
distS ( 𝑓 , 𝑔)D3/2𝜇2

norm (𝑞, 𝑧)

by

0.03 ‖𝑞‖C∞
‖ 𝑓 − 𝑔‖C∞DM2 (𝑞, 𝑧)

. (5.1)

This change amounts – leaving aside the difference in the constants and a smaller exponent in D – to
the use of the ∞-norm instead of the Weyl one and, consequently, the use of M instead of 𝜇norm. Recall
that 𝑁𝑞 is the Newton operator associated to 𝑞 ∈ H𝒅 [𝑛].

Algorithm 5.2: ALH∞
Input : 𝑓 , 𝑔 ∈ H𝒅 [𝑛] and 𝜁 ∈ P𝑛
Precondition : 𝑔(𝜁) = 0

𝑡 ← 0, 𝑞 ← 𝑔, 𝑧 ← 𝜁
repeat

Δ𝑡 ← 0.03 ‖𝑞 ‖∞
‖ 𝑓 −𝑔 ‖∞DM2 (𝑞,𝑧)

𝑡 ← min{𝑡 + Δ𝑡, 1}
𝑞 ← 𝑡 𝑓 + (1 − 𝑡)𝑔
𝑧 ← 𝑁𝑞 (𝑧)

until 𝑡 = 1
return 𝑧 and halt

Output : 𝑧 ∈ C𝑛+1
∗

Postcondition: The algorithm halts if 𝑞𝑡 ∉ Σ𝜁𝑡 for all 𝑡 ∈ [0, 1]. In this case, 𝑧 is an
approximate zero of 𝑓

5.2. A bound on the number of iterations

The analysis of ALH∞ closely follows the steps in [14]. It uses the properties of M shown in Theorem 3.5
and one more result (we know for 𝜇norm): namely, that M is a condition number in the standard sense of
this expression – it measures how solutions change when data is perturbed (see Proposition 5.4 below).
To simplify the notation, in the rest of this section, we will often omit the reference to the base field C.
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Theorem 5.2. Suppose that the lifting of the segment [𝑔, 𝑓 ] in V corresponding to 𝜁 does not cut Σ′.
Then the algorithm ALH∞ stops after at most K steps with

𝐾 ≤ 1 + 45 D ‖ 𝑓 − 𝑔‖∞
∫ 1

0

M2(𝑞𝑡 , 𝜁𝑡 )
‖𝑞𝑡 ‖∞

d𝑡.

The returned point z is an approximate zero of f with associated zero 𝜁1.

Corollary 5.3. The bound K in Theorem 5.2 satisfies

𝐾 ≤ 1 + 45 𝑛D
∫ 1

0
(‖ 𝑓 ‖∞ + ‖𝑔‖∞)2‖D𝜁𝑡 𝑞

−1
𝑡 Δ ‖2d𝑡.

Proposition 5.4. Let 𝑡 ↦→ ( 𝑓𝑡 , 𝜁𝑡 ) ∈ 𝑉 be a smooth path. Then for all t,

‖ �𝜁𝑡 ‖ ≤ M( 𝑓𝑡 , 𝜁𝑡 )
‖ �𝑓𝑡 ‖∞
‖ 𝑓𝑡 ‖∞

.

Proof in Theorem 5.2. The proof follows the lines of [14, Theorem 17.3]. We will therefore only offer
a brief sketch. Set 𝜀 := 1

4 and 𝐶 = 𝜀
4 = 1

16 . Let 𝑞𝑡 := 𝑡 𝑓 + (1 − 𝑡)𝑔. Also let 0 < 𝑡1 < . . . < 𝑡𝐾 = 1 and
𝜁0 = 𝑧0, . . . , 𝑧𝐾 be the sequence of t-values and points in P𝑛, respectively, generated by the algorithm
in its first K iterations. To simplify notation, we write 𝑞𝑖 and 𝜁𝑖 instead of 𝑞𝑡𝑖 and 𝜁𝑡𝑖 .

As in [14, Theorem 17.3], but using Proposition 3.6 in the place of [14, Proposition 16.2] and
Theorem 3.5 in the place of [14, Theorem 16.1], one proves by induction the following statements for
𝑖 = 0, . . . , 𝐾 − 1:

(a,i) distP(𝑧𝑖 , 𝜁𝑖) ≤ 𝐶
DM(𝑞𝑖 ,𝜁𝑖 )

(b,i) M(𝑞𝑖 ,𝑧𝑖)
1+𝜀 ≤ M(𝑞𝑖 , 𝜁𝑖) ≤ (1 + 𝜀)M(𝑞𝑖 , 𝑧𝑖)

(c,i) ‖𝑞𝑖 − 𝑞𝑖+1‖∞ ≤ 𝐶 ‖𝑞𝑖 ‖∞
DM(𝑞𝑖 ,𝜁𝑖 )

(d,i) distP(𝜁𝑖 , 𝜁𝑖+1) ≤ 𝐶
DM(𝑞𝑖 ,𝜁𝑖 )

1−𝜀
1+𝜀

(e,i) distP(𝑧𝑖 , 𝜁𝑖+1) ≤ 2𝐶
(1+𝜀)DM(𝑞𝑖 ,𝜁𝑖 )

(f,i) 𝑧𝑖 is an approximate zero of 𝑞𝑖+1 with associated zero 𝜁𝑖+1.

By Proposition 3.6, (c, 𝑖), (d, 𝑖) and our choice of C and 𝜀, we have that for all 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1],

4
5

M(𝑞𝑖 , 𝜁𝑖) ≤ M(𝑞𝑡 , 𝜁𝑡 ) ≤
5
4

M(𝑞𝑖 , 𝜁𝑖). (5.2)

And, by the triangle inequality and (b, 𝑖), for 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1],

‖𝑞𝑡 ‖∞
‖𝑞𝑖 ‖∞

≤ 1 + 𝐶 =
17
16

. (5.3)

The statement now easily follows. Consider any 𝑖 ∈ {0, 1, . . . , 𝐾 − 2}. Then∫ 𝑡𝑖+1

𝑡𝑖

M2(𝑞𝑡 , 𝜁𝑡 )
‖𝑞𝑡 ‖∞

d𝑡 ≥ 64
85

∫ 𝑡𝑖+1

𝑡𝑖

M2(𝑞𝑖 , 𝑧𝑖)
‖𝑞𝑖 ‖∞

d𝑡 =
64
85

M2 (𝑞𝑖 , 𝑧𝑖)
‖𝑞𝑖 ‖∞

|𝑡𝑖+1 − 𝑡𝑖 | ((5.2) and (5.3))

=
64
85

0.03
‖ 𝑓 − 𝑔‖∞D . (choice of Δ𝑡)

Hence ∫ 1

0

M2 (𝑞𝑡 , 𝑧𝑡 )
‖𝑞𝑡 ‖∞

d𝑡 ≥ 192
8500

𝐾 − 1
‖ 𝑓 − 𝑔‖∞D ≥ 𝐾 − 1

45‖ 𝑓 − 𝑔‖∞D ,

and the result follows. �
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Proof of Corollary 5.3. It immediately follows from the definition of M(𝑞𝑡 , 𝜁𝑡 ) and the inequality
‖𝑞𝑡 ‖∞ ≤ ‖ 𝑓 ‖∞ + ‖𝑔‖∞. �

Proof of Proposition 5.4. Recall from [14, Section 14.3] that the zero 𝜁𝑡 is given by 𝜁𝑡 = 𝐺 ( 𝑓𝑡 ), where
𝐺 : 𝑈 ⊂ H𝒅 [𝑛] → P𝑛 is a local inverse of the projection 𝜋1 : V → H𝒅 [𝑛]. Hence, for all �𝑓𝑡 ∈ H𝒅 [𝑛]
we have

�𝜁𝑡 = D 𝑓𝑡𝐺 ( �𝑓𝑡 ) = −(D𝜁𝑡 𝑓𝑡 )−1( �𝑓𝑡 (𝜁𝑡 )), (5.4)

where the second equality is shown in the course of the proof of [14, Proposition 16.10]. Using this
equality along with the fact that (D𝜁𝑡 𝑓𝑡 )−1 = (D𝜁𝑡 𝑓𝑡 )† (as 𝑞 = 𝑛), we deduce that

‖ �𝜁𝑡 ‖ = max
‖ �𝑓𝑡 ‖∞=1

‖(D𝜁𝑡 𝑓𝑡 )−1( �𝑓𝑡 (𝜁𝑡 ))‖ (By (5.4))

≤
(

max
‖ �𝑓𝑡 ‖∞=1

‖ �𝑓𝑡 (𝜁𝑡 )‖
)
‖(D𝜁𝑡 𝑓𝑡 )−1‖ (operator norm inequality)

≤
√
𝑛

(
max
‖ �𝑓𝑡 ‖∞=1

‖ �𝑓𝑡 (𝜁𝑡 )‖∞
)
‖(D𝜁𝑡 𝑓𝑡 )−1‖ ‖ ‖ ≤

√
𝑛‖ ‖∞

≤
√
𝑛‖(D𝜁𝑡 𝑓𝑡 )−1‖ (definition of ‖ ‖∞)

=

√
𝑛‖ 𝑓𝑡 ‖∞‖(Δ−1D𝜁𝑡 𝑓𝑡 )−1‖

‖ 𝑓𝑡 ‖∞
=

M( 𝑓𝑡 , 𝜁𝑡 )
‖ 𝑓𝑡 ‖∞

. (definition of M)

We recall that the norms where we have omitted subscripts are the usual norm in the case of vectors and
the usual operator norm in the case of linear maps. �

5.3. Average complexity analysis of Solve∞
The execution of Solve∞ on an input 𝑓 ∈ HC

𝒅
[𝑛] amounts to calling ALH∞ on input ( 𝑓 , 𝔤, 𝔷), where

(𝔤, 𝔷) ∈ HC
𝒅
[𝑛]×P𝑛 is a standard random pair. Consequently, the number of iterations of Solve∞ amounts

to the number of iterations done by ALH∞. The latter is a random variable as (𝔤, 𝔷) is random. We will
further consider f random and bound the average complexity of Solve∞ by taking the expectation over
both (𝔤, 𝔷) and f. Recall that a KSS complex random polynomial system 𝔣 ∈ HC

𝒅
[𝑛] is a tuple of random

polynomials

���
∑
|𝛼 |=𝑑1

(
𝑑1
𝛼

) 1
2

𝔠1,𝛼𝑋
𝛼, . . . ,

∑
|𝛼 |=𝑑𝑛

(
𝑑𝑛
𝛼

) 1
2

𝔠𝑛,𝛼𝑋
𝛼���

such that the 𝔠𝑖,𝛼 are independent and identically distributed complex normal random variables of mean
0 and variance 1.

Our main result is the following.

Theorem 5.5. Let 𝔣 ∈ HC
𝒅
[𝑛]. On input 𝔣, Algorithm Solve∞ halts with probability 1 and performs

O(𝑛3D2 ln(eD))

iteration steps on average.

Remark 5.6. The bound in Theorem 5.5 is independent on N: it is a polynomial in n and D. The
possibility of such a bound for the number of iterations of a linear homotopy was explored in [3], where
the dependence on N was reduced from linear to O(

√
𝑁). Pierre Lairez subsequently exhibited one such

bound but for a rigid homotopy [42]. To the best of our knowledge, Theorem 5.5 is the first such bound
for a linear homotopy.
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We will use the following two results. The first is the complex version of Proposition 4.32 and has an
almost identical proof. The main difference lies in the needed volume computations, as the geometry of
the complex projective space P𝑛 is somewhat different from that of the real sphere S𝑛. The second is a
known result on random complex Gaussian matrices.

Proposition 5.7. Let 𝔣 ∈ HC
𝒅
[𝑛] be a KSS complex random polynomial tuple. Then for all 𝑡 > 0,

P

(
‖𝔣‖C∞ ≥ 𝑡

)
≤ 2𝑛

(
3D
2

)2𝑛
e−(𝑡/3)

2
.

In particular, for all ℓ ≥ 1,
(
E𝔣

(
‖𝔣‖C∞

)ℓ ) 1
ℓ ≤ 12

√
ℓ 𝑛 ln(𝑒𝐷).

Proposition 5.8 [14, Proposition 4.27]. Let 𝔄 ∈ C𝑛×(𝑛+1) be a random complex matrix whose entries
are independent and identically distributed complex normal Gaussian variables. Then for all 𝑡 ≥ 0,

Prob
{��𝔄†�� ≥ 𝑡

}
≤ 1

16
𝑛2

𝑡4
.

In particular, for ℓ ∈ [1, 4),
(
E𝔄 ‖𝔄†‖ℓ

) 1
ℓ ≤

√
𝑛

2

(
4

4−ℓ

) 1
ℓ .

Proof of Theorem 5.5. We are calling Algorithm ALH∞ with input (𝔣, 𝔤, 𝔷), where 𝔣 ∈ HC
𝒅
[𝑛] is a KSS

complex polynomial system and (𝔤, 𝔷) ∈ H𝒅 [𝑛] is a standard pair.
Let Σ := {ℎ ∈ H𝒅 [𝑛] | ∃𝜁 ∈ P𝑛 such that (ℎ, 𝜁) ∈ Σ̃}. By classic results in algebraic geometry, this

set is a complex algebraic hypersurface, so it has real codimension 2. Hence, with probability one, the
segment [𝔤, 𝔣] does not intersect it, and for each zero 𝜁 (𝑖) of 𝔤, we obtain a unique lifted path

𝑡 ↦→ (𝔮𝑡 , 𝜁 (𝑖)𝑡 ) ∈ V .

Here, for each t, the 𝜁 (𝑖)𝑡 cover all the 𝑑1 · · · 𝑑𝑛 different zeros of 𝔮𝑡 := 𝑡𝔣 + (1 − 𝑡)𝔤. Recall that behind
this lifting lies the fact that the map V \ Σ̃ ↦→ HC

𝒅
[𝑛] \ Σ, ( 𝑓 , 𝜂) ↦→ 𝑓 , is a regular covering map of

degree D = 𝑑1 · · · 𝑑𝑛.
In this way, the random zero 𝔷 of 𝔤 defines, following its lifted path, a zero 𝔷𝑡 of 𝔮𝑡 . Moreover, since

the original 𝔷 is chosen uniformly from the D zeros of 𝔤, the 𝔷𝑡 is a uniformly chosen zero of 𝔮𝑡 . Hence(
𝔮𝑡√

𝑡2 + (1 − 𝑡)2
, 𝔷𝑡

)
∈ V

is a standard random pair, since 𝔮𝑡√
𝑡2+(1−𝑡)2

is a KSS complex random polynomial and 𝔷𝑡 is a uniformly
drawn zero of this system.

By Corollary 5.3, the expected number of iterations of Solve∞ with input 𝔣 is bounded by

45𝑛D
∫ 1

0
E

(𝔣,𝔤,𝔷)

(
(‖𝔣‖2

∞ + ‖𝔤‖2
∞)2‖D𝔷𝑡𝔮

−1
𝑡 Δ ‖2

)
d𝑡, (5.5)

where we have moved the expectation inside the integral using Tonelli’s theorem. Now, by Hölder’s
inequality,

E
(𝔣,𝔤,𝔷)

(
(‖𝔣‖2

∞ + ‖𝔤‖2
∞)2‖D𝔷𝑡𝔮

−1
𝑡 Δ ‖2

)
≤

(
E

(𝔣,𝔤,𝔷)
(‖𝔣‖2

∞ + ‖𝔤‖2
∞)6

) 1
3
(
E

(𝔣,𝔤,𝔷)
‖D𝔷𝑡𝔮

−1
𝑡 Δ ‖3

) 2
3

. (5.6)
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By Proposition 5.7, we have that(
E

(𝔣,𝔤,𝔷)
(‖𝔣‖2

∞ + ‖𝔤‖2
∞)6

) 1
3

= O(𝑛 ln(eD)).

To apply the proposition, we expanded the binomial and used the fact that 𝔣 and 𝔤 are independent.
Because (𝔮𝑡/

√
𝑡2 + (1 − 𝑡)2, 𝔷𝑡 ) is a random standard pair, we have that

E
(𝔣,𝔤,𝔷)

‖D𝔷𝑡𝔮
−1
𝑡 Δ ‖3 =

(
𝑡2 + (1 − 𝑡)2

) 3
2
E

(𝔥,𝔶)∼𝜌std
‖D𝔶𝔥

−1Δ ‖3. (5.7)

Now, since (𝔥, 𝔶) is a random standard pair, the matrix

Δ−1/2D𝔶𝔥 ∈ C𝑛×(𝑛+1)

is a random complex Gaussian matrix. This is the so-called Beltrán-Pardo trick [14, Proposition
17.21(a)]. Moreover, ‖D𝔶𝔥−1Δ

1
2 ‖ = ‖D𝔶𝔥†Δ

1
2 ‖, since 𝔶 is a zero of 𝔥 and D𝔶𝔥 is just D𝔶𝔥 restricted to

the orthogonal complement of 𝔶, which we can view as T𝔶P
𝑛. Because of this, by Proposition 5.8,

E
(𝔥,𝔶)∼𝜌std

‖D𝔷𝑡𝔮
−1
𝑡 Δ ‖3 ≤ D

3
2 E
(𝔥,𝔶)∼𝜌std

����(Δ− 1
2 D𝔷𝑡𝔮𝑡

)†����3
≤ 1

2
D

3
2 𝑛

3
2 .

Hence, integrating equation (5.7),(∫ 1

0
E

(𝔣,𝔤,𝔷)
‖D𝔷𝑡𝔮

−1
𝑡 Δ ‖3 d𝑡

) 2
3

= O(𝑛D). (5.8)

Putting together equations (5.5), (5.6) and (5.8), the desired result follows. �

5.4. Systems of quadratic equations

Theorem 5.5 is an improvement over the average number of iterations of Solve𝑊 , which is O(𝑛𝐷𝑁).
Furthermore, in the case of quadratic systems, we can compute each iteration with low cost, ensuring
that the average total complexity remains smaller than the one for Solve𝑊 , which is O(𝑛7). The major
task left, unsurprisingly, is to compute ‖𝑞‖C∞ in equation (5.1). But we can use that, for a quadratic
polynomial 𝑞𝑖 , we can write 𝑞𝑖 (𝑋) as 𝑋𝑇 𝐴𝑖𝑋 with 𝐴𝑖 complex symmetric and that ‖𝑞𝑖 ‖∞ = ‖𝐴𝑖 ‖. We
can then compute for a quadratic system 𝑞 ∈ H2 [𝑛] the norm ‖𝑞‖∞ = max ‖𝑞𝑖 ‖∞. A naive approach to
compute each ‖𝑞𝑖 ‖∞ leads to an O(𝑛4) cost for the computation of ‖𝑞‖∞ as it uses O(𝑛3) operations to
compute each ‖𝑞𝑖 ‖∞. Proposition 5.10 below shows we can do better. All in all, we obtain the following
result.

Theorem 5.9 (Solving systems of quadratic equations). Algorithm Solve∞ finds a common complex
zero of a system of quadratic equations 𝑓 ∈ H2 [𝑛] within O(𝑛4.5+𝜔) time on average, where 𝜔 is the
exponent for the cost of matrix multiplication. We currently have 𝜔 < 2.375.

Proposition 5.10. Let 𝑞 ∈ H2 [𝑛] be a quadratic system such that for each i, 𝑞𝑖 = 𝑋𝑇 𝐴𝑖𝑋 . Then

‖𝑞‖C∞ ≤

√√√����� 𝑛∑
𝑖=1

𝐴∗𝑖 𝐴𝑖

����� ≤ √𝑛‖𝑞‖C∞,
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where the norm ‖ ‖ in the middle formula is the usual operator norm. Moreover, the number√��∑𝑛
𝑖=1 𝐴

∗
𝑖 𝐴𝑖

�� can be computed with O(𝑛1+𝜔) operations, where 𝜔 is the exponent of matrix mul-
tiplication.

Proof of Theorem 5.9. By Proposition 5.10, we can estimate the step length of our homotopy

0.015 ‖𝑞‖C∞
‖ 𝑓 − 𝑔‖C∞M2(𝑞, 𝑧)

=
0.06

‖ 𝑓 − 𝑔‖C∞D‖𝑞‖C∞‖D𝑧𝑞−1‖2

by the smaller

0.06

‖ 𝑓 − 𝑔‖C∞
√��∑𝑛

𝑖=1 𝐴
∗
𝑖 𝐴𝑖

�� ‖D𝑧𝑞−1‖2
,

where 𝑞 = (𝑋𝑇 𝐴𝑖𝑋)𝑖 . In doing so, the algorithm still terminates but gets an extra factor of
√
𝑛.

Now ‖ 𝑓 − 𝑔‖∞ can be computed in O(𝑛4) operations at the beginning of the algorithm a single time,
so we don’t need to compute it in each iteration. By Proposition 5.10, we can compute

√��∑𝑛
𝑖=1 𝐴

∗
𝑖 𝐴𝑖

�� in
O(𝑛1+𝜔) operations, and by [14, Proposition 16.32], the remaining arithmetic operations can be done
in O(𝑛3) operations. Combining this with the bound of Theorem 5.5 and adding the extra factor

√
𝑛

gives the desired estimate. �

Proof of Proposition 5.10. By the so-called Autonne–Takagi factorisation [39, Problem 33], we have
that

𝐴𝑖 = 𝑈𝑇
𝑖 𝐷𝑖𝑈𝑖

for some real diagonal matrix 𝐷𝑖 with nonnegative entries and some unitary matrix 𝑈𝑖 . Now it is easy
to check that

‖𝑞𝑖 ‖C∞ = ‖𝐷𝑖 ‖ =
√
‖𝐷∗

𝑖𝐷𝑖 ‖ =
√
‖𝐴∗𝑖 𝐴𝑖 ‖ ≤

√√√����� 𝑛∑
𝑖=1

𝐴∗𝑖 𝐴𝑖

�����,
where the last inequality follows from the fact that the operator norm is nondecreasing with respect to
the order of psd matrices. So ‖𝑞‖C∞ ≤

√��∑𝑛
𝑖=1 𝐴

∗
𝑖 𝐴𝑖

��, as we wanted to show.
For the other inequality, observe that√√√����� 𝑛∑

𝑖=1
𝐴∗𝑖 𝐴𝑖

����� ≤
√√

𝑛∑
𝑖=1

��𝐴∗𝑖 𝐴𝑖�� = √√
𝑛∑
𝑖=1

(
‖𝑞𝑖 ‖C∞

)2 ≤
√
𝑛‖𝑞‖C∞,

where the equality follows from reversing the equalities in the previously displayed formula. This finishes
the proof of the inequalities.

Regarding cost, note that computing 𝐴∗𝑖 𝐴𝑖 takesO(𝑛𝜔) operations, so computing all the 𝐴∗𝑖 𝐴𝑖 requires
O(𝑛1+𝜔) operations. Then adding the 𝐴∗𝑖 𝐴𝑖 requires O(𝑛3) operations and computing

��∑𝑛
𝑖=1 𝐴

∗
𝑖 𝐴𝑖

��
another O(𝑛3) operations. We thus get O(𝑛1+𝜔) operations in total, as we wanted to show. �
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A. Extension to spaces of 𝐶1-maps

In this appendix, we prove some condition number theorems for the space of 𝐶1-functions over S𝑛,
𝐶1 [𝑞] := 𝐶1 (S𝑛,R𝑞). Note that 𝐶1 [𝑞] is not complete with respect to ‖ ‖∞. Consider instead, for
𝑓 ∈ 𝐶1 [𝑞],

‖ 𝑓 ‖∞ := max
𝑥∈S𝑛

√
‖ 𝑓 (𝑥)‖2

2 + ‖D𝑥 𝑓 ‖2
2,2 = max

𝑥∈S𝑛
𝑣 ∈T𝑥S𝑛

√√
‖ 𝑓 (𝑥)‖2 +

‖D𝑥 𝑓 𝑣‖2
2

‖𝑣‖2
2

.

This is a variant of the 𝐶1-norm, so one can show that 𝐶1 [𝑞] is complete with respect to ‖ ‖∞. Let’s see
how this norm looks like on an easy kind of 𝐶1-map.

Example A.1 (Linear functions). Let 𝐴 ∈ 𝑞×(𝑛+1) be a linear matrix, and consider the mapA ∈ 𝐶1 [𝑞]
given by 𝑥 ↦→ 𝐴𝑥. We can show that

‖A‖∞ =
√
𝜎1(𝐴)2 + 𝜎2(𝐴)2,

where 𝜎1 and 𝜎2 are, respectively, the first and second singular values. Recall that 𝜎1 is also the operator
norm.

To see the above equality, note that

‖A‖∞ = max
𝑣,𝑤 ∈S𝑛
𝑣⊥𝑤

√
‖𝐴𝑣‖2

2 + ‖𝐴𝑤‖
2
2 .

Since
(
𝐴𝑣 𝐴𝑤

)
has rank at most 2,√
‖𝐴𝑣‖2

2 + ‖𝐴𝑤‖
2
2 =

��(𝐴𝑣 𝐴𝑤
)��
𝐹
=

√
𝜎1

( (
𝐴𝑣 𝐴𝑤

) )2 + 𝜎2
( (
𝐴𝑣 𝐴𝑤

) )2;

and since
(
𝐴𝑣 𝐴𝑤

)
is an orthogonal projection, by the interlacing theorem for singular values (compare

to [39, 3.1.3],

𝜎1
( (
𝐴𝑣 𝐴𝑤

) )
≤ 𝜎1(𝐴) and 𝜎2

( (
𝐴𝑣 𝐴𝑤

) )
≤ 𝜎2(𝐴).

Hence ‖A‖∞ ≤
√
𝜎1(𝐴)2 + 𝜎2(𝐴)2. And we actually have equality, as we can take v and w to be,

respectively, the 1st and 2nd (right) singular vectors of A.

A.1. Condition number theorems for 𝐶1 [𝑞]

Given 𝑥 ∈ S𝑛, we can consider the set of 𝐶1-maps whose zero set in S𝑛 have a singularity at x,

Σ1
𝑥 [𝑞] :=

{
𝑔 ∈ 𝐶1 [𝑞] | 𝑔(𝑥) = 0, rankD𝑥𝑔 < 𝑞

}
.

Similarly, we can consider the set of 𝐶1-maps having a singular zero,

Σ1 [𝑞] :=
⋃
𝑥∈S𝑛

Σ1
𝑥 [𝑞] .

The following result shows a way to compute the distance of a 𝐶1-map to these sets.
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Theorem A.2 (Condition number theorem). Let 𝑓 ∈ 𝐶1 [𝑞] and 𝑥 ∈ S𝑛. Then

dist∞( 𝑓 ,Σ1
𝑥 [𝑞]) =

√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞 (D𝑥 𝑓 )2

and

dist∞( 𝑓 ,Σ1 [𝑞]) = min
𝑥∈S𝑛

√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞 (D𝑥 𝑓 )2,

where dist∞ is the distance induced by ‖ ‖∞ and 𝜎𝑞 is the qth singular value.

We call this result the ‘condition number theorem’ as it is so for the following condition numbers for
𝐶1-maps:

K∞( 𝑓 , 𝑥) :=
‖ 𝑓 ‖∞√

‖ 𝑓 (𝑥)‖2 + 𝜎𝑞 (D𝑥 𝑓 )2

and

K∞( 𝑓 ) := sup
𝑥∈S𝑛

K∞( 𝑓 , 𝑥).

These condition numbers are very similar to K, and one might try (but we won’t here) to prove an
analogue of Theorem 3.2 for them when restricted to polynomial maps. For 𝐶1-maps, instead, such a
theorem would require dealing with multiple technical problems.

For K∞( 𝑓 ), one has

K∞( 𝑓 ) =
max

{√
‖ 𝑓 (𝑥)‖2

2 + ‖𝑎∗D𝑥 𝑓 ‖2
2 | 𝑥 ∈ S

𝑛, 𝑎 ∈ S𝑞−1
}

min
{√

‖ 𝑓 (𝑥)‖2
2 + ‖𝑎∗D𝑥 𝑓 ‖2

2 | 𝑥 ∈ S𝑛, 𝑎 ∈ S𝑞−1
} .

This formula shows that K∞( 𝑓 ) is similar to the condition number associated with an operator norm of
a linear map.

Proof of Theorem A.2. Using the triangular inequality and that 𝜎𝑞 is Lipschitz with respect to the
operator norm, we can see that for 𝑓 , 𝑔 ∈ 𝐶1 [𝑞],$$$$√‖ 𝑓 (𝑥)‖2 + 𝜎𝑞 (D𝑥 𝑓 )2 −

√
‖𝑔(𝑥)‖2 + 𝜎𝑞 (D𝑥𝑔)2

$$$$ ≤ ‖ 𝑓 − 𝑔‖∞.

From here, we deduce that √
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞 (D𝑥 𝑓 )2 ≤ dist∞( 𝑓 ,Σ1

𝑥 [𝑞])

by taking 𝑔 ∈ Σ1
𝑥 [𝑞] and minimizing over the right-hand side. For the reversed inequality, let

D𝑥 𝑓 = 𝑈
����
𝑠1

. . .

𝑠𝑞

0
����𝑉

be the SVD of 𝐷𝑥 𝑓 , where U and V are orthogonal and 0 is the zero matrix.
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Since orthogonal transformations leave invariant ‖ ‖∞, we can assume, without loss of generality,
that 𝑥 = 𝑒0 and that V is the identity matrix. Consider now

𝑔𝑖 := 𝑓𝑖 − 𝑓𝑖 (𝑒0)𝑋0 − 𝑢𝑖,𝑞𝑠𝑞𝑋𝑞 .

We have then that 𝑔 ∈ Σ1
𝑒0 [𝑞], since 𝑔(𝑒0) = 0 and 𝜎𝑞 (D𝑒0𝑔) = 0, and that

𝑓 − 𝑔 = 𝑓 (𝑒0)𝑋0 + 𝑠𝑞𝑢𝑞𝑋𝑞 .

By arguing as in Example 2.5 and noting that 𝑓 (𝑒0)𝑋0 + 𝑠𝑞𝑢𝑞𝑋𝑞 has rank at most 2, we have that

‖ 𝑓 (𝑒0)𝑋0 + 𝑠𝑞𝑢𝑞𝑋𝑞 ‖∞ =
��( 𝑓 (𝑒0) 𝑠𝑞𝑢𝑞

)��
𝐹

=
√
‖ 𝑓 (𝑒0)‖2

2 + ‖𝑠𝑞𝑢𝑞 ‖
2
2 =

√
‖ 𝑓 (𝑒0)‖2 + 𝜎𝑞 (D𝑒0 𝑓 )2/

Hence

dist∞( 𝑓 ,Σ1
𝑒0 [𝑞]) ≥ ‖ 𝑓 − 𝑞‖∞ =

√
‖ 𝑓 (𝑒0)‖2 + 𝜎𝑞 (D𝑒0 𝑓 )2,

finishing the proof of the first equality.
The second equality follows immediately from the first one. �

A.2. Structured condition number theorem for 𝐶1 [𝑞]

Recall that for 𝒅 ∈ N𝑞 , Δ is the diagonal 𝑞 × 𝑞 matrix whose diagonal is 𝒅. We consider the following
variant of ‖ ‖∞

‖ 𝑓 ‖∞,𝒅 := max
𝑥∈S𝑛

√
‖ 𝑓 (𝑥)‖2

2 + ‖Δ
− 1

2 D𝑥 𝑓 ‖2
2,2 = max

𝑥∈S𝑛
𝑣 ∈T𝑥S𝑛

√√√
‖ 𝑓 (𝑥)‖2 +

‖Δ− 1
2 D𝑥 𝑓 𝑣‖2

2

‖𝑣‖2
2

for 𝑓 ∈ 𝐶1 [𝑞]. The following example shows a class of functions for which this norm can be computed
exactly.

Example A.3. Let

𝑀𝑎,𝑏 :=
(
𝑎𝑋𝑑𝑖

0 + Δ
1
2 𝑏𝑋𝑑𝑖−1

0 𝑋1

)
𝑖
∈ HR𝒅 [𝑞] .

Then we can see that

‖𝑀𝑎,𝑏 ‖∞,𝒅 = ‖𝑀𝑎,𝑏 ‖𝑊 =
√
‖𝑎‖2 + ‖𝑏‖2.

Indeed, by Proposition 2.2, we have that for all 𝑥 ∈ S𝑛,√
‖𝑀𝑎,𝑏 (𝑥)‖2

2 +
���Δ− 1

2 D𝑥𝑀𝑎,𝑏

���2

2
≤ ‖𝑀𝑎,𝑏 ‖𝑊 .

Thus ‖𝑀𝑎,𝑏 ‖∞,𝒅 ≤ ‖𝑀𝑎,𝑏 ‖𝑊 , where we have equality for 𝑥 = 𝑒0.

We can also associate to ‖ ‖∞,𝒅 , for 𝑓 ∈ 𝐶1 [𝑞] and 𝑥 ∈ S𝑛, the quantities

K∞,𝒅 ( 𝑓 , 𝑥) :=
‖ 𝑓 ‖∞√

‖ 𝑓 (𝑥)‖2 + 𝜎𝑞
(
Δ− 1

2 D𝑥 𝑓
)2
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and

K∞,𝒅 ( 𝑓 ) := sup
𝑥∈S𝑛

K∞,𝒅 ( 𝑓 , 𝑥).

For these variants of K∞, we have the following structured condition number theorem for perturbations
by homogeneous polynomials.

Theorem A.4 (Structured condition number theorem). Let 𝑓 ∈ 𝐶1 [𝑞], 𝑥 ∈ S𝑛 and 𝒅 ∈ N𝑞 . Then

dist∞,𝒅
(
𝑓 ,Σ1

𝑥 [𝑞] ∩ ( 𝑓 +HR𝒅 [𝑞])
)
=

√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)2

and

dist∞,𝒅
(
𝑓 ,Σ1 [𝑞] ∩ ( 𝑓 +HR𝒅 [𝑞])

)
= min

𝑥∈S𝑛

√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)2
,

where dist∞,𝒅 is the distance induced by ‖ ‖∞,𝒅 and 𝜎𝑞 is the qth singular value.

Corollary A.5. Let 𝒅 ∈ N𝑑 , 𝑓 ∈ HR
𝒅
[𝑞] and 𝑥 ∈ S𝑛. Then

dist∞,𝒅 ( 𝑓 ,Σ𝒅,𝑥 [𝑞]) =
√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)2

= dist𝑊 ( 𝑓 ,Σ𝒅,𝑥 [𝑞])

and

dist∞,𝒅 ( 𝑓 ,Σ𝒅 [𝑞]) = min
𝑥∈S𝑛

√
‖ 𝑓 (𝑥)‖2 + 𝜎𝑞

(
Δ− 1

2 D𝑥 𝑓
)2

= dist𝑊 ( 𝑓 ,Σ𝒅 [𝑞]),

where dist∞,𝒅 is the distance induced by ‖ ‖∞,𝒅 and 𝜎𝑞 is the qth singular value.

Note that the adjective ‘structured’ refers to the fact that we only allow perturbations of f by𝐶1-maps
in HR

𝒅
[𝑞]. However, we might still be interested in general perturbations. If this is the case, we can get

them using the relationship between ‖ ‖∞,𝒅 and ‖ ‖∞. We will explore this in more detail in the next
subsection.

Proof of Theorem A.4. This proof is almost the same as the one of Theorem A.2. We only have to
modify the part where we find an explicit minimiser for the distance. Again, we write

Δ−
1
2 D𝑥 𝑓 = 𝑈

����
𝑠1

. . .

𝑠𝑞

0
����𝑉,

where 𝑠1, . . . , 𝑠𝑞 > 0, U and V are orthogonal and 0 is the zero matrix. Again, without loss of generality,
we assume that 𝑥 = 𝑒0 and that V is the identity. We consider

𝑔𝑖 := 𝑓𝑖 − 𝑥𝑑−1
0 ( 𝑓𝑖 (𝑒0)𝑋0 −

√
𝑑𝑖𝑢𝑖,𝑞𝑠𝑞𝑋𝑞)

so that 𝑔 ∈ Σ1
𝑒0 [𝑞], as 𝑔(𝑒0) = 0 and 𝜎𝑞 (D𝑒0𝑔) = 0, and

𝑓 − 𝑔 =
(
𝑓𝑖 (𝑒0)𝑋𝑑𝑖

0 +
√
𝑑𝑖𝑠𝑞𝑢𝑞𝑋𝑞

)
𝑖
.
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Because of Example A.3, for

ℎ =
(
𝑎𝑖𝑋

𝑑𝑖
0 +

√
𝑑𝑖𝑏𝑋

𝑑𝑖−1
0 𝑋1

)
𝑖
∈ HR𝒅 [𝑞],

we have that ‖ℎ‖∞,𝒅 =
√
‖𝑎‖2

2 + ‖𝑏‖
2
2 . Hence,

dist∞,𝒅 ( 𝑓 ,Σ1
𝑒0 [𝑞]) ≥ ‖ 𝑓 − 𝑔‖∞ =

√
‖ 𝑓 (𝑒0)‖2 + 𝜎𝑞 (Δ− 1

2 D𝑒0 𝑓 )2,

and the first equality follows. The second equality immediately follows from the first one. �

Proof of Corollary A.5. This is Theorem A.4 together with [15, Theorem 4.4]. �

A.3. Relationship between norms

As it happens with K and 𝜅 (see Section 4.3), the relations between the condition numbers K, 𝜅, K∞ and
K∞,𝒅 reduces to the relations between the corresponding norms.

We therefore prove the following propositions relating these norms. Note that for 𝐶1 [𝑞], we compare
‖ ‖∞ with ‖ ‖∞,𝒅 , and for HR

𝒅
[𝑞], we compare ‖ ‖R∞, ‖ ‖𝑊 , ‖ ‖∞ and ‖ ‖∞,𝒅 .

Proposition A.6. Let 𝑓 ∈ 𝐶1 [𝑞]. Then for all 𝒅, 𝒅̃ ∈ N𝑞 ,

1
max𝑖

√
𝑑𝑖
‖ 𝑓 ‖∞ ≤ ‖ 𝑓 ‖∞,𝒅 ≤ ‖ 𝑓 ‖∞

and

min
⎧⎪⎪⎨⎪⎪⎩1,min

𝑖

√
𝑑𝑖
𝑑𝑖

⎫⎪⎪⎬⎪⎪⎭‖ 𝑓 ‖∞,𝒅̃ ≤ ‖ 𝑓 ‖∞,𝒅 ≤ max
⎧⎪⎪⎨⎪⎪⎩1,max

𝑖

√
𝑑𝑖
𝑑𝑖

⎫⎪⎪⎬⎪⎪⎭‖ 𝑓 ‖∞,𝒅̃ .
Proposition A.7. Let 𝑓 ∈ HR

𝒅
[𝑞]. Then the following inequalities hold:

1√
2𝑞 D

‖ 𝑓 ‖∞ ≤ ‖ 𝑓 ‖R∞ ≤ ‖ 𝑓 ‖∞,𝒅 ≤ ‖ 𝑓 ‖∞ (A.1)

1√
2𝑞D

‖ 𝑓 ‖∞,𝒅 ≤ ‖ 𝑓 ‖R∞ ≤ ‖ 𝑓 ‖∞,𝒅 (A.2)

‖ 𝑓 ‖R∞ ≤ ‖ 𝑓 ‖∞,𝒅 ≤ ‖ 𝑓 ‖𝑊 (A.3)

Proof of Proposition A.6. It is enough to show that

‖ 𝑓 ‖∞,𝒅 ≤ max
⎧⎪⎪⎨⎪⎪⎩1,max

𝑖

√
𝑑𝑖
𝑑𝑖

⎫⎪⎪⎬⎪⎪⎭‖ 𝑓 ‖∞,𝒅̃ ,
since the rest of the inequalities are derived from this claim in a straightforward way. For the latter, note
that ‖ ‖∞ = ‖ ‖∞,1 where 1 = (1, . . . , 1).

Now one can easily check that for 𝐴 ∈ R𝑞×𝑛,���Δ− 1
2 𝐴

���
2,2

=
���Δ− 1

2 Δ̃
1
2 Δ̃−

1
2 𝐴

���
2,2

≤
���Δ− 1

2 Δ̃
1
2

���
2,2

���Δ̃− 1
2 𝐴

���
2,2

= max
𝑖

√
𝑑𝑖
𝑑𝑖

���Δ̃− 1
2

���
2,2
,
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and that, for 𝑎, 𝑏, 𝑡 ∈ R2, √
𝑎2 + (𝑡𝑏)2 ≤ max{1, |𝑡 |}

√
𝑎2 + 𝑏2.

Combining these bounds, we get√
‖ 𝑓 (𝑥)‖2 +

���Δ− 1
2 D𝑥 𝑓

���2

2,2
≤ max

⎧⎪⎪⎨⎪⎪⎩1,max
𝑖

√
𝑑𝑖
𝑑𝑖

⎫⎪⎪⎬⎪⎪⎭
√
‖ 𝑓 (𝑥)‖2 +

���Δ̃− 1
2 D𝑥 𝑓

���2

2,2

and so the desired claim. �

Proof of Proposition A.7. Arguing as in Proposition A.6, we can prove that for all 𝑥 ∈ S𝑛,

1√
2𝑞 D

√
‖ 𝑓 (𝑥)‖2 + ‖D𝑥 𝑓 ‖2

2,2 ≤ max
{
‖ 𝑓 (𝑥)‖∞,

��Δ̃−1D𝑥 𝑓
��
∞,2

}
≤

√
‖ 𝑓 (𝑥)‖2 + ‖D𝑥 𝑓 ‖2

2,2

and

1√
2𝑞D

√
‖ 𝑓 (𝑥)‖2 +

���Δ− 1
2 D𝑥 𝑓

���2

2,2
≤ max

{
‖ 𝑓 (𝑥)‖∞,

��Δ̃−1D𝑥 𝑓
��
∞,2

}
≤

√
‖ 𝑓 (𝑥)‖2 +

���Δ− 1
2 D𝑥 𝑓

���2

2,2
.

Maximizing over 𝑧 ∈ S𝑛 gives the inequalities in equations (A.1) and (A.2).
It only remains to prove ‖ 𝑓 ‖∞,𝒅 ≤ ‖ 𝑓 ‖𝑊 in equation (A.3). To do this, note that by Proposition 2.2,

for all 𝑥 ∈ S𝑛, √
‖ 𝑓 (𝑥)‖2 +

���Δ− 1
2 D𝑥 𝑓

���2

2,2
≤ ‖ 𝑓 ‖𝑊 .

The result follows from maximizing over 𝑥 ∈ S𝑛. �

We finish with the following theorem, similar in flavour to [30, Proposition 3] and [12, Theorem
7], where it was shown that the distance of a polynomial tuple to polynomial tuples with singularities
bounds the distance of this polynomial to 𝐶1-functions with singularities.

Theorem A.8. Let 𝑓 ∈ HR
𝒅
[𝑞] and 𝑥 ∈ S𝑛. Then

1
√

D
dist∞( 𝑓 ,Σ1

𝑥 [𝑞]) ≤ dist∞,𝒅 ( 𝑓 ,Σ𝒅,𝑥 [𝑞]) = dist𝑊 ( 𝑓 ,Σ𝒅,𝑥 [𝑞]) ≤ dist∞( 𝑓 ,Σ1
𝑥 [𝑞]),

and

1
√

D
dist∞( 𝑓 ,Σ1 [𝑞]) ≤ dist∞,𝒅 ( 𝑓 ,Σ𝒅 [𝑞]) = dist𝑊 ( 𝑓 ,Σ𝒅 [𝑞]) ≤ dist∞( 𝑓 ,Σ1 [𝑞]),

where dist∞ and dist∞,𝒅 are, respectively, the distances induced by ‖ ‖∞ and ‖ ‖∞,𝒅 .

Sketch of proof. The proof is similar to that of Proposition A.6. Arguing as there, we can prove that for
all 𝑥 ∈ S𝑛,

1
√

D

√
‖ 𝑓 (𝑥)‖2

2 + 𝜎𝑞
(
Δ− 1

2 D𝑥 𝑓
)2
≤

√
‖ 𝑓 (𝑥)‖2

2 + 𝜎𝑞 (D𝑥 𝑓 )2 ≤
√
‖ 𝑓 (𝑥)‖2

2 + 𝜎𝑞
(
Δ− 1

2 D𝑥 𝑓
)2
.

Minimizing over 𝑥 ∈ S𝑛 and applying Theorems A.2 and Corollary A.5, we conclude. �
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