THE EQUALITY $(A \cap B)^{n}=A^{n} \cap B^{n}$ FOR IDEALS

ROBERT GILMER AND ANNE GRAMS

1. Introduction. Let D be an integral domain with identity, and let R be a commutative ring. If n is a positive integer, R will be said to have property (n), $(n)^{\prime}$, or $(n)^{\prime \prime}$ according as
property (n) : For any $x, y \in R,(x, y)^{n}=\left(x^{n}, y^{n}\right)$.
property $(n)^{\prime}$: For any $x \in R$ and any ideal A of R such that $x^{n} \in A^{n}$, it follows that $x \in A$.
property $(n)^{\prime \prime}$: For any ideals A, B of $R,(A \cap B)^{n}=A^{n} \cap B^{n}$.
J. Ohm introduced property (n) in [7] in connection with the question: If $n \geqq 2$ and if D has property (n), must D be a Prüfer domain? (The integral domain D with identity is a Prüfer domain if each nonzero finitely generated ideal of D is invertible; equivalently, D_{P} is a valuation ring for each proper prime ideal P of D.) Prior to Ohm's paper, it was known that if D has property (2) and if D is integrally closed, then D is Prüfer. In [7, Theorem 1.4], Ohm showed that D is Prüfer if D has property (2) and if 2 is a unit of D. Example 4.6 of [7] is a domain which has property (n) for all n, but which is not integrally closed, and hence not Prüfer.

In [3], Gilmer extended Ohm's investigation of property (n), and in the process he defined property $(n)^{\prime}$. He showed that property ($\left.n\right)^{\prime}$ implies property (n) and that an integrally closed domain having property (n) for any $n>1$, is Prüfer. Two examples in [3] show that a domain with property $(n)^{\prime}$, for each positive n need not be Prüfer.

In this paper, we investigate the question:
Does property ($n)^{\prime \prime}$ imply that D is a Prüfer domain?
We show that property $(n)^{\prime \prime}$ implies both properties (n) and $(n)^{\prime}$, and thus if D is integrally closed, it implies that D is a Prüfer domain. Example 3.4 shows, however, that property $(n)^{\prime \prime}$, for all n, is not strong enough to imply that the domain is integrally closed. Finally, we show in Example 3.7 that property $(n)^{\prime \prime}$ is not equivalent to either property (n) or $(n)^{\prime}$. Our notation and terminology will be that of [2].
2. Property $(n)^{\prime \prime}$ and Prüfer domains. Throughout this section, D is an integral domain with identity, and n is an integer greater than 1.

[^0]$$
(A \cap B)^{n}=A^{n} \cap B^{n} \text { FOR IDEALS }
$$

Lemma 2.1. Property $(n)^{\prime \prime} \Rightarrow$ property $(n)^{\prime} \Rightarrow$ property (n).
Proof. Theorem 5.3 in [3] shows that property $(n)^{\prime}$ implies property (n). To see that property $(n)^{\prime \prime}$ implies property $(n)^{\prime}$, suppose that A is an ideal of D, $x \in D-\{0\}$, and $x^{n} \in A^{n}$. Then $(x)^{n}=(x)^{n} \cap A^{n}=[(x) \cap A]^{n} \subseteq(x)^{n-1} A$. Hence $(x) \subseteq A$ since $(x)^{n-1}$ is a cancellation ideal.

Theorem 2.2. Let D be an integrally closed domain. The following conditions are equivalent in D :
(a) D is a Prüfer domain.
(b) Property ($n)^{\prime \prime}$ holds in D.
(c) Property $(n)^{\prime \prime}$ for finitely generated ideals holds in D.

Proof. (a) \Rightarrow (b). It is clear that any valuation ring has property $(n)^{\prime \prime}$. Hence if D is Prüfer, and if $\left\{M_{\lambda}\right\}$ is the set of maximal ideals of D, then for any ideals A and B of D,

$$
\begin{aligned}
(A \cap B)^{n} & =\bigcap_{\lambda}(A \cap B)^{n} D_{M_{\lambda}}=\bigcap_{\lambda}\left[(A \cap B) D_{M_{\lambda}}\right]^{n}=\bigcap_{\lambda}\left(A D_{M_{\lambda}}^{\text {n }} \cap B D_{M_{\lambda}}\right)^{n} \\
& =\bigcap_{\lambda}\left[\left(A D_{M_{\lambda}}\right)^{n} \cap\left(B D_{M_{\lambda}}\right)^{n}\right] \\
& =\left[\bigcap_{\lambda} A^{n} D_{M_{\lambda}}\right] \cap\left[\bigcap_{\lambda} B^{n} D_{M_{\lambda}}\right]=A^{n} \cap B^{n} .
\end{aligned}
$$

(b) \Leftrightarrow (c). This is true in any commutative ring.
(b) \Rightarrow (a). This follows from Lemma 2.1 above and from Theorem (20.3) in [2].

Remark 2.3. It is apparent from our proof of the implication (a) \Rightarrow (b) that $\left[\bigcap_{i=1}^{k} A_{i}\right]^{n}=\bigcap_{i=1}^{k} A_{i}{ }^{n}$ for any finite family $\left\{A_{i}\right\}_{i=1}^{k}$ of ideals of a Prüfer domain. The analogous equality for an arbitrary family of ideals of a Prüfer domain is not valid. For example, if $V=\mathbf{Q}[[X]]$ and if $M=X V$, where \mathbf{Q} is the field of rational numbers, then if \mathbf{Z} denotes the ring of integers, the domain $D=\mathbf{Z}+M$ is Prüfer [2, p. 561]; but if $A_{i}=p_{i} D$, where $p_{1}<p_{2}<\ldots$ is the sequence of positive prime integers, then for any positive integer n,

$$
\left[\bigcap_{i=1}^{\infty} A_{i}\right]^{n}=M^{n} \subset \bigcap_{i=1}^{\infty} A_{i}{ }^{n}=M
$$

At this point we detect a breakdown in the duality between the operations of addition and intersection on the set of ideals of a Prüfer domain, for it is true that

$$
\left(\sum_{\lambda} A_{\lambda}\right)^{n}=\sum_{\lambda} A_{\lambda}{ }^{n}
$$

for any family $\left\{A_{\lambda}\right\}$ of ideals of a Prüfer domain, and for any positive integer n.
Remark 2.4. A careful analysis of the proof of Lemma 2.1 and of Theorem 4.3 of [3] shows that the following generalization of the implication (c) \Rightarrow (a) in Theorem 2.2 is valid.
(*) If D is n-integrally closed and if $(A \cap B)^{n}=A^{n} \cap B^{n}$ for each pair A, B of ideals of D with a basis of two elements, then D is a Prüfer domain. (If n is a positive integer and if J is an integral domain with identity with quotient field K, then J is said to be n-integrally closed [3] if J contains each element θ in K such that θ is a root of a monic polynomial $f(X) \in J[X]$ of degree n.)

Result (*) is of some interest because of its connection with one of the more important open questions concerning Prüfer domains, namely: Does every finitely generated ideal of a Prüfer domain have a basis of two elements? [5].

Remark 2.5. The concept of a Prüfer domain has been extended to commutative rings with zero divisors, thereby obtaining Prüfer rings. M. Griffin's paper [6] contains much of what is known about Prüfer rings. Using the results of [6], it is straightforward to prove the following generalization of Theorem 2.2:

Let R be an integrally closed ring with few zero divisors, and let n be an integer greater than one. The following conditions are equivalent in R :
(a) R is a Prüfer ring.
(b) If A and B are regular ideals of R, then $(A \cap B)^{n}=A^{n} \cap B^{n}$.
(c) If A and B are finitely generated regular ideals of R, then $(A \cap B)^{n}=$ $A^{n} \cap B^{n}$.

The question arises as to the relationship between conditions (a), (b), and (c) if the hypothesis " R has few zero divisors" is dropped. In partial answer to this question, we can prove $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$. Ans examination of our proof of Lemma 2.1, together with results of [3], show that (c) implies the following condition (c)':
(c)': If $\left\{r_{i}\right\}_{i=1}^{n}$ is a finite set of regular elements of R, then $\left(r_{1}, \ldots, r_{n}\right)$ is invertible.

An example in [4] shows that an integrally closed ring in which (c) ${ }^{\prime}$ holds need not be a Prüfer ring, but we have no example to show that (c) does not imply (a).
3. Examples. In this section, we present a class of domains with property $(n)^{\prime \prime}$ for every positive n, but which are not integrally closed.

Let V be a valuation ring of the form $K+M$, where K is a field and M is the maximal ideal of V, and let v be a valuation associated with V. Let k be a proper subfield of K, and set $D=k+M$. In order to present Example 3.4, we shall need a characterization of the finitely generated ideals of D and of the powers of such ideals.

Lemma 3.1 (Gilmer [3]). If $x \in D-\{0\}, x D$ contains each element y of V such that $v(y)>v(x)$. If A is a finitely generated ideal of D, say $A=\left(a_{1}, \ldots, a_{n}\right)$, and if $t=\min \left\{v\left(a_{i}\right) \mid 1 \leqq i \leqq n\right\}$, then for any element a of A such that $v(a)=t$, A has a basis $\left\{a, k_{2} a, \ldots, k_{m} a\right\}$ for some $k_{2}, \ldots, k_{m} \in K-k$. Moreover,
$A=W a+C$, where W is the k-subspace of K spanned by $\left\{1, k_{2}, \ldots, k_{m}\right\}$ and $C=\{y \in V \mid v(y)>t\}$.

Lemma 3.2. Let $A=W a+C$ be a finitely generated ideal of D as given in Lemma 3.1. Then $A^{n}=W^{n} a^{n}+C_{1}$, where $C_{1}=\{y \in V \mid v(y)>n v(a)\}$. If B is a finitely generated ideal of D of the form $W_{1} b+C$, where $v(b)=v(a)$ and W_{1} is a finite-dimensional k-subspace of K, then

$$
(A \cap B)^{n}=\left(W a \cap W_{1} b\right)^{n}+C_{1} .
$$

Proof. Any element $x \in A^{n}$ is a finite sum of elements $a_{1} a_{2} \ldots a_{n}, a_{i} \in A$. Writing $a_{i}=w_{i} a+c_{i}, w_{i} \in W, c_{i} \in C$, we obtain $a_{1} a_{2} \ldots a_{n}=w_{1} \ldots$ $w_{n} a^{n}+w_{1} \ldots w_{n-1} a^{n-1} c_{n}+\ldots+c_{1} c_{2} \ldots c_{n}$. Since each term in this expression except the first has v-value greater than $n v(a), a_{1} \ldots a_{n} \in W^{n} a^{n}+C_{1}$. Hence $x \in W^{n} a^{n}+C_{1}$.

Conversely, $W a \subseteq A$ implies $W^{n} a^{n} \subseteq A^{n}$. Also if $y \in C_{1}$, then $z(y)>$ $n v(a)=v\left(a^{n}\right)$ implies that $y \in a^{n} D \subseteq A^{n}$. It then follows that $W^{n} a^{n}+$ $C_{1} \subseteq A^{n}$, and so equality holds.

The proof that $(A \cap B)^{n}=\left(W a \cap W_{1} b\right)^{n}+C_{1}$ follows similarly.
If R is a subring of the commutative ring S, then R is said to have property (n) with respect to S if for each $\xi \in S$, there exist $a_{i}, b_{i} \in R$ such that $\xi^{i}=$ $a_{i} \xi^{n}+b_{i}, i=1, \ldots, n-1$. We are interested in the case where R and S are fields.

Theorem 3.3. Let V be a valuation ring of the form $K+M, K$ a field, M the maximal ideal of V, and let v be a valuation associated with V. Suppose that k is a proper subfield of K such that k has property (n) with respect to K for some positive integer n. Then $D=k+M$ has property $(n)^{\prime \prime}$.

Proof. We remark that Ohm [7] observed that A has property (n), and Gilmer [3] showed that A has property $(n)^{\prime}$.

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{m}\right)$ be finitely generated ideals of D, let $t_{1}=\min \left\{v\left(a_{i}\right) \mid 1 \leqq i \leqq n\right\}$ and $t_{2}=\min \left\{v\left(b_{i}\right) \mid 1 \leqq i \leqq m\right\}$. If $t_{1}>$ $t_{2}=v\left(b_{j}\right)$, then by Lemma 3.1, each $a_{i} \in b_{j} D$, so that $A \subseteq B$, and the result is clear. Thus we may assume that $t_{1}=t_{2}, A=W_{1} a+C$ and $B=W_{2} b+C$, $a \in A, b \in B, v(a)=v(b)=t_{1}, C=\left\{y \in V \mid v(y)>t_{1}\right\}$, and W_{1}, W_{2} are finite-dimensional k-subspaces of K.

In [1], J. W. Brewer showed that for k to have property (n) with respect to K, it is necessary that $[K: k]=2$. It follows that we have the following three cases to consider:

$$
\begin{aligned}
& \text { 1. } A=K a+C, B=K b+C \\
& \text { 2. } A=k a+C, B=K b+C \\
& \text { 3. } A=k a+C, B=k b+C
\end{aligned}
$$

Since $v(a)=v(b)$, there exists $\gamma \in K-\{0\}$ and $m \in M$ such that $b / a=$ $\gamma+m$. Since $a m \in C$, there is no loss of generality in assuming that $m=0$
(that is, γa is in B and is an element of B of minimal value). Using this relationship and Lemma 3.2, the three cases become

1. $A=K a+C=K \gamma a+C=K b+C=B$.
2. $A=k a+C \subseteq K a+C=K \gamma a+C=B$.
3. $(A \cap B)^{n}=(k a \cap k \gamma a)^{n}+C_{1}=(k \cap k \gamma)^{n} a^{n}+C_{1}$.
$A^{n} \cap B^{n}=\left[k^{n} a^{n} \cap k^{n}(\gamma a)^{n}\right]+C_{1}=\left(k \cap k \gamma^{n}\right) a^{n}+C_{1}$.
Now the containment $(k \cap k \gamma)^{n} \subseteq k \cap k \gamma^{n}$ always holds, and since $k, k \gamma$ and $k \gamma^{n}$ are one-dimensional k-subspaces of K, it follows that, for $1 \leqq i \leqq n$, $k \cap k \gamma^{i}$ is either k or (0), depending upon whether γ^{i} is, or is not, in k. Since k has property (n) with respect to K, it follows from Lemma 5.5 of [3] that $\gamma \in k$ if and only if $\gamma^{n} \in k$. Thus $(k \cap k \gamma)^{n}=\left(k \cap k \gamma^{n}\right)$, and hence $(A \cap B)^{n}=$ $A^{n} \cap B^{n}$.

Example 3.4. In [7], Ohm constructed fields k, K, with k a proper subfield of K, such that k has property (n) with respect to K for each positive integer n. If M is the maximal ideal of the valuation ring $K[[X]]$, then the domain $D=k+M$ has property $(n)^{\prime \prime}$ for each n. Since $K[[X]]$ in the integral closure of D, D is not Prüfer.

Our next example shows that property $(n)^{\prime \prime}$ is indeed stronger than properties (n) and $(n)^{\prime}$. Suppose that V_{1} and V_{2} are rank one discrete valuation rings having a common quotient field L, that K is a common subfield of V_{1} and V_{2}, and that $V_{i}=K+M_{i}$, where M_{i} is the maximal ideal of V_{i}. We are interested in the domain $D=K+\left(M_{1} \cap M_{2}\right)$. If v_{i} is a valuation associated with V_{i}, then by the approximation theorem for independent valuations, there exist $a, b \in L$ such that $v_{1}(a)=v_{2}(b)=1, v_{1}(b)=v_{2}(a)=0$. Using this notation, we have

Lemma 3.5. The domain D is local. In particular, if A is a nonprincipal ideal of D, then there exist positive integers n, m such that $A=\left(a^{n} b^{m}, a^{n+1} b^{m}\right)$. Moreover,

$$
\left(a^{n} b^{m}, a^{n+1} b^{m}\right)=\left\{d \in D \mid v_{1}(d) \geqq n, v_{2}(d) \geqq m\right\}
$$

Proof. We show first that if $t \geqq n, s \geqq m$, and if $v_{1}(x)=v_{2}(x)=0$, then there exist $\xi_{1}, \xi_{2} \in K$ and $z \in M_{1} \cap M_{2}$ such that

$$
a^{t} b^{s} x=\left(\xi_{1}+z\right) a^{n} b^{m}+\xi_{2} a^{n+1} b^{m}
$$

Suppose that $a^{t-n} b^{s-m} x \equiv \mu_{i}\left(M_{i}\right)$, and that $a \equiv \eta\left(M_{2}\right)$, where $\mu_{i}, \eta \in K$, $\eta \neq 0$. Then $\xi_{1}=\mu_{1}, \xi_{2}=\eta^{-1}\left(\mu_{2}-\mu_{1}\right)$ is the unique solution in K of the system of equations

$$
\begin{aligned}
& \mu_{1}=X, \\
& \mu_{2}=X+\eta Y .
\end{aligned}
$$

It follows that $a^{t-n} b^{s-m} x-\xi_{1}-a \xi_{2}=z \in M_{1} \cap M_{2}$. Hence (\#) follows, and from this we have $\left(a^{n} b^{m}, a^{n+1} b^{m}\right)=\left\{d \in D \mid v_{1}(d) \geqq n, v_{2}(d) \geqq m\right\}$.

Now let A be a nonprincipal ideal of D. Let $n=\min \left\{v_{1}(x) \mid x \in A\right\}$, let $m=\min \left\{v_{2}(x) \mid x \in A\right.$ and $\left.v_{1}(x)=n\right\}$, and let y be an element in A such that $v_{1}(y)=n, v_{2}(y)=m$. Write $y=a^{n} b^{m} u$, where $v_{1}(u)=v_{2}(u)=0$. We choose $x \in A-\left(a^{n} b^{m} u\right) D$. It is clear that $v_{1}(x) \geqq n$. We show that $v_{2}(x) \geqq m$. If $v_{1}(x)=n$, it is clear that $v_{2}(x) \geqq m$; and if $v_{1}(x)>n$, then $x+a^{n} b^{m} u \in A$, $v_{1}\left(x+a^{n} b^{m} u\right)=n$, and hence $v_{2}\left(x+a^{n} b^{m} u\right) \geqq m$, so that $v_{2}(x) \geqq m$. It then follows from (\#) that there exist $\xi_{1}, \xi_{2} \in K$ and $z \in M_{1} \cap M_{2}$ such that $x u^{-1}=$ $\left(\xi_{1}+z\right) a^{n} b^{m}+\xi_{2} a^{n+1} b^{m}$. Therefore, $x=\left(\xi_{1}+z\right) a^{n} b^{m} u+\xi_{2} u a^{n+1} b^{m}=\left(\xi_{1}+\right.$ $z) a^{n} b^{m} u+\xi_{2} a^{n+1} b^{m}(\mu+h b)$, where $u=\mu\left(M_{2}\right)$ and where $h \in V_{2}$. It then follows that $x=\left(\xi_{1}+z+\xi_{2} h a b\right) a^{n} b^{m}+\mu \xi_{2} a^{n+1} b^{m}$, where $\xi_{2} h a b \in M_{1} \cap M_{2}$. Since $x \notin a^{n} b^{m} u D, \mu \xi_{2} \neq 0$ and thus $a^{n+1} b^{m} \in\left(x, a^{n} b^{m} u\right) \subseteq A$. Hence $\left(a^{n} b^{m}\right.$, $\left.a^{n+1} b^{m}\right) \subseteq A \subseteq\left(a^{n} b^{m}, a^{n+1} b^{m}\right)$, and equality follows.

Theorem 3.6. Let n be an integer greater than one. The domain $D=K+$ ($M_{1} \cap M_{2}$) does not have property ($\left.n\right)^{\prime \prime}$. D has property ($\left.n\right)^{\prime}$ if and only if the mapping $x \rightarrow x^{n}$ of K into K is one-to-one.

Proof. Let $A=(a b) D$ and $B=\left(a^{2} b\right) D$. Then $(A \cap B)^{n}=\left(a^{3 n} b^{2 n}, a^{3 n+1} b^{2 n}\right)$ while $A^{n} \cap B^{n}=\left(a^{2 n+1} b^{n+1}, a^{2 n+2} b^{n+1}\right)$, so that $(A \cap B)^{n} \subset A^{n} \cap B^{n}$.

Theorem 7.1 of [3] shows that D has property (n) if and only if the mapping $x \rightarrow x^{n}$ of K is one-to-one. Hence it suffices to show that if D has property (n), then it also has property $(n)^{\prime}$.

Now if J is any domain with property (n), then J has property $(n)^{\prime}$ with respect to principal ideals. That is, if $x^{n} \in(y)^{n}$, then $x \in(y)$, for since J has property $(n), x y^{n-1} \in\left(x^{n}, y^{n}\right)=\left(y^{n}\right)$. Thus we need only consider the nonprincipal ideals of D.

If A is a nonprincipal ideal of D, then it follows from Lemma 3.5 that $A=a^{n} b^{m}\left(V_{1} \cap V_{2}\right)$ is an ideal of $V_{1} \cap V_{2}$, and hence A is an intersection of valuation ideals. Lemma 5.1 of [3] shows that if the ideal A of the domain D is an intersection of valuation ideals of D, and if $x \in D$ is such that $x^{n} \in A^{n}$, then $x \in A$. Thus the proof is complete.

Example 3.7. The prime field π_{2} with two elements has the property that $x \rightarrow x^{n}$ is one-to-one for any positive integer n. Let $V_{1}=\left(\pi_{2}[X]\right)_{(x)}=\pi_{2}+M_{1}$, and let $V_{2}=\left(\pi_{2}[X]\right)_{(X+1)}=\pi_{2}+M_{2}$. Then if $D=\pi_{2}+\left(M_{1} \cap M_{2}\right)$, we obtain an example of a domain having property $(n)^{\prime}$ for each positive integer, but having property $(n)^{\prime \prime}$ for no $n>1$.

Remark 3.8. For a positive integer $n>1$, there are essentially two different methods of obtaining domains with property (n) which are not integrally closed. One is the $k+M$ construction of our Theorem 3.3. As we have previously remarked, Gilmer in [3] showed that domains constructed in this way have property $(n)^{\prime}$. The second way of obtaining non-integrally closed domains with property (n) is the $K+\left(M_{1} \cap M_{2}\right)$-construction of our Theorem 3.6. As we have shown in the proof of Theorem 3.6, property (n) in such a domain
is equivalent to property $(n)^{\prime}$. It follows that no example has been pointed out in the literature to show that (n) does not imply $(n)^{\prime}$. In fact, it is conceivable that the properties $(n)^{\prime},(n)$, and $(n)^{*}$ of [3] are equivalent.

References

1. J. W. Brewer, Ohm's property (n) for field extensions, Duke Math. J. 37 (1970), 199-207.
2. R. Gilmer, Multiplicative ideal theory, Queen's papers in pure and applied mathematics, No. 12 (Queen's University, Kingston, Ontario, 1968).
3. ———On a condition of J. Ohm for integral domains, Can. J. Math. 20 (1968), 970-983.
4. ——On Prüfer rings Bull. Amer. Math. Soc. 78 (1972), 223-224.
5. R. Gilmer and W. Heinzer, On the number of generators of an invertible ideal, J. Algebra 14 (1970), 139-151.
6. M. Griffin, Prüfer rings with zero divisors, J. Reine Angew. Math. 239/240 (1970), 55-67.
7. J. Ohm, Integral closure and $(x, y)^{n}=\left(x^{n}, y^{n}\right)$, Monatsh. Math. 71 (1967), 32-39.

Florida State University, Tallahassee, Florida

[^0]: Received July 26, 1971 and in revised form, October 21, 1971. The research of the first named author was partially supported by NSF Grant GP-19406.

