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metrising irreducible, rational curves in a given linear syster§ emstudied. The results obtained are
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1. Introduction

In this paper we investigate the geometry of families of rational curves on a
nonsingular, rational surface All varieties are assumed to be projective o@er

Let D be an effective divisor class i and let|D| be the set of all effective
divisors linearly equivalent td; this is a projective space whose dimension we
denote by-(D). Inside|D|, we consider the locus of rational curves: we let

V(D) = {[X] € | D| such thatX is an irreducible rational curvé.

This is a locally closed subset gb|; we letV (D) C |D| be its closure. We call
V(D) the Severi varietyof rational curves associated to the divisor classand
we denote its dimension by (D). We have in generaly(D) > (D) — pa(D)
with equality holding in all the cases that we shall study.

The particular aspect of the geometry 6f D) of concern to us here is its
degree, which we denote hy (D). This can be characterized directly: it is the
number of irreducible rational curves that are linearly equivalerd® tand that
pass througho(D) general points of. The principal results of this paper is the
computation ofV (D) in some cases. For simplicity, we defiivé D) to be zero if
V(D) is empty.
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There are various approaches to the calculation of degrees of Severi varieties
(see [CH] for a different technique). We call the one we take here the ‘cross-ratio’
method,; it is based on ideas of Kontsevich and Manin, expressed in the ‘First
Reconstruction Theorem’ of [KM]. In [KM] they describe a formula discovered
by Kontsevich, for the number of plane rational curves of given degree passing
through the appropriate number of points (the first proofs of it appear in in [RT]
and in [K] — [KM]). These ideas have also been used to give formulas for the
degrees of genus 0 Severi varieties on certain rational surfaces; see [CM], [DI] and
[KP].

For an illustration of how the cross-ratio method can be used to give a rather
simple proof of Kontsevich’s formula see [C] (see also [CH] for an even simpler
proof).

LetF, = P(Op1 @ Opi(n)) be a Hirzebruch surface. The Picard grougrgpf
has rank 2, and we choose generators as follows

Pic(F,) =Z-C & Z- F,

whereC? = n,F? = 0 andF - C = 1. We denote byF the unique curve of
negative self intersection, so thet = —n andFE ~ C — nF.

Let D be any divisor class on the surfae= F,, other thanE, and letm :=
(m1,my, ..., my) be any sequence of positive integers Withn; = (D - E). We
define the locally closed subvariely, (D) C V(D) to be the locus of irreducible
rational curvesX such that, ifv: P! — X is the normalization o, the pullback
divisor

v (E) =Y mi- g,
for some collection of distinct pointgy, ...,q, € P!, and we letV,,, (D) be its
closure; for example, as we will seegif = (1,1,...,1), thenV,,(D) = V(D).
Whenm contains a single integérgreater than 1 (i.en = (i,1,1,...,1)), we
denote these by; (D) andV;(D) respectively. We set

ro(D) = dim(V;(D))
and

N;(D) = degV;(D).

We have/ (D) for Vi(D), N(D) = Ni(D) andro(D) = r§(D). We defineV; (D)
to be zero ifV;(D) is empty.

Similarly, letQ = {p1,...,px} C E C F, be any collection of; distinct
points. We let¥}(D) c V(D) be the locus of irreducible rational curv&ssuch

that, ifv: P — X is the normalization of{, then for some collection of distinct
pointsqs, . . ., qx € P! we have

v(qi) = pi
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and
vi(E) =) mi-q

and again letV}(D) c V(D) be its closure.

Now we give a list of some formulas including all the ones that we prove in this
paper. They are very similar from a formal point of view. We state them in a way
that highlights the analogies.

Fix two curvesC; andC, on S. For any pair of divisor class€3; and D, we
introduce the function

v(D1, D2) =

ro(D) —3

N(D1)N(D>) [(TO(Dl) 1

) (D1 - C3)(D2 - Cy)

B ( ro(D) — 3

ro(Dy) - 2) (e oD C“)] |

Using this notation, we state the following results

Recursion for P? ([KM]) LetCs andCy be two fixed lines in the plane, then

N(D)= 3 ~(D1,D2)(D1-Dy).
Dyt Dp=D

Recursion for P x P! ([KM], [DI], [KP]) LetCsandCy be two fixed elements of
the two distinct rulings, then

N(D)= % ~(D1,D2)(D1-Dy).
Dy+Dy=D

The first new result of this paper is a recursion formula for the degrees of Severi
varieties of rational curves dry. The recursion contains now a new term which is
due to the contribution of degenerate curves contaifing

Recursion for F, (Theorem 3.2) et C3 and Cy4 be two fixed elements of the class

C, then
2N(D) = Y.  ~(D1,D2)(D1- Dy)
D1+Dy=D
+2 Y y(D1,D2)(D:1- E)(Dz- E).
D1+Dy,=D—-F
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Finally, onF,,, the general reducible curvés = UX; € |D| that are limits of
irreducible rational curves and contathhave the property that each component
X, may have a point of tangency of ordgrwith E — that is, will belong to
Vi;(Dj), whereD; is the divisor class of;. Accordingly, we shall define later
(Section 3.4) a generalized version of the numfddd,, D,); this will be a function
Yivsizyit (D1, D2, - . ., Dy) depending recursively on the degréés(D; ). In these
terms, we give a formula expressing the degigeé) of V(D) onF, in terms of
the degrees of the tangential Severi varieties of smaller divisor classes.

A sample formula for F,, (Theorem 3.4)

nN(D) = > (D1-D2)y1.1(D1,D2)
D1+ Dp=D

n
+2 > >
t=2 D1+ Do+ -+Dy=D—E i1,...,it
X H (E : Dj)rYil,...,it(Dla cee aDt)'
jiij=1
The difference here is that in case:> 3 this does not give a complete recursion:
to be able to enumerate rational curves on such surfaces, we would need formulas
for the degrees of the ‘tangential’ Severi varieties as well, that is, we need formulas
for N;(D). The first case for which this occurs is that ef. Very possibly a
complete recursion could still be obtained using the cross-ratio method, although
the level of difficulty seems to us to get very high. Instead we found a different
technigue that we successfully applied in a few cases; for example, we obtained a
complete set of recursions for the surfage This different method is the subject
of another paper of ours (cf. [CH]); it also is heavily based on the deformation
theory results that are developed in the second chapter of this paper.
Finally, we obtain a closed formula for the class @n any ruled surfacg, .

Closed formula for 2ConF,, (Theorem 3.3)
n—1
2n +2
N(20) = —k)? :
2C)=> (n—k) ( " >
k=0
2. Degenerations of rational curves
2.1. THE BASIC SEFUP

We start with the complete linear systém| associated to a divisor clags on
the ruled surfacesS = F,,, and with the Severi variety’ (D) C |D|. We then
chooseo(D) — 1 general pointsgy, . .., ¢.,(p)—1 € S, and letl” be the intersection
of V(D) with the linear subspace of curveg | passing throughy, . . . , ¢, (py—1;
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we letX C T" x S be the corresponding family of curves over

Next, we letl'"” — I' be the normalization of the bage andXx” = (X xp
I'”)» — T the normalization of the pullback of the familyd, so thatt” — T'”
is a family whose general fiber is a smooth rational curv&. 1§ a fiber ofX¥ — T,
the notationX” will be used for a corresponding fiber of the familyy — I'”,
which may differ from the normalization of .

Then we fix two curveg’s andCy in F,,, which will be linearly equivalent te’'.
We need to make a further base chaige> I'”, so that the points of intersection
of the curves in our family witl; andC4 become rational over the base. We thus
let B — I'” be any finite cover, unramified at the poiats I'” with X} singular,
and letX’ — B be the pullback of the familyt” — T'” to B. (By Propositions
2.1 and 2.5, the map — T'” introduced in Chapters 1 and 3 in order to define
the section®; will indeed be unramified at the points &f corresponding to the
singular fibers oft” — B.) Because the results of this chapter are all local in the
base of our family, however, we will not need to introduce this extra step in the
construction. For the remainder of this chapter, accordingly, we will iakeI'”;
and all of the results of the chapter describing the @&p— ' will still hold
after the base chandge — I'”.

Next we introduce theodal reductiorof the family X’ — B. Thatis to say, after
making a base chandg# — B and blowing up the pullback family’ x 3 B — B,
we arrive at a familyy) — B such that

(1) Y — B is a family all of whose fibers @ — B are reduced curves having
only nodes as singularities;

(2) the total spac®’ is smooth;

(3) Y admits a regular birational map — X’ x g B overB.

In fact, most of our concerns with this definition will turn out in the end to be
unnecessary: we will see below as a corollary of Propositions 2.6 and 2.7 that in
fact ¥’ — B is already a family of nodal curves. Thus, in practice, we will not
have to make a base change at all at this stage)Yanil be simply the minimal
desingularization aft”’. For this reason (and becau3és itself already an arbitrary
finite cover of the normalizatioR” of our original basd&") we will abuse notation
slightly and omit the tilde inB, that is, we will speak of the family — B.

One further remark: in the applications we will have four sections of the family
Y — B and will correspondingly want to consider this as a family of four-pointed
nodal curves. For this reason, we may want to make further blow-ups at points
where these sections cross. By Propositions 2.1 and 2.5, however, the sections in
question will cross only at smooth fibers 3f— B and so this will not affect our
descriptions of the singular fibers of the family.

The final construction is one that we will use only in the following chapter,
but we mention it here just to have all the definitions in one place. After arriving
as above at a famil}y — B of nodal curves with four disjoint sections, we
may then proceed to blow down ‘extraneous’ components of fibes§) — B:
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that is, any component &f that meets the other componentsofin only one
point, and that meets at most one of the sectigndterating this process until
there are no extraneous components left, we arrive at what we will caflitiimal
smooth semistable modef our family: that is, a familyZ — B such thatZ is
smooth, the fibers are nodal, the sectippare disjoint andZ — B is minimal
with respect to these properties. Note that the special filar Z must be a chain
of rational curves7y, . . . , G, with two of the sections meeting each of the two end
components

Gy
(the case¢ = 0 is simply the case whet8 is irreducible). Finally, we can blow
down the intermediate components, . . ., G;_; in this chain to arrive at a family
W — B of 4-pointed stable curves, called thable modebf our family. The
special fiber of this family will have just two components (or oné,4#f 0), with a

singularity of typeA, at the point of their intersection.
In sum, we have the diagram of families and maps.

y

/i
%

\>/

2.2. THE MAIN RESULTS FROM DEFORMATION THEORY

We give here a summary of the main results to be proved in this chapter.
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e Thefirstis Proposition 2.1 in which we consider the Severi vari&figs) and
Vm(D), compute their dimension and describe the geometry of their general
point. In particular, we characterize the general fiber of the fadiily> T'.

The results are unsurprising: for example, the general gaintof V(D)
corresponds to a curv& with only nodes as singularities; general points
[X], [X'] of, respectively}y (D) andV (D’) correspond to curveX, X' that
intersect transversely.

e Then, in Proposition 2.5, we study the geometry of the general point of the
boundary ofVV (D). We do that by listing all types of reducible fibers that
occur in the familyxX — I'. This result is not predictable on the basis of
a simple dimension count; in most linear systel$ on F,, the subvariety
corresponding to reducible rational curves contairfinig larger-dimensional
thanV'(D); so the question of which points of the former lie in the closure of
the latter does not have an immediate answer.

e The third result is Proposition 2.6, which is specifically about the family
X — I'. We describe the geometry of the bds@ a neighborhood of each
point[X] € T" corresponding to a degenerate fiierin particular, we say how
many brancheb has af X| and say how the nodes of the nearby irreducible
fibers approach the singularities &f as we approacpX| along each branch
of I.

¢ Finally we have Proposition 2.7, describing the singularities of the total space
of the familiesX — I andX” — I'”. This will be a crucial ingredient in
calculating the multiplicities of zeroes of the cross-ratio function on the base
of our family.

One word of warning is in order. Many of both the statements and proofs of
these propositions are just routine verifications of statements easily guessed on the
basis of naive dimension counts. At the same time, mixed in with these largely
predictable statements are some interesting phenomena. These are described in the
second parts of Propositions 2.5, 2.6 and 2.7, in which we describe the geometry
of the one-parameter familie¥ — I andxX” — T in a neighborhood of the
reducible fibers containing. Near such a curve, the local geometry of the universal
family over the Severi variety is, to us, somewhat surprising.

2.3. (EOMETRY OF SEVERI VARIETIES

Here is the first result about the varietig(D) defined in the introduction.

PROPOSITION 2.1Let|D| and |D'| # |E| be any linear series on the surface
S =T,; let G C S be any fixed curve not containinfg and letPy, P,... € S
be any given finite collection of points. Lat= (m4,my,...) be any collection of
positive integers with- m; = (D - E).

(1) If Vip(D) is nonempty, then it has pure dimension
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dim(Vu (D)) = —(Ks - D) =1 =Y (m; — 1).

(2) A general point/X] of any component ofV;, (D) corresponds to a curve
X C S having only nodes as singularities, smooth everywhere albng
intersectingG transversely and not containing for anys.

(3) If [X] and [X'] are general points of irreducible componentsigf(D) and
Vv (D') respectively, thelX and X' intersect transversely, and none of their
points of intersection lie o or F.

REMARK. Many of the techniques necessary to prove this statement are in [H].
In fact, many of these assertions are proved there, but unfortunately with slightly
different hypotheses: they are proved first on a general rational su¥fdune only

for V(D), that is, without the tangency condition (Proposition (2.1) of [H]); and
then with a single tangency condition, but only with respect to a line in the plane
(Lemma (2.4) of [H]).

Proof. We start with the dimension statement. The assertion that the dimension
of V(D) is everywhere equal te-(Ks - D) — 1 is standard deformation theory
(and is well known; c.f. [K]). To see it, observe first thafX] € V(D) is any
point andv: X¥ — X C S the normalization of the corresponding curve, the
first-order deformations of the mapare given by sections of the pullbagk(7’s)
of the tangent bundle t8. Now, the tangent bundle to the ruled surféce: I, is
generated by its global sections everywhere except dihsamceX doesn’t contain
E, it will likewise be true that the pullback*(Ts) will be generically generated
by its global sections. SincE” = P, it follows in turn thath*(X", v*(Ts)) = 0.

The deformations of the mapare thus unobstructed, from which it follows that
the space of such deformations is smooth of dimension

WO(X¥,v*(Ts)) = dedv*(Ts)) + 2
= —(KS . D) + 2.

If we mod out by automorphisms of the domaih, we see that the space of
deformations of the image curvé C S as a rational curve has dimension

hO(PY, v*(Ts)) — 3= —(Ks - D) — 1,
which is the same as the dimensiorilot, V(D).
We next establish the

CLAIM. The dimension of, (D), and hence o¥,, (D), is everywhere at least
ro(D) — 3 (m; — 1).

To see this, set = (D - E). Let [X] € V(D) be any pointU an analytic
neighborhood of X1 in V(D), X ¢ U x S — U the universal family of curves
overU, andX” andU"” the normalizations of andU; we may assume that the
map7: X¥ — U" is smooth. Now letY}” be theith symmetric fiber product of
XY — U". We then have a map
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p:U— & [XT = ¢ixvix) (B).

Now, inside the symmetric produédt, the locusl’,, of divisors having points
of multiplicities m; or more is irreducible of codimensioq (m; — 1); since
V(D) NU is an open subset of the inverse imagé (T, ), it follows that it must
have dimension at least d{i¥i(D)) — > (m; — 1) everywhere.

Note that an analytic neighborhodtof any point off/m(D) admits a map to
EF*, sendingX] € U to the images; = v(p;); the fibers of this map are analytic

open sets in the varietieWﬁ(D). In particular, we have
dim(Vi (D)) < dim(W (D)) + k,

so that in order to prove the opposite inequality Giip(D)) < ro(D) — > (m; —
1), it is enough to show that the dimension of the variBty!(D) is equal to
ro(D) — 3" m; for any subse® = {p1,...,p;} C E. o

To prove the remaining parts of the Proposition we first identify the projective
tangent space to the space of deformations of a given reduced Xysweserving
the geometric genus of; and then the subspaces corresponding to deformations
that also preserve singularities other than nodes and/or tangencies with fixed curves.
This is the part that is in common with [H], and for the most part we simply recall
here the statements of the relevant results (Theorem 2.2 and Lemma 2.3). Then, to
apply these, we need to estimate the dimension of these subspaéys thiis is
carried out in Lemma 2.4 and the following argument.

We identify the tangent space to the linear seigisat[ X with thecharacter-
istic series

H(S, 0s(X))
Cr ’
wherer € HO(S, Os(X)) is the section vanishing along (this identification is

natural up to scalars; more precisely, the tangent spa€éHd (S, Os(X))) at
[X]=Cris

Hom (cf, HO(S, OS(X))> _ (Cn)* ® HY(S,05(X))

H(X,0x(X)) =

Cr Cr

Now suppose that we are given any subvariétyof the linear seriesD| on
S. Let[X] € W be a general point df". The following theorem of Zariski ([Z],
Theorems 1 and 2) characterizes the tangent spdéedb]X].

THEOREM 2.2. Zariski’'s theorem) In terms of the identification of the tan-
gent space to the linear serid®g(D)| at [X] with the characteristic series
H(X,0x(X)),

(1) The tangent spacé|x;W is contained in the subspadé®(X,Z(X)) of
HO(X,0x (X)), whereZ C Oy is theadjoint idealof X;
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(2) If X has any singularities other than nodes, tfég W is contained in a
subspacdl®(X, 7 (X)) whereJ G T is an ideal strictly contained in the adjoint
ideal.

This characterizes the tangent spacé’t@) at a general poingX]. (If the
fact that it does is not clear, it will be after Lemma 2.4 below.) Now, we have to
consider the additional information coming from the tangency WitHo express
this, note first that, ii.: X” — X is the normalization o and.7 C Ox is any
ideal contained in the adjoint ideal o&f, then the pullback map gives a natural
bijection between idealg C Z C Ox contained inZ and ideals*J C v*Z C
Oxv. We will invoke this correspondence implicitly in our notation:pife X
is any point, and7 C Ox any ideal contained in the adjoint ideal a&f, we
will write 7 (—mp) C Ox to mean the ideal ifOx whose pullback taX" is
v*J ® Oxv(—mp). In these terms, we have the following.

LEMMA 2.3. LetG C S be any fixed curve ang € G a smooth point of7. Let
W be any subvariety ofD|. If the general poinX] of T satisfies the condition:
there is a poiny € X” such thatv(¢) = p and

mult,(v*(G)) = m,
then the tangent space W at [ X] satisfies
Tix)W € HY(X,Z(X)(—mp)).

Moreover, if X has any singularities other than nodes, or is singular at the point
p, we have

Tix)W C H(X, J(X)(=mp)),

whereJ € 7 is an ideal strictly contained in the adjoint ideal
Proof. We will prove the Lemma by applying Zariski's theorem to the proper

transform ofX on the surfacé& obtained by blowing ug = T,, a total ofm times
along the curvedy. To carry this out, lef5; — Sy be the blow-up o5y = S at the
pointp, E1 C S; the exceptional divisor of the blow-up apd € E; the point of
intersection ofF; with the proper transform of in S;. Similarly, letS> — S1 be
the blow-up ofS; at the poinip,, E> C S» the exceptional divisor of the blow-up
andp, € FE» the point of intersection af» with the proper transform aF in S,
and so on, until we arrive at the surfage= S,,; we will denote byr: S — S the
composite of the blow-up maps, By the proper transform aX in S and byE;
the proper transform af; in S; so that the pullback t§ of the divisorE is given

by
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We denote byX' the branch ofX" corresponding to the poigte X", that is, the
image of an analytic neighborhood @fin X, by X' its proper transform irf,
and byp the point of X’ lying overp.
Now, let X; be the proper transform of in S;, and letk; be the multiplicity of
X;_1 atthe poinip;_4; foreachj = 1,...,m we will set
lj=ki+ka+--+k;

Thus, for example, we have the equality of divisors

m

i=1
Similarly, we letX] be the proper transform oii’ in S;, k. the multiplicity of
Xj jatp;_jandl; =k} +---k;. Note that; > [} for eachy; and the requirement
that X’ have intersection multiplicityn with E atp is equivalent to the assertion
that

mult,(X'- E) = ("X’ - E) = I, = m,
so that we have in particulgy, > m, with equality if and only if (locally)X = X”.
We can also write the intersection numbeg(X’ - E) as

mult,(X’ - E) = multy(X' - 7°E) = mg(X' - (E+Y_ j - Ej)),
so we see that one of three things occurs: either

e X' is smoothj; = 1 for all i, and X’ meets the last exceptional divisBy,
transversely; or o

e X' passes through the poifRt N E;_; for somei < m; or

o for somej < m, X’ meets the exceptional divisd#; at a point other than
E;n Ej 1 or EjN Ej 1, and has a point of intersection multiplicity/j > 1
with Ej.

We now compare the adjoint ideBk of X with that of X. The basic fact here
is that if C C S is any curve on a smooth surfagec C a point of multiplicity
m, andC C S the proper transform of' in the blow-upr: S — S of S atp, the
adjoint ideals ofC andC are related by the formula

' To = Ta(—(m —1E),
whereF is the exceptional divisor. Applying thig times to the curveX, we have
Iy =Ty (=0 - )E;).

Now, [X] € W being general, any deformation &f coming from the fami-
ly W preserves the multiplicities;, and hence the decompositiafi.X = X +
ST I; F;. It also preserves the geometric genusXagfso that identifying the space
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HO(X,04(X)) of deformations ofX C S with a subspace of the deformations
HO(X,0x (X)) of X C S viathe pullback map, we have

T[X]W C HO(X,IX(X))

> =D)E;) (X = X1 E;))
©X =Y ;)

= HO(X, 7" (Zx (X)) (=lnq))

= HY(X, Tx (~lmp))

C HO(X, Ix(—mp)).

= HO (X (7*T¢)

= HO (X (" Tx)

Note that the inclusion in the last line of the above sequence is propesafX”’.
Now, suppose thak = X' is not smooth ap. In this case, as we noted’ will
either be singular ap or be tangent ta; there, or else will pass through the
point E; N E;_ for somei. In the first case, sinc ‘has a unibranch singularity,
its deformations correspond to sectiondB¥ X , (X)) for some ideakC strictly
contained in the adjoint idel; ; while in the latter two cases the deformations cor-
respond to sections ¢f( X, Z; (X))vanishing ag. In either case, the inclusion in
the firstline of the equation above is strict. THug, W C HO(X,Zx(—(m+1)q))
unlessX is smooth ap, and the remainder of the statement of the Lemma follows.

To conclude the proof of Proposition 2.1 we need one more fact. To state it,
let X € |D| be any irreducible rational curve; X¥ — X the normalization and

p1,P2, - .. € XV any points; suppose that the divisor ) has multiplicitym,; at
p;. LetZ C Og be the adjoint ideal ok, and set

IC :I(—Zmipi) C Ox.

Let £’ be any ideal of index 2 or less ik — that is, any ideak’ C K with
RO(K/K") < 2, or equivalently an ideal of the form

’CI = K(_q - T)a
for some pair of pointg, r € X”. We will need these ideals’ ¢ K of index 2 in
order to see, for example, that a general cuxve V(D) does not have a node on

E. In these terms, our result is the

LEMMA 2.4. The idealK’ imposes independent conditions on the linear series
|Ox(X)|, i.e.,

RO(X,K'(X)) = h%(X,0x (X)) — dime(Ox /K').

comp4058.tex; 8/07/1998; 12:07; v.7; p.12

https://doi.org/10.1023/A:1000401119940 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000401119940

PARAMETER SPACES AND ENUMERATION OF RATIONAL CURVES 167
In particular, £ imposes independent conditions|6hx (X)|, that is,

hO(X,K(X)) = ro(D) — > m,.

Proof. By the adjunction formula we have

Kxv =v"(Ks ® O5(X) ®T).
Thus,

v (05(X)®K) = Kxv» @ v*(05(—Ks)) ® Oxv ( Zmzpz).
Now, v*FE — >~ m;p; > 0, and onS = F,,, we have

Ks = Og(—C — E — 2F),
so that we have an inequality of divisor classes

v (0s(X)®K) > Kx» ® V" Og(C + 2F).

Moreover, the divisor clas§ + 2F' has intersection number at least 3 with any
irreducible curveX not linearly equivalent to either or F, so it follows that

deqr*(0s(X)®K)) > —2+3=1.
Thus
dedv*(0s(X) ® K')) > -1,
so thath} (X", v*(0s(X) ® K')) = 0, and the result follows. O

We can now complete the proof of Proposition 2.1. We have already established,
in the Claim above, that

dim(Viu(D)) > ro(D) — 3" (m; — 1);

but applying Lemmas 2.3 and 2.4 in turn we see that for any s@ibse{p1, ...,
et C E,

dim(W,,(D)) < h(X, k(X))

-3 m
and hence

dim(Vi (D)) < dim(W,2(D)) + k
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so that equality must hold. Moreover, if a general ppkit € V,,, (D) corresponded
to a curveX with singularities other than nodes, the second inequality above would
be strict; soX must be nodal, and smooth at its points of intersection With

We can eliminate all the other possible misbehaviors of our general élrve
similarly. If the pointp € X" is mapped to one of the poini%, we would have

dim(Vin(D)) < h%(X,K(X)(—p))
< KX, K(X));

and if the multiplicity of the pullback divisor*(G) atp werem > 1 we would
have

dim(V,u(D)) < h%(X,K(X)(—(m — 1)p))
< BY(X,K(X)).

Suppose next thak had a node orZ, with branches corresponding to a pair
of pointsq,r € X" and the branch correspondingntdransverse tav. It would

follow that
hO(X,K(X)(—q — 1)) = h%(X,K(X)) — 1,

since a section of(X) vanishing aty but not atr would correspond to a defor-
mation ofX in V,,,(D) in which the two branches would megtin distinct points.
Finally, to prove part 3 of Proposition 2.1, we simply}étbe a general member
of the family V,,» (D’) and apply the above t& € V,,(D), includingX’ in G and
its points of intersection witky and £ among the point#;. O

The next Proposition is stated as a characterization of the reducible elements
of the one-parameter famil{f” — T, but in fact it is a characterization of the
codimension one components of the bounda(y) \ V(D) of V(D).

PROPOSITION 2.5Let X C S be any reducible fiber of the family — T".

(1) If X does not contair, thenX has exactly two irreducible componeris
and X, with [X;] € V(D;) and D1 + D, = D. Moreover[X;] is a general
pointin V(D).

(2) If X does containE, then X has irreducible component®, Xi,..., Xy,
with [X;] € V(D;) and E + Dy + --- + Dy, = D. Moreover eachX; is
general inV,,, (D;) for some collectiomn, . .., my, of positive integers such
thatd (m; — 1) =n — k.

REMARK. Notice that by Proposition 2.1, the above result says th¥tdoes not

containE, then it has only nodes as singularities. And{itontainsE, away from

thek points of tangency of with the curvesX;, X has only nodes as singularities.
Proof. Assume first thafX does not contairF). Write the divisorX as X =
Zle a; - X; wherea; > 0 and theX; are irreducible curves i§. We claim first
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that since[ X | € V (D), all the curvesX; must be rational. To see this, take any
one-parameter familyf* — B of irreducible rational curves specializing 0.
Proceeding as in 2.1 we arrive at a famlly— B of nodal curves, with general
fiber P1, that admits a regular map — X. Now, since the fibers @ — B are
reduced curves of arithmetic genus 0, every component of every filgemudst
be a rational curve. Thus every componenfbfs dominated by a rational curve
and so must be itself rational.

Thus[X;] € V(D;), whereD; are divisor classes such thgata; D; = D. On
the other hand, sinc¥ is a general member of ¢ng(D) — 1)-dimensional family,
we must have

k
Z’r’o(Di) > ’r’o(D) -1
i=1

k k
Y (~(Kg-D;j)—1) > (-Kg-D)—2="> a;(-Kg - D;) — 2.
i=1 i=1

Comparing the two sides, we see that
k
2—k—> (a;—1)(—Ks-D;) > 0.
i=1

But(—Kg-D;) > 2forany curveD; onS other than®; so we may conclude that all
a; = Landthak < 2. Moreover, ifk = 2 we have equality in the above inequality,
which says that the pair of curvéX, X») is general iV’ (Dq) x V(D2).

We come now to the case whekecontainsE. The first thing we see here is
that the dimension-count argument we used above doesn't work: since

(~Ks- (X —aB)) = (~Ks - X) +aln - 2),

the sums) a;X; of rational curvesX; € |D;| may well move in a larger-
dimensional family tharX itself.

The key here is to look at the semistable reduction of a family of curvegim)
specializing taX. This will allow us to limit the number of points of intersection
of the curvesX; with £, that is to say, to show that in fact ttg belong toV},,(D;)
for suitablem. This replaces the naive bound above on the dimension of the family
of such curvesX with a stronger one, which turns out to be sharp.

Consider then the family — B obtained fromX — I' as in Section 2.1. We
can thus assume that the total sp¥aef the family is smooth and every fiber df
is a union of smooth rational curves meeting transversely, and whose dual graph is
atree.

Now, letY be the special fiber @ — B. We decompos#&” into two parts:
we let Yz be the union of the irreducible componentsofmapping toF, and
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Yr the union of the remaining components. Next, we decomp@skirther into
k parts, lettingY; be the union of the components mappingXe. Denote the
connected components &%; by Z;, and for each let «; be the degree of the
mappuly, : Z; — E, so that)" o; = a. Similarly, let{Z; ;}; be the connected
components o¥; ande; ; the degree of the restrictiqm|zi,j:Y,~,j — X, so that
Zj am' = Q.

Note that the inverse image &fin ) is given byr—(E) = Yz UT1U---UT,
(wherer: Y — S'is the natural map.)

As we indicated, the essential new aspect of the argument in this case is keeping
track of the number of points of intersection of the with £. To do this, we note
that, over any such point, there will be a point of intersection of a component of
Y; with the inverse image —1( E); which by the expression above for!(E) will
be either a point of intersection ®f with Yz or one of thé points of intersection
of thel’; with Y.

It thus remains to bound the numbeof points of intersection o¥z with the
remaining partd; of Y. This we can do by using the fact that the dual grap¥i o
atree: this says that the number of pairwise points of intersection of the connected
components; ; of Y; and the connected componefisof Yz is equal to the total
number of all such connected components, minus one. Thus,

e =#YrNYg) = #{connected components Bf; }
+ Z #{connected components Bf}.
Note that the degree; > 0 on each componeit; of Yy, so that
#{connected componentsbf;} < a
and similarly
#{connected components Bf} < a;.

Thus we can deduce in particular that
e<a+ Z a; — 1.

Now, sayX; € f/mi(Di) foreachi = 1,...,k. Lety;: X/ — X, be the nor-
malization map. Choose any irreducible compon€ftof Y dominatingX; (and
hence dominating the normalizatiof}’), and letr;: X}/ — X; be the restriction
of = to X/ Trivially, the total number of points of the pullback(F) of E to X}
is

#v} (E) < #nf(E) = #(X] N Yp)

and hence

S #f(B) <Y #X)NYE) <HYRNYE) =€
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with strict inequality if anya; > 1. But the sum of degrees &f on the curvesX;
is at least

S degniE) > (LX) E)
= ((P-or-X(e-1D)) )
= (D-E)+an—Y_a;i(D; - E).

Comparing the number of points of the pullbackstfo the normalizations(
with the degrees of these pullbacks, we conclude that there must be multlpllcmes

in these divisors: specifically, the su@(mj — 1) of the multiplicities minus one
must be the difference of these numbers, so that

> (mhi—1) > ) degr;(E)—e— (D E)
> (D-E)+an—> (a;—1)(D; - E)
—a—Y ai+1—(D-E)
>an—1) - (¢, —1)(D;-E) =Y a;+ 1.

This in turn allows us to bound the number of degrees of freedom of the curves
X;: we have

> dimV,,i (D) = > ro(D;) =Y (m) — 1)
= Z —1) = (m} -1

< D (-Ks-Di)—k—a(n—1)
+Y (ai —1)(Di-E)+ Y a; — 1.

On the other hand, this must be at least equal to the dimensibi{ D minus
one, that is,

ro(D) =1 = (=Ks-D) -2

= a(—Ks-E)+ ) ai(-Ks-D;) -2
= a(n—Z) +Zai(_KS Dz) — 2.
In the end, then, we must have
—2) +Zai(_KS Dz) -2

<Y (-Ks-Di)—k—a(n—1)

+Y (@i —)(D;-B)+ > a; - L
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We can (partially) cancel the(n. — 1) anda(n — 2) terms, and combine the terms
involving (— K - D;) to rewrite this as

a+) (6;i—1)(—Ks-Di) =1< > (a;i—1)(Di-E) —k+ ) a;—1,
or, in other words,
a+Y (a; —[(-Ks — E)-D;) —1] - 1<0.

Now, we have already observed thaks — F = C + 2F meets every curve
X; strictly positively, so that the sum in this last expression is nonnegative. We
conclude that = 1, and (since any; > 1 would have led to strict inequality) that
all a; = 1. Next, since there is a unigue componerit ahapping to eaclx;, each
curve X; will have at most one point of intersection multiplicity > 1 with E.
Thus, finally,X; is a general member of the famil§;, (D;) for some collection of
integersny, . .., mg with " (m; — 1) = n—k, completing the proof of Proposition
2.5. O

Note that we have not said here that every reducible curve satisfying the condi-
tions of the Proposition in fact lies in the closure of the locus of irreducible rational
curves. This is true, and is not hard to see in the case of curves of types (1); but for
curves of type (2) itis a deeper fact, and we will require the proof of Proposition 2.7
to establish it.

Having characterized as a set the lo€usef curves inV (D) passing through
Q- - 4r,(D)—1, WE NOW turn to a statement about the local geometiy afound
each point.

We introduce one bit of terminology here. L&tbe a fiber oft — T'; and, in
casel is locally reducible at the poifX| € T, pick a branch of" at[X] (that is,

a pointb of the normalizatioi™ of I lying over[X]). Let P be a node ofX. We
then make the following

DEFINITION. If P is a limit of nodes of fibers oY — T" nearX in the chosen
branch—that is, if P, b) is in the closure of the singular locus of the m&pxr
(I \ {b}) — I'"—we will say thatP is anold node ofX. If (P,b) is an isolated
singular point of the ma xp (I'V \ {b}) — I'” we will say thatP is anewnode
of X.

Equivalently,P is an old node if the fibeX” of X¥ — I'¥ overb is smooth at
the (two) points lying oveP; if it is a new node X will have a single point lying
over P, which will be a node ofX”.

Note that if P is a singular point ofX other than a node, the situation is not so
black-and-white. For example, i? is anm-fold tacnode — that is, if the cury&
has two smooth branchesRtwith contact of ordefn — then a priori, any number
n < m of nodes of nearby fibers may approaétalong any branch df at [X],
with the result that the fiber g¢” — T over the corresponding poitite T will
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have an(m — n)-fold tacnode ovef, or will be smooth ove if n = m. (The
proof of the relevant case = m — 1 will emerge in the proof of Proposition 2.7.)
In these terms, we can state

PROPOSITION 2.6Let X be areducible fiber of the family — I'. Keeping the
notations and hypotheses of Propositibh,

(1) If X = X; U X, does not contairfy, and X1 and X, meet at(D1 - Dy) =/
points Pi, . .., P, then in a neighborhood diX] I' has/ smooth branches
I'y,...,I'y; alongI'; the pointP; is new, and all other nodes &f are old.

(Ra)If X = FU X, U...U X, and X; meetsE transversely inND; - E) = ¢;
pointspP; 1,. .., Py, thenin a neighborhood ¢X'| T consists of | £; smooth
branched’, = T'(4,,....a,)- AlONGT, the pointsPy ,, . . ., Pk, o, are new, and
all other nodes ofX are old.

2b)If X = FU X1 U---U Xy, and X; meetsE transversely iND; - E) = ¢;
pointsP; 1,..., P, fori = 2,..., k, while D1 has a pointP of intersection
multiplicity m > 2with E, then in a neighborhood ¢X| T consists of[%_, /;
smooth branchel, =T'3 . ,)- Alongl', the pointsP, 3, . .., Py i, are new;
all other nodes ofX are old; and exactlyn — 1 nodes of nearby fibers will
tend toP.

REMARK 1. The proof of this Proposition will not be complete until the end of
the following section. More precisely, we will postpone the proof of the existence
and smoothness of the brancheg ofActually, cases 1 ands2could very well be
proved here, but it is more convenient do it later (that is, at the beginning of the
proof of Proposition 2.7).

REMARK 2. We believe that an analogous description of the fatiily> I" may

be given without the assumption that the components of the cXirgther than&

have altogether at most one point of tangency v#ithand otherwise intersedi
transversely in distinct points. The restricted statement above will suffice for our
present purposes. We hope to prove the general statement in the future.

REMARK 3. The statement of Proposition 2.6 can also be expressed in terms of the
normalized familyX” — I'”, and indeed that is how we will use it in the following
chapter. In these terms, the statements are:

(1) If [X] is a point ofT" corresponding to a cunZ€ in our family not containing
E, then there will bg(D; - Dy) = ¢ points of ' lying over[X], corresponding
naturally to the nodes oX. The fibers of¥” — I'” over these points will be the
normalizations ofX at all the nodes ab1 andD, and at all but one of thépoints
of intersection ofD; with D5.

(2a) If X = E+ D1 + --- + Dj, containsE and the component8; intersect
E transversely, then the fibers 4 — IV over points lying ovefX] € T" are
the curves obtained by normalizir at all nodes of theéD);, at all the points of
pairwise intersection of th®;, and at all but one of the points of intersectionfof
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with each of the components;. In other words, the fibers consist of the disjoint
union of the normalization®; of the curvesD;, each attached t& at one point.

(2b) If X = E+ D1+ --- 4+ Dy, as before and one of the componehks of
X has a smooth poin® of intersection multiplicityn > 2 with E, then the fibers
XV of X¥ — I'V corresponding t@X] € T" are the curves obtained by normalizing
X at all nodes of theD;, at all the points of pairwise intersection of tig, at
all but one of the points of intersection &f with each of the componenis; for
i = 2,...,k, at all the transverse points of intersection/®f with F, and finally
taking the partial normalization of at P having an ordinary node ovét. (The
fact that each fiber at” — T lying over X has an ordinary node ovétrfollows
either from the fact that thé-invariant of the singularity? € X is m and that,
along each branch; — 1 nodes of nearby fibers tend & or — what is essentially
the same thing — the fact that the arithmetic genus of the fibeA$’of> TV are
zero. This will be verified independently in the course of the proof of Proposition
2.7.) The picture is therefore similar to the preceding case: the fibers consist of the
disjoint union of the normalizationB; of the curvesD;, each attached t& at one
point. The one difference is that, while fbe= 2, ..., k the point of attachment of
the normalization®; with E can lie over any of the points of intersectionof
with E, the point of intersection of the normalization©i with E can only be the
point lying overP.

A typical picture of the original curvé&X and its partial normalizatiokX” is
this:

E

w
g \
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Proof. Consider first of all a reducible curv& in our family that does not
containE. By Proposition 2.5, this must be of the fotkh= X; U X, whereX; is
a general member of the family(D;) with D1 + D, = D. In particular,X; is an
irreducible rational curve with, (D;) nodes, and(; andX> intersect transversely
in (D1 - Dy) points. Note that

(D; - D;) + (D; - Kg)
2

pa(Di) = +1a

so that the total number of nodesXfwill be
Pa(D1) + pa(D2) + (D1 D2) = po(D) + 1.

In other words, along any branch Bf all but one of the nodes ot will be limits

of nodes of nearby fibers (that is, will be old nodes), while one node wiill be

a new node. Note also that not any nodeXotan be the new node: that must be
one of the points of intersection of the two componeXitsand X,; otherwise the
fiber of the normalizatiorit” would be disconnected.

In caseX containsE, the analogous computation yields ti&hasp, (D) + k
nodes (op, (D) + k —m nodes and one tacnode of ordein case(2b)); henceX
hask new nodes (of; — 1in (2b)). Then the analysis in the proof of Proposition 2.5
shows that in the normalization of the total space of the family, the corresponding
fiber will consist of a curvey mapping toE, plus the normalization&’; of the
curvesX;, each meetingv in one point and disjoint from each other. In particular,
all the nodes ofX arising from points of pairwise intersection of the components
X; are old. As for the points of intersection of the componexisvith E, there
are two cases. First, if a componexit has a point of contact of ordet > 1 with
E, that must be the image of the poiit N £ € X¥; and all the other points of
X; N E will be old nodes ofX on any branch. On the other hand, if a component
X; intersectsE transversely, any one of its points of intersection witlcan be a
new node.

2.4. INGULARITIES OF THE TOTAL SPACE

We come to the fourth result, in which we describe the singularities of the total
space of the normalized familyy¥ — I'” along a given fibeX”. (Given a fibertX
overD’, we will fix a corresponding fibeX” throughout.)

We keep a simplified form of the notation introduced in the statement of Propo-
sition 2.6: we denote by, ..., P, the new nodes ok along E/, coming from
transverse points of intersection of other componenfs @fith £; and byP (if it
exists) one double point of other than a node, coming from a point of contact of
orderm > 2 of E with another component of . We recall that the nearby fibers
of our family are smooth nedp;, there will be one poinp; of X lying over each
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P;, which will be a node ofX”, while the nearby fibers have — 1 nodes tending
to the pointP, so that the partial normalizatiofi” — X will again have one point
p lying over P, and that point will be a node of . With all this said, we have

PROPOSITION 2.7 (1f X does not contaiii, or if X containsk and the closure
of X \ F intersectst transversely, the@&” is smooth along(".

(2) In case X does containE and the closure ofX \ E has a pointP
of intersection multiplicitym > 2 with E, the pointp of X¥ lying overP is a
smooth point oft’”; the other nodep; of X will be singularities of typed,,, 1 of
XV,

Proof. We start with the first statement, which is by far the easier. Recall that
by the two previous propositions, being a general point on a codimension-one
locus inV (D), will have p,(D) + k or p,(D) + 1 nodes, depending wheth&r
does or doesn’t contaift. Of thesep, (D) will be old nodes and the remaining
ones are new nodes; H is contained inX, then the new nodes all lie ofi. Let
r1,---,7p,(p) D€ the old nodes ak” and letP be any fixed new node. The fiber
X of X¥ lying over X will be the partial normalization ok atry, ..., r,,(p), SO
that X will certainly be smooth there, and we need only concern ourselves with
the point ofX” lying over P.

Consider, in an analytic neighborhood &f] in | D|, the locus¥ of curves that
pass through the base poigis. . ., ¢,,(p)—1 and that preserve all of the old nodes
of X. The projective tangent spacelld at[ X ] will be contained in the sub-linear
series of|D| of curves passing through thg (D) old nodes ofX and through
q1, .-, Gro(p)—1. This gives a total ofg(D) — 1 + pa(D) = r(D) — 1 points
which, by an argument analogous to the proof of Lemma 2.4, impose independent
conditions on the linear serig®|. We only exhibit the proof in cas& is a
component ofX, the other case being similar and easier. Hdbe the ideal sheaf
of the subscheme &f given by the old nodes, ..., 7, (p), and letv: X — X be
the normalization map. We have to show that...,r, p) impose independent
conditions on D|, which will follow (cf. Lemma 2.4) from

HYX,v*(0s(X) @ H)) = 0.
This, by the adjunction formula, is equivalent to
HYX,/"(Ks®I)® (v*H) 1) =0,

whereZ is the adjoint ideal o . Now notice that the line bundie (7) ® v*(#) ™1
has degree-k on the component aX lying overE, and degree-1 on every other
component. Sinc& g has degree — 2 = k£ — 2 on E and negative degree oy,
the line bundle*(Ks ® 7) ® (v*H) ! cannot have any sections.

comp4058.tex; 8/07/1998; 12:07; v.7; p.22

https://doi.org/10.1023/A:1000401119940 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000401119940

PARAMETER SPACES AND ENUMERATION OF RATIONAL CURVES 177

We conclude thal?’ is smooth of dimension 1. Notice that this completes the
proof of Proposition 2.6, parts (1) and (2a).

To analyze the total space & we consider the map frof#” to the versal
deformation space of the nod&’, P). This has nonzero differential becauBe
is not a base point of the linear series of curves passing threugh. , ¢, py_1
and through the, (D) old nodes ofX (to see this, the argument above applied to
the ideal sheaf of the union of the old nodesX¢fand P will work). Thus the
family X — T' has local equatiomy — ¢ = O nearp; in particular, it is smooth
atp.

We turn now to the second part, which will occupy us for the remainder of
this chapter. We will start by carrying out a global analysis of the family in a
neighborhood of the whole fibéf, and then proceed to a local analysis around the
point P specifically. From the global picture we will establish that, for some integer
7, the pointP will be a singularity of typed., and the points®; all singularities of
type A,,,. The local analysis will then show that in fact we have- 1.

To carry out the global analysis, we use the fanily— I'¥ and the map
m.)Y — T, (cf. Section 2.1), wher@’ is the minimal desingularization of the
surfaceX’”. Since the singularities of the fiber d&f” are all nodes, the total
spaceX will have singularities of typeds at each; let us say the poiptis an
A, singularity of X, and the poinp; an A, singularity. When we resolve the
singularity atp we get a chairt7y, ..., G,,_1 of smooth rational curves; likewise,
p; is replaced by a chai@; 1, . . ., G; ,,—1 of smooth rational curves. Denoting the
component ofX meetingF at P; by D; and the component meetitdgat P by D
(we are not assuming here that these are distinct irreducible componéfisved
arrive at a picture of the relevant part of the fibepf Y.

Gy D,

S

GZ:’T{.Z'I D

2

Geypr Dy

We now look at the pull-back off from F,, to . We can write it as

T(E)=k-E+Y ai-Gi+ Y aij Gij+ F,
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where E’ is a curve in) that meets the fibe¥” only along D; and D, with
(E'-D;)=(FE-m(D;)) —1land(E'- D) = (E - n(D)) —m.

We can use what we know about the degree of this divisor on the various
components ol” to impose conditions on the coefficiertsa; anda; ;. First,
sincer maps components; andG; ; to points inf,,

deg;, (v* (F)) = deg,, , (" () = 0.

Now, each of the curve&; andG; ; has self-intersection-2; so, settingz, =
a;;, = 0 andag = a;0 = k, we get

a;j—1 — 20; + a;11 = 0,
foreachi =1,...,v — 1; and similarly
aij-1— 2aij +aij41 =0,

foreachj = 1,...,v; — 1-in other words, the sequenags. .., a, anda;, ...,
a;, are arithmetic progressions. On the other hand, the megstricted to the
componentD; is transverse td& at P; = w(p;); so the multiplicity atp; of the
restriction toD; of the divisorm*(E) — E’ is one. This says thai; ,,_1 = 1; and
similarly a,_1 = m. Following the arithmetic progressian, ..., a, up fromD
to F, we arrive at; = -y - m and hencey; = v - m.

The proof of the Proposition will be completed once we show4hat 1, that
is, thatp is a smooth point oft’”.

Note that this part of the analysis did not rely, except notationally, on the
hypothesis that all but one point of intersectiorbivith the remaining components
of X are transverse. If the poinis; were points of intersection multiplicityn;
of E with other component®; of X, we could (always assuming that; — 1
nodes of the general fiber of our family approdéh carry out the same analysis
and deduce that for some intedgrthe pointp; was a singularity of type;, ,,,,.—
loosely speaking, the singularity &f” atp; is ‘inversely proportional’ to the order
of contact ofD; with E at P;. The remaining question then would be, is the number
k as small as possible, that is, the least common multiple ofi}¥eThat is what
we will establish with the following local analysis, which does ultimately rely on
the hypothesis that all but one of the are one.

2.4.1.The versal deformation space of the tacnddle.now carry out the analysis
around the poinf. The versal deformation d? € X C F, has the vector space
OF, p/J asbase, wherg is the Jacobian ideal of atp. Choose local coordinates
z,y for I, centered aP, so that the curvé is given agy = 0 and the equation of
Xis
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yly +2™) = y* + yz™ = 0.

The Jacobian ideal of this polynomialis = (2y + 2™, yz™1). The monomials
Yy, 2y, 7%y, ...,2™ 2y and Lz, 22,..., 2™ form a basis foOr, p/J, so that
we can write down explicitly a versal deformation space: the haseill be
an analytic neighborhood of the origin in affine spac&—1 with coordinates
o, a1, ...,0, 2 and o, B1,. .., Bm_1, and the deformation space will be the
family S — A, with S C A x A?, given by the equation

y2 +yz™ + oy + arzy + - - + am_zxm_zy

+06o0 + frr + ﬁzIz + -+ ﬁmflwm_l =0.

Inside A we look closely at the closurés,,_1 andA,,, of the loci corresponding
to curves withm — 1 andm nodes, respectively. We have

LEMMA 2.8. (1) A,, is given inA by the equationgy = --- = G,_1 = 0; in
particular it is smooth of dimensiomn — 1.

(2) A,,,_1 isirreducible of dimensiom, withm sheets crossing transversely at
a general point of\,,,.

Proof. We introduce thaliscriminantof the polynomialf above, viewed as a
quadratic polynomial iny:

2

0 =0a08(z) = (@™ +apmoz™ “+- -+ a1z + CMQ)2

—4(Bp18™ L 4+ Brz + o)

Note that the map: A — V to the spacé&” of monic polynomials of degreen2
in z with vanishingz2™~1 term is an isomorphism ah with a neighborhood of
the origin inV: given an equation

1

(@™ + am—23™ 2+ - + 01z + a0)® — (B2 + - + P1z + fo)

= 2%™ 4 o 22?2 4+ 12+ co,
we can write
_ Com-2 _ Com-3
Ap—2 = 2 am—3 = 2
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and so on, recursively expressing the coefficientas polynomials in the coef-
ficientsco_2, - .., cn. We can then solve for thg; in terms of the remaining
coefficientse,,_1, - - -, co, thus obtaining a polynomial inverse to the miap

Now, since the equatiofi above forS is quadratic iny, the fibers ofS — A
are expressed as double covers ofitHme. The discriminand is a polynomial of
degree 2n in z, so that the general fiber &f — A, viewed as a double cover of
the z-axis, will have 2Zn branch points neaP. To say that any fibef, 3 hasm
nodes is thus tantamount to saying thag () hasm double roots — thai, g(z)
is the square of a polynomial of degree The locus of squares being smooth of
dimensionm — 1 in V, we see that\,,, is smooth of dimensiom — 1; indeed, it
is given simply by the vanishingy = --- = 3,,,-1 = 0.

Similarly, to say that a fibe$,, g hasm — 1 nodes amounts to saying thats («)
hasm — 1 double roots, i.e., that it can be written as a quadratic polynomial in
times the square of a polynomial of degree- 1

a,p(z) = (:L"m_l + A 2™ 2 o M+ Ao)z(xz + paz + po).

The Lemma is then proved. O

Now we consider the natural map from a suitable analytic neighborfiéod
of [X] to A. To set this up, lets,...,r; be the old nodes ok’; since all the
singularities of X other thanP are nodes, this will consist df nodes onE
and k — b nodes lying offE whereb = (D - E). Sincem — 1 nodes of the
general curve of our family tend t®, we havek = p,(D) — m + 1. Now
consider, in an analytic neighborhood of the pgiit € | D|, the locud¥ of curves
passing through they(D) — 1 assigned pointg, . . ., ¢,,(p)—1 and preserving the
nodesry,...,r, of X — that is, such that the restriction of the family of curves
{Dx}reip| to W is equisingular at each poimt of X. Since this is a total of
ro(D) — 1+ po(D) — m + 1 = r(D) — m points and they impose independent
conditions on the linear seri¢®|, we see that¥ is smooth of dimensiom: at
[X].

We then get a natural majg W — A such thatp([X]) = 0. We will prove that
¢ is an immersion and that the intersectionpfV ) with A,,,_1 is the union oA,
with a smooth curvel’; moreover andA,,, will have contact of ordem at the
origin. This will conclude the proof of Proposition 2.6; in fact the original family
X — T" will be the pullback td¥ of the restriction tol of the versal deformation
S — A.

To illustrate, here is a representation of the simplest sase?2. This does not
convey the general picture, becadg@’) N A,, 1 happens to be proper. Also, the
picture is inaccurate in at least one respect: the actual sulfacethe deformation
space of a tacnode is also singular along the locus of cufygswith cusps.
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w

o H{Am)

Am—l
(Note that we see again locally the picture that we have already observed globally
in the linear seriesD|: the closure of the variety’ (D) of irreducible rational
curves has the expected dimension; but the locus of rational curves has another
component of equal or larger dimension.)
Now that we have a basic picture of the deformation splacthe crux of our
argument will be to describe the pullback of the Idgj, andA,,,_1 under the map

¢: W — A (or, equivalently, the intersection ¢ W) with these loci). We start in
the following subsection by saying what we can about the geometry of themap

2.4.2.The deformations coming from(D). Let¢: W — A be as before, denote
by H the subspace ak given bygy = 0. Then we have

LEMMA 2.9. The mapy is an immersion; the tangent space to the image at the
origin contains the plan@gy = - -- = §,,_1 = 0 but is not contained it .

REMARK. It is important to note here, and throughout the following argument,
that while the lociA,,, andA,,,_1 are well-defined subsets of the baseof the
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deformation space of our tacnod#js not; it depends on the choice of coordinates.
Itis well-defined, however, as a hyperplane in the tangent sfacg = O, p/J

to A at the origin: it corresponds to the quotient.7 C O, p/J of the maximal
idealm C O, p.

Proof. The projective tangent spacelfd at the poin{X] is the sublinear series
of | D| of curves passing through the points...,r; andqs,. .., q¢,,py-1- The
kernel of the differential atX] of the map¢ is thus the vector space of sections
of the line bundle = Ok, (D) vanishing atry, ..., r; andqy, ..., ¢.,(p)—1 and
lying in the subsheaf ® J, whereJ C Oy, p is as before the Jacobian ideal
of [X] at P. The zero locus of such a section will be a curve in the linear series
|D| containingry, . .., 7%, q1, - - - , Gro(p)—1 @nd P and so must contaify, that is,
must be of the form¥ + G with G € |D — E|. Moreover, from the description
above of7 we see that must also have contact of order at leaswith F at P
as well as pass through tihe— b nodes ofX lying off £ and the assigned points
P1,P2,q3, - - - » Gro(D)—1- ThiS represents a total of

m+ro(D) —1+py(D) —m+1—b=r(D)—b=r(D—E) +1,

conditions, so we need to show that they are independent to conclude that no such
curve exists. Butthey are also a subset of the adjoint conditiokis leénce impose
independent conditions on the serifs+ Ky, | = |D — C — E — 2F|, and hence
on the serie$D — E|.

The remaining statements of the lemma, that the tangent space to the image
contains the plangy = --- = ,,—1 = 0 but is not contained in the hyperplane
Bo = 0, follow from the facts that the image contains the subvari®ty and
that not every curve in the linear serid3| containingra, ..., 7k, q1, - - - , @ro(p)—1
containspP. O

To complete the proof of Proposition 2.7, we thus have to establish the following
lemma about the geometry of the deformation space
LEMMA 2.10. LetA C A be a smoothy-dimensional variety such that

(1) A containsA,,;
(2) the tangent space t& at the origin is not contained i/ .

Thenthe intersectionN A,,,_1 consists of the union &,,, and a smooth curve
¥ having contact of ordem with A,,, at the origin.

Our proof of this Lemma is lengthy and roundabout; it occupies the remainder
of this chapter. We give here a summary of the four main steps:

e First, in 2.4.3 we treat a special case. In Lemma 2.11 we prove Lemma
2.10 by direct calculation wheh is the linear subspace d@f given by equations
01 =+ = Bm_1 = 0. The results of 2.4.3 also appear in [R]; we include our
proof for the sake of completeness.

« Secondly, in subsection 2.4.4, we introduce the the blowAupf A along
A, and translate Lemma 2.11 into the statement that the proper tran&fgrm
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of A,,_1 in A is smooth at the point Q, and has contact of ordewith the
exceptional diviso of the blow up there.

e Third, we use the automorphisms of the deformation sga¢and its blow-
up A) to deduce thaf\,,_1 is smooth everywhere along the open sulisgt=
@\ (® N H) of the fiberd of the blow up over the origin, and has contact of order
m with the exceptional divisoZ (Lemma 2.15). Lemma 2.14 will say that,, ;
contains®, and the global analysis will say that the intersection multiplicity of
A,,_1 with Z at a general point o® is at leastn. Then the special case, together
with Lemma 2.13, implies that the intersection multiplicity is at mastnd hence
exactlym, at any point ofbg; and thatA,,,_1 is smooth alongpo.

e Finally, for any subvariet\ C A satisfying the hypotheses of Lemma 2.10,
its proper transform im\ will intersect® transversely at a point by, and the
desired result — that the intersection®®f,_1 with A consists of the union oA\,
and a smooth curve having contact of ordewith A,,, at the origin — follows.

2.4.3.A special caseWe will start by considering the intersection Af,,_; with
the simplest possible variety satisfying the hypotheses of Lemma 2.10, the plane
Apgivenbyp; = --- = B,—1 = 0. We obtain

LEMMA 2.11. The intersection af\,,,_; with Ag consists of the union a%,,, with
multiplicity » and a smooth curv& having contact of ordem with A, at the
origin.

Proof. Restricting toAg, we can rewrite the equation of the family more simply
as

y? + yz™ + agy + a1y 4+ -+ am 2™ 2y + =0
and the discriminant as
0(x) = (2™ + am_22™ 2 + - + a1z + ag)? — 46

We need now to express the condition thatsm — 1 double roots. One obviously
sufficient condition is that3 = 0, so thatd is a square. If we assumg # 0O,
however, things get more interesting. To see the locuseyf. . . , o, 2, 8) that
satisfy this condition, set

2

v(z) =2 + am_22™ "+ - + a1z + ap

and write
§(z) = v(z)? —4 = (v(z) + 2V/B) - (v(z) — 2VB).

Now, if 5 # 0, the two factors in this last expression have ho common factors; so
if their product hasn — 1 double roots, each must have a number of double roots
itself: v(z) + 2y/B andv(z) — 24/ are polynomials of degree with a combined
total of m — 1 double roots. In fact, this uniquely characterizeand g up to a
one-parameter group of automorphism®dtfas we will prove in the following.
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LEMMA 2.12. Lety be a nonzero scalar, and let be a positive integer. There is
a polynomialv(z) of degreen, monic with naz™~* term, such that

(1) if m is odd, the polynomials(z) + v andv(z) — v each havgm — 1)/2
double roots.

(2) if m is eveny(x) + v hasm/2 double roots and/(z) — v has(m — 2)/2
double roots.

In both casesy is unique up to replacing(z) by v(¢x), where( is anmth
root of unity.

Proof.Suppose that(x) is a polynomial satisfying the conditions of the lemma.
Take first the case afi = 2¢ + 1 odd, and consider the map P — P! given
by v(x). This is a map of degres:, sending the pointo to oo, and totally
ramified there. In addition the hypotheses assert that over the pbinia the
target we have ramification points. The point is, this accounts for a total of
(m—1)+2(¢—1) = 2m — 2 ramification points, and these are all a map of degree
m from P! to P will have. We have thus specified the coveringip to a finite
number of coverings, and our principal claim is that in fact we have described
uniquely, up to automorphisms of the domain.

This is combinatorial. The monodromy permutatiwraround the pointo is
cyclic, while the the monodromy permutationsnd, aroundy and—-y are each
products of disjoint transpositions. Our claim that there is a unique such covering
of P by P! amounts then to the assertion that, up to the action of the symmetric
group&,,, by conjugation, there is a unique pair of permutatierendy, each a
product of? disjoint transpositions, whose product 1 is cyclic of orderm. This
is an easy combinatorial exercise. To complete the proof of Lemma 2.12, consider
the effect onv of automorphisms of the domain. The requirement thfab) = oo
— that is, that/(x) is a polynomial! — restricts us to the group of automorphisms
z — ax + b; the requirement that(x) have noz™ ! term limits us to automor-
phisms of the form: — ax; and the fact that(x) is monic says that must be an
mth root of unity. O

Note that, in case: is odd, by uniqueness we must haxeg) = —v(—xz); that is,
v will be odd. Similarly, in casen is even (where the two branch points have
different multiplicity) we must have(z) = v(—=x), so thaty will be even. This
will not be logically relevant to the following calculation, but will be reflected in
the notation.

Back to the proof of Lemma 2.11. Note that if we do not specify the value of
the polynomial/(z) will not be unique; we can replace it with"v(x/u) for any
nonzero scalati. Now, suppose first that = 2/ is even. Choose = 1, and let

v(z) = 3™ + cp28™ % + C_ar™  + -+ + e,
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be the polynomial satisfying the conditions of the lemma. Then any collection
(o, a1, - - -, aum—2, 3) With 8 # 0 such that the discriminant

2

3(z) = (2™ + 2™ 2 + -+ + a1z + ap)? — 4B,

hasm — 1 double roots, must be of the form

4

ag =1 - co, ay =0,
ap =t ¢y, az =0,
a4 = 2. c4

and so on, ending with,,,_» = t - ¢,,,—2; With finally g = ¢ /4. This is then a
parametric representation of the clostref the intersectiom\o N (Ay—1 \ Am).
It is obviously a curve; the fact that it is smooth is visible from the coordinate
am—2 = t-cm—o; and we see that it has contact of orderwith H from the
exponent in the expression for
Finally, in casen = 2¢ + 1 is even we get a similar expression. Let
v(z) =2+ Cm2T™ 2+ emaz™ o+ g,

be the polynomial satisfying the conditions of the lemma+oe= 1. Then any
collection(ao, a1, . . . , am—2, 3) With 8 # 0 such that the discriminant

0(z) = (2™ + Am—22™ 2+ -+ + 1z + a0)? — 4B,
hasm — 1 double roots must be of the form

ag =0, ay =t - ey,

az =0, az=1t""-cs,

ending withay,,—2 = t - ¢;,,—2; again we have = ¢ /4. So once more we see that
¥ is a smooth curve having contact of ordewith H at the origin. O

Let us now prove Lemma 2.10 and Proposition 2.7 in this special case. First,
in the casen = 2/ even, the restrictiody — ¥ of the familyS — A to ¥ has
equation

Y2 4+ y(2™ + tem_2z™ 2 4 tPepmaz™ 4 + -+ 17 2c0) + (1™ /4) = 0.
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We can think of the total spac®y of this family as a double cover of the, t)-
plane, with branch divisor the zero locus of the discriminant

§ = (2™ + tem—ox™ 2 + Pem_ar™ 4 1 200)2 — ™

By hypothesis, for each value othe polynomiab is the product of the square of
a polynomialg; (x) of degreen — 1 and a quadratic polynomial(z). Sinced is
even,g? andh must each be; and given the homogeneity with respect ta and

~ we see that we can write

6 = 22(x? — Mt)?(2% — Mat)?- - (2% — Ap_1t)? - (22 — ut),

for suitable constantsy, . .., A\, 1 andu. For example, in case = 2, the equation
of Sy is simply

2 +y(z? + 1)+ (12/4) =0

and the discriminant is just= z?(z? — 2t). In general, the branch divisor 6%
over the(z, t)-plane will be simply a union of theaxis, with multiplicity 2;¢/ — 1
parabolas tangent to theaxis at the origin, each with multiplicity 2; and one more
parabola tangent to theaxis at the origin and appearing with multiplicity 1. The
double coverSy will thus be nodal over the double components of this branch
divisor, and smooth elsewhere.

Finally, the normalizatioiy, of the total spacéy will be the double cover of
the (z, t)-plane branched over the single component of multiplicity 1 in the branch
divisor; that is, it will have equation

y? =a? — pt

and in particular, since the componeémt’- — pt) is smooth Sg, will be smooth as
well, establishing Proposition 2.7 for this particular family.
The picture in caser = 2/ + 1 is odd is exactly the same: heSg has equation

Y2+ y(2™ + b 282 4 20, ax™ A 4™ 2eym) — (1™ /4) = 0
with discriminant
b = (2™ + tem—2Z™ 2 + ey _az™ 4+ tm/zclac)2 —tm
= (22 = Mt)%(2% = Xat)?- - (2% = \t)? - (22 — pit),

for suitable constants;, ..., A\, andu. For example, in case = 3, the equation
of Sy will be

y? + y(z® — 3tz) — 13 = 0,
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(we are scaling here to make the coefficients nicer), and the discriminant is just
§ = (2 — 3tx)? + 43
= 2% — 6tz* + 9t%? + 43
= (2% + t)%(z% + 4t).

In general, form odd the branch divisor afy over the(z, ¢)-plane will be simply

a union of¢ parabolas tangent to theaxis at the origin, each with multiplicity 2;
and one more parabola tangent to thaxis at the origin and appearing with multi-
plicity 1. As before, the normalizatio$ig, of the total spacéy will be simply the
double cover of théz, t)-plane branched over the single compon@st— pt) of
multiplicity 1 in the branch divisor; and as before, since this component is smooth,
S§ will be smooth as well, establishing Proposition 2.7 in this case. O

2.4.4.The geometry of the locus,,, 1. In order to focus on the essential aspects
of the geometry ofA,,_1, and in particular to remove the excess intersection of
d(W) N A,, 1, we will work on the blow-upr: A = Bla,, A — A of A along
A,,. To express our results, we have to introduce some notation. We will denote
by Z = r~1(A,,) the exceptional divisor of the blow up, and By, 1 andi¥’ the
proper transforms af\,,,_; and$(W) in A.

Our goal will be to describe the intersectigp, 1 := A,,_1NZ.Thefibers ot
overA,, are projective spac@s” 1 with homogeneous coordinatés . . . , Gpm_1;
we will denote the fiber —1(0) of Z over the origin by®, by &y C ® the open set
given by # 0, and by@ the point of® with coordinate$l, 0, . .., O] (this is the
point of intersection of# with & in the example above).

Note that there is a more intrinsic characterizationbotthe tangent space to
A, atthe origin is the subspace®f;, p/J of polynomials divisible by, so that
® — the projectivization of the normal space — is just the space of polynomials in
2 modulo those vanishing to ordet at P = (0,0) and modulo scalars. In these
terms,®q is simply the subspace of polynomials not vanishing at the origincand
the point corresponding to constants.

To studyA,,_; we will take advantage of an equivariant action of the mul-
tiplicative groupC* on the mapS — A. Explicitly, for anyc¢ € C*, we define
automorphisms, of A ando, of S simultaneously by

T = cx, y = My,
o; Cmflai, ﬁz — szflﬁi.

Sinced,. ando, commute with the projectiof — A, 6. preservesthe lody, C A.
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In particular, sincé. preserves\,,, it lifts to an autqmorphisrﬁc of A; and since
dc preserveg\,,_; the lifted actions. will preserveA,, ;. We can read off from
the above expression the actionjpion the fiber® of 7: A — A over the origin:
in terms of the homogeneous coordinatgs . . , 5,1, we have

02 [B0s -+ s Brn1] = [ B0, ™ 2B, - . ., B2, Bm1)-

The key fact about this action, for our present purposes, follows immediately from
this description:

LEMMA 2.13. Every orbit of the action off on A that intersectsb, contains the
pointQ in its closure.

We are now prepared to state and prove our main lemma on the geometry of
Zm—1 andA,,_1.

LEMMA 2.14. (1) The fibers o¥Z,,,_1 over A,,, are unions of linear spaces.

(2) For any arca(t) in A, tending to the origin, the limiting position of the
fiber Z, ) of Z,,—1 overa(t) is contained in the complement®j.

(3) @ itself is an irreducible component &,, 1.

Proof. The proof is by induction om:, using Lemma 2.11.

First we introduce a natural stratification of the loclyg,. Identifying A,,
with the space of monic polynomials of degreein x with no 2! term, we
look at the loci of polynomials with roots of given multiplicity: for any partition
m = mq + mz + --- + my we define the locua{ms,...,mi} C A by

A{ma,...,mu} = {(0,. .., @m_2,0,...,0): ™ + ap_22™ %+ -+ ag
= (z — A1)™(x — A2)"2 - -+ (x — )™k for some distinchy, ..., A\ }.

Note that the codimension &f{m, ..., my} in Ay, is Y (mq — 1).
Supposex is any point ofA,,, other than the origin. Say lies in the stratum
A{ma, ..., my}, and write the corresponding polynomial as

(x — A1)z — Ap)™2 -+ (. — i)™,

with Aq,..., A\ distinct. The fiberS, of S — A overa is a reducible curve
consisting of two branches, theaxis(y = 0) and the curvg = (z — A\1)™(x —
A2)"M2 ... (x — A\g)™, which meet at thé pointsr; = (A1,0),...,7, = (A, 0)
with multiplicities my, . .. , my.

Let A(z) be the versal deformation spacAsS,,r;) of the singular points
r; € S,. By the openness of versality the natural neafyom a neighborhood’
of « in A to the produc{] A(:) has surjective differential at (the fibers are the
equisingular deformations &f,, in which only the locations of the pointson the
z-axis vary). LetA,,,_1 andA,,; C A(i) be the loci inA(7) analogous td\,,,_1
andA,, in A, thatis, the closures of the loci of deformations of the singular points
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r; € S, with m; — 1 andm; nodes near; respectively. Then in the neighborhood
U of a, we have

A =0 Ay X Apy X - X Ay,

and
k
Ap1= U U_l(Aml Xoree X Amifl X X Amk)‘
i=1

In other words, the locud,,, 1 will have £ branches in a neighborhood®f each
containingA,,,, along theith of which the fibers ofS — A will have m; nodes
tending tor; for each;j # < andm; — 1 nodes tending te;.

We can use this description to give a more intrinsic characterization of the fiber
Zo = 7 (a) of Z over the pointx, analogous to the one given above fbr
Briefly, Z, is the projectivization of the normal spaceAq, in A at«, which is
the product of the normal spaces to thg,. in A(4) at the origin; this is just the
space of polynomials on the-axis modulo those vanishing to order; atr; for
eachi.

We may now apply the induction hypothesis to describe, in these terms, the
fiber of Z,,,_1 overa. By the statement of the Lemma fet = m;, the proper
transform of theith branch ofA,,, 1 will intersectZ,, in the linear subspace of
Z,, corresponding to polynomials vanishing to oradey atr; for eachj # i; the
intersection withZ,, with the proper transform ah,,,_; itself will be the union of
these linear subspaces.

This establishes part (1) of the Lemma. Now say th@) is any arc inA,,
tending to the origini(¢) will lie in some stratumA{my, ..., my} for all small
t # 0. Ast goes to zero, the singular pointgt) of S, ;) approach the poinp,
so that the limiting position of the intersection with,;, of the proper transform
of thesth branch ofA,, 1 will be simply the linear space of polynomials whose
restriction to thec-axis vanishes to ordern — m; at P; in particular, it is contained
in the hyperplanég, = 0) C @ of polynomials vanishing aP. We have thus
proved parts (1) and (2) of the Lemma, given part (3) forgll< m.

Finally, we need to prove for each new valuemfthat ® is an irreducible
component ofZ,,,_1. Now, by Lemma 2.11, the poif = [1,0,...,0] € ® lies
in Z,,_1. But we have completely described the closur&Zjp ; of the inverse
imager (A, \ {0}) of the complement of the origin, ar@lis not on it.Q must
thus lie on an irreducible component 8f, 1 not meetingr—%(A,, \ {0}), that
is to say, an irreducible component@f, ; contained in®; sinceZ,, 1 has pure
dimensionm — 1, this irreducible component must betself. O

For example, here is a picture Bf in the casen = 2. In this caseZ; has only
two componentsp and a component finite of degree 2 over.
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Finally, we deduce

LEMMA 2.15. (1) A,,,_1 is smooth everywhere alordg,.

(2) The intersection multiplicity of\,,,_; and Z along ® is m.

Proof. We use the analysis carried out in Lemma 2.11. Agtbe the proper
transform of the linear spadg in A. Since no component df,,, 3 other than®
passes throug®, the only component of the intersectidg N A,,,_1 containing
Q will be the proper transfornd of the curve? c A described in Lemma 2.11.
Since this is smooth, and the intersectiyn A,,,_1 is proper in a neighborhood
of Q (Ao andA,,_; each have dimension in the (2m — 1)-dimensionalA, and
their intersection is locally a curve) it follows thAt,, 1 must be smooth ap. By
Lemma 2.13, then, it must be smooth at every poirbgf

For the second statement, notice that Lemma 2.11 asserts that this is true when
restricted to the proper transforfy, and it follows that it is true om\,,_1 O

End of the proof of Lemm210 and Propositiorn2.7. We shall now conclude
that the intersection ak,,, _; with any subvariet\ C A satisfying the hypotheses
of Lemma 2.10 — and in particular, the imag@V) — is the union ofA,,, and a
smooth curvel, such thatl has contact of order. with A,,, at the origin. Notice
that this will conclude the proof of Proposition 2.6 as well. To begin with, the
proper transformh of A in A intersectsZ in a section, crossing at some pointz;
we likewise have from Lemma 2.9 th&te ®o. A, is then smooth aR. Since
the tangent space t,, 1 at R contains the tangent space®oand the tangent
space to\ at R is complementary to the tangent spac@iad\,,, 1 andA intersect
transversely in a smooth curve in a neighborhood?ofsince that curve is not
tangent tod at R, its image® C A,,_; N A is again a smooth curve. Finally, the
intersection number o¥ with A,, in A will be the intersection number &,,,_1,

A andZ at R; which by Lemma 2.15 will ben. We have thus completed the proof
of Lemma 2.10 and hence that of Proposition 2.7.
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3. Formulas

Before we prove our formulas, we need a simple result on the order of zeroes and
poles of the cross-ratio functiaf

3.1. AREMARK ON THE CROSSRATIO FUNCTION

Suppose we are given a famify. X — B over a smooth one-dimensional base
B, whose restrictiorf : X = f~(B) — B to the complemenB = B\ {bo} of a
pointby € B is a family of smooth rational curves; and four sectipnsB — X,
disjoint overB. We get a map: B — Mo 4, which then extends ove®; and the
problem is to determine the coefficient of the pdirih the pullback viagp of the
boundary components dffg 4. To put it another way, the cross-ratio of the four
sectiong1, ps3, p2, p4 defines a rational function ofi and hence of; and we ask
simply for the order of zero or pole of this functiontgt

We will answer this in terms of any completion of our family to a family of nodal
rational curves. Recall first of all the set-up of Section 2.1: we have a resolution
of singularities)y) — B of the total space of our family, such th@t — B is a
family of nodal curves and the extensions of the sectigrte ) are disjoint. We
then proceed to blow down ‘extraneous’ components ¢d arrive at the minimal
smooth semistable model of our family: that is, a family— B such thatZ
is smooth, the fibers/, are nodal, the sections are disjoint andZ — B is
minimal with respect to these properties. Finally, we blow down the intermediate
components in this chain to arrive at a family — B of 4-pointed stable curves.
The special fibe of this family will have just two components (or onefiE 0),
with a singularity of typed, at the point of their intersection.

In these terms we prove

LEMMA 3.1. If the sectiong, and p, (respectivelyp; and p3) meet the same
component of’, then the poinbg is a zero (respectively, pole) of multipliciéyof
the functiong.

Proof. We will consider the case whepe andp, meet the same component of
W . Note first that if we blow down the componentidf meetingp; andp,, we
arrive at a smooth family, that is (replaciid)if necessary by a neighborhoodigf
in B), a productB x P. (Equivalently, we could arrive at this family by blowing
down the component of meetingp; andp»,, then doing the same thing on the
resulting surface, and so éiimes.)pz andp4 will remain disjoint from each other
in this process, and disjoint from andpz; butp; andp, will meet each other with
contact of orde¥: in other words, we can choose an affine coordinaia P! and
a local coordinateé on B centered arounth so that the sections are given by

0; p3(t) = 1; andpy(t) = oo.

=
=
—
~
~—
I
~
-
=
N
—
~
~—
Il
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The cross-ratio function is thef(t) = ¢//(t* — 1), which takes on the value 0 with
multiplicity ¢ at¢ = O. |

3.2. THE RECURSION FORF;

Let D be any effective divisor class other thahon the ruled surfacé = F,. We
are going to find a formula for the degr@g D) of the varietyV (D) C |D|. To
set this up, we start by choosing as usuglD) — 1 general points o1, which
we labelpi, p2, g3, - - -, 4,,(p)—1, @nd consider the one-parameter fandtly— T'
of curvesX € V(D) C |D| passing througlps, p2, g3, - - - , ¢ro(p)—1}- AS before,
we letI™” be the normalization df andX¥ — I'¥ the normalization of the pullback
family. Next, we fix general curveS; andCy € |C] in the linear serie&C|, and
adopt as usual the convention that we will choose pgigtandp, on the curves
X of our family lying onC3 andC} respectively. Making the corresponding base
change, we arrive at a family — B; as before, we will denote ky the minimal
desingularization of’ and byZ — B the smooth semistable model.

Then we calculate the degree of the cross-ratio #ap — Mo = PLin two
ways by equating the number of zeroes and poleg. /e get one contribution
to the degree of*(0) immediately from the curveX in our family that happen
to pass through either of the two points of intersectiogfvith Cy; this gives a
total contribution of 2 N (D) to the degree of*(0).

The remaining zeroes and poles/afiecessarily correspond to reducible curves
in the family { X'}. There are two types of these: those that confaiand those
that don't. Consider first a reducible cur¥ein our family that does not contaifi.

By Proposition 2.5, this must be of the forfh= X1 + X, whereX; is a general
member of the family (D;) for some pair of divisor class€3; and D, adding
up to D. In particular,X; is an irreducible rational curve with, (D;) nodes, and
X1 and X, intersect transversely i(\D1 - D») points. Moreover, by Proposition
2.6, the curvd™ will consist of (D1 - D7) smooth branches near the pojif],
corresponding to the points of intersection’of and X»; thus there aré€D1 - D5)
points in the normalizatiofi” lying over each such poifi] € T".

How does such a fiber of the famiy — B contribute to the degrees of either
¢*(0) or ¢*(00)? It depends on how the poings are distributed. If three or four
lie on one component, it does not contribute to either, but if there are two on each
it may: for example, iy andp, lie on the same component — sy — of X, and
p3 andp4 on the other, we get a zero ¢f Now, as we observed in the proof of
Proposition 2.5, each componentof X must contain exactlyy(D;) of the points
P1,P2,q3 - - -, Gro(D)—1- If X1 IS t0 containp; andpy, it will containro(D1) — 2 of
the pointsg,, and X, will contain the remainingo(D) — ro(D1) + 1 = ro(D>).
Thus, to specify such a fiber, we have first to breakrif{@) — 3 pointsq, into
disjoint sets ofg(D1) — 2 andro(D2). The curveX; can then be any of th¥ (D)
irreducible rational curves in the linear serjé¥ | passing through, p, and the
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first set, whileX, can then be any of th& (D) irreducible rational curves in the
linear serie$D5| passing through the second set. Altogether, then, we see that there
will be

N(D1)N (D) ( ro(D) - 3) ;

ro(D1) — 2

points inT" of this type, and correspondingly

ro(D) —3
N(D1)N(D2)(D1 - D2) (ro(Dl) B 2> :
such points in the normalizatidry. Finally, if a fiber of ¥ — B lying over such
a point of 'V is to contribute tap*(0), we have to choosg; andp4 to lie on X»,
that is, to be any of théD, - C') points of intersection ofX, with C3 and C4
respectively. There are thus a total(@f, - C)? fibers of ¥ — B of this type lying
over each such point @.

To complete the calculation of the contribution of fibers of this type to the degree
of ¢*(0), we observe that the fiber of the normalizati# over such a point will
have two components, the normalizations of the cu¥ganeeting at one point
(the point of each lying over the new node). Moreover, by Proposition 2.7, the total
spaceX” will be smooth at such a point; and it follows by Lemma 3.1 that the
corresponding point aB will be a simple zero o§. In sum, then, fibersot — B
of this type contribute a total of

NN DD 02 () ) (22 O

to the degree op*(0).

The contribution of such fibers to the degree of the divigbio) is found
analogously, the only difference being that, in order to get a pole of the cross-ratio,
the pointsp; andps must lie on one component — s& — of X, while p, and
p4 Will lie on the other. Thus, instead of breaking thg D) — 3 pointsg, into
subsets ofg(D1) — 2 andrg(D3), we divide them into subsets of(D1) — 1

andro(D,) — 1; and instead oN(Dl)N(Dz)([;’((gl)>:3;) such points i of this

type we haveN (D1)N (DZ)(:OO((gl))j)- Similarly, instead of choosings among
the (D> - C) points of X, N C3, we choose it among theé); - C) points of X, N C3;

so that instead of D, - C)? zeroes of the cross-ratio lying over each such point of
I'” there will be(D; - C)(D2-C). Again, each pole of the cross-ratio corresponding
to a fiber of this type will have multiplicity one; so the total contribution to the

degree ofp* (o) is

ro(D) — 3

N(D1)N(Dz)(D - D) <m(pl> -1

>(Dl -C)(D2- C).
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It remains to add up the number of zeroes and polésoaiming from members
of our family containingE. Proposition 2.5 describes all such curves, and the
description is particularly simple, given that we are on the surfac@here are
only two types: a degenerate membBeéof our family must consist either of

(1) the union ofE and an irreducible rational nodal curyg € |D — E|, sim-
ply tangent at one point (which will be a smooth pointXf) and meeting
transversely elsewhere; or

; \

(2) the union ofE and two curvesX; € |D;|, which will correspond to general
points of the varietie¥ (D;) for some pair of divisor classd3; and D, with
D1+ D, = D — E. In particular,X1 and X, will intersect each other antl
transversely.

. NN\ /
N

Ty T

Now, we can forget about curves of the first type; in fact, sEi@annot contain
any of the point®, ..., ps, these will be distinct points ak;. Hence the cross-
ratio function will not be zero or infinite at such a pointB8f On the other hand,
fibers of the second type may contribute. To see what our family looks like in a
neighborhood of such a curve, recall first that by Proposition 2.6, as we approach
X along any branch df, all the points of intersection of; and X5, as well as all
but one of the points of intersection of each cuXigwith E, will be old nodes;
exactly one of the points of intersection of eafhwith E will be new. The fiber
of the normalized familyt” — T will thus consist of the normalizations d&f;
andX,, each meeting a copy @ in one point and disjoint from each other
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T

Recall also that the total space&f will be smooth along such a fiber.

Again, E can't contain any of the points;, and if three or four lie on either
curve X; the corresponding point d® will be neither a zero nor a pole gf, but
we may get a contribution if two are on eadh. Specifically, ifp; andp, lie on
one component — say¥; — andps andp4 on the other, we get a zero ¢f while if
p1 andpg lie on a component — again, call this aie — andp, andp,4 on the other,
we get a pole of. That said, we can count the number of such fibers exactly as in
the preceding case.

We do the zeroes first. We begin by specifying a pgiftin I' — that is, we
break the pointg, into subsets of sizeyp(D1) — 2 andry(D;) respectively, and
chooseX; among theV(D;) irreducible rational curves ifD; | throughps, p2 and
the first set and{, among theV (D) irreducible rational curves ifD,| through
the second set. Next, a pointli¥i: we can take any of theD; - E)(D- - E) points
of I'V lying over[X] € T. Lastly, we have to choogg andp, among thg D, - C)
points of intersection oK, with C3 andC4 respectively. We have, in sum,

ro(D) — 3

)(Dl - E)(D2- E)(D2 - C)?

zeroes ofp of this type.

The poles of the cross-ratio coming from such curves are counted in the same
way; the differences being exactly as in the preceding case: in specifying the point
[X] € T" we have to choose a subsetrgfD;) — 1 rather thamrg(D1) — 2 of the
pointsg,; andps must be chosen among thB; - C') points of X1 N C3. There are
thus a total of

ro(D) — 3

)(Dl -E)(D2- E)(Dy-C)(D2-C),

poles of this type.

There is one important difference between this case and the previous, however:
here, the fiber of the normalizatiok’¥ — I'” has three components, with the
componentsX; and X, containing the pointg; separated by the componefit
Since by Proposition 2.7 the total spaté is smooth, we see by Lemma 3.1 that
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such points will be double zeroes and polegofrhe contribution to the degrees
of these divisors coming from fibers of this type is thus twice the number of such
fibers.

We can now calculate the degree of the divispré) and¢*(oc). We have

deg¢*(0)) = 2-N(D)

ro(D) — 3
Y NN (TO - 2) (Dy- D3)(Ds- )2
D1,Dy#E

D1+Dy=D—E
Dy, Dy#E

x (D1 - E)(Dy - E)(D2- C)2

Similarly,
deg¢" (o))
= Y NDIND) (:5((51))‘_3& (D1~ D2)(Dy - C)(D2 - ©)
B Dier
ro(D) —3
= D1+DZZ=:D—E N(Dl)N(DZ) (TO(DI) - 1>

Dq,Dy#E
X(D1- E)(D2- E)(D1- C)(D2- C).
To express the final result we introduce the notation

ro(D) —3
ro(D1) — 1

ro(D) — 3 2
— Dy-C)e|.
(ro(Dl) _p)P2:0)
We now write de@p*(0)) = ded¢*(o0))) and solve the resulting equation for
N(D) to arrive at the recursion formula fo¥ (D) onFs.

v(D1, Dz) = N(D1)N (D) l( >(D1'C)(D2-C)

THEOREM 3.2Let D € Pic(F2) and let N(D) be the number of irreducible
rational curves in the linear serigd| that pass througho(D) general points of
F,; then we have

N(D) == > 5(D1,D3)(D1- Dy)
D1+Dp=D
D1,Dy#E
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+ Y. (D1,Dy) (D1 E)(D;- E).
Dy+Dy=D-E
Dy,Dy#E

3.3. THE CLASS2c ON F,

We now analyze the linear serig&”| on the ruled surfacg, for anyn. We arrive

at a closed-form expression fof(2C) rather than a recursion. This is clear: since
every linear serieD| onF,, with D < 2C that actually contains irreducible curves
has arithmetic genus 0, we can say immediately how many degenerate fibers of
each type there are in our one-parameter family of curvéxin

The dimension of2C| is 3n + 2. The arithmetic genus of the curves in the series
isn — 1, so that the expected dimension of the Severi variety(®C) = 2n + 3.
This is in fact the actual dimension: any irreducible nodal cutve |2C]| is be
disjoint from E (if it met E, it would contain it, having intersection number O with
it); so that the nodes dP impose independent conditions @¢|.

So, we choose as usuail 22 general points o, , which we labeb, p2, g3, . . .,
¢2n+2 and consider the one-parameter family of curi¥es |2C| passing through
{pP1,P2,q3, - - ., q2n+2}; We denote this familyt — I'. As before, we lel” be
the normalization of® and X — I'¥ the normalization of the pullback family.
Next, we fix general curveS; andCj € |C| in the linear serief”|, and adopt the
convention that we choose pointg andp4 on the curvesX of our family lying
on C3 andCj, respectively. Making the corresponding base change, we arrive at a
family X — B; as before, we denote Bythe minimal desingularization ¢t and
by Z — B the smooth semistable model.

Now we consider the cross-ratio map B — Mg 4 P! as before; we shall
obtain a formula fotV (D) from

degg”(0) = degg™ (o).

Of course, we get one contribution to the degreedD) from the curves in our
family that pass through any of the points of intersection of’s with Cy; this
gives a total contribution af - N (2C) to the degree op*(0).

The remaining zeroes and poles @fcorrespond to reducible curves in the
family { X }. As before we look first at curves that do not contairirhey can only
be of the formX = D, + D, whereD1 andD, are each linearly equivalent @.

Such a fiber of the familyf’' — B can be either a pole or a zerogfdepending
of course on how the poinig are distributed. Namely, #1 andp» lie on the same
componeniD; andps andp4 on the other, we get a zero. To specify such a fiber,
we simply have to break thenZpointsq, into disjoint sets ot — 1 andn + 1.
The two component®); of the curveX will be the (unique) curve in the series
|C| containingp1, p2 and the first subset; and the unique curve in the séfies
containing the second subset.
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P P3 P4 g
P2

Next, we have to count the number of points@®ilying over each point of°
corresponding to such a curve. Since the general curve of our famity-hasodes,
and then nodes ofX = D1 U D, impose independent conditions on the sel2€§,
the curvel hasn (smooth) branches at the po|t¥]; thus the normalization df
hasn points lying ovef X] (cf. Proposition 2.6). Moreover, for each of these points
there will be a point o3 for every possible choice of poingg andps; these can be
any of the(C - C') = n points of intersection of the componei} not containing
p1 Or p2 with C3 andCy respectively. There are thus a total(gffl) -n - n? fibers
of X — I' of this type.

Now, for each such fiber ot — I, the fiber of ¥ — B will be simply the
normalization ofX at then — 1 old nodes.

P1

) ® ©® ®© o2

P3 P4

In particular, it has just two components and is stable, and as we hav&’seen
already is smooth at the node of such a fiber. Each such point is thus a simple zero
of ¢; so the total contribution to the degree¢sf0) of such curves is

n 3
(n_1> .

Similarly, we could havey; andps on the same componeft; andp, andpy
on the other; in this case, we get a point¢d{cc). The only difference in this
case is that to specify such a fiber, we have to breakthegoits{q,} into two
disjoint sets of: points apiece. The two componeiits of the curveX will be the
(unique) curves in the serié§'| containingp; and the first subset; and the unique
curve in the serieg”| containingp, and the second subset. The rest of the analysis
is exactly the same — for each such curve, werggtoints of B, each of which is
a simple pole of the cross-ratio functign- so the total contribution to the degree
of ¢*(o0) of such curves is

2
n
The remainder of the calculation will be spent evaluating the contributions to

the degree of the pullbacks of the boundary componentggnf coming from the
curves in our original family containing. As we have indicated, these curves are
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of n — 1 types: for eaclt = 1,...,n — 1 we have a finite number of curves in
our family consisting of the sum o, k fibers Fy, ..., F, of F, — P! and an
irreducible curveD linearly equivalent ta” + (n — k) F, with D having a single
point of (n — k)-fold intersection with¥, as pictured below. For each of these types,
there are a number of possibilities for the distribution of the pginis. ., p4 on

the various components. For each such distribution corresponding to pamts
the inverse image of a boundary compondnef Mg 4, we consider the number
of fibers X, of that type and the coefficient with which the corresponding points
b € B appear in the divisap*(A); in the end we will sum up the contributions to
arrive at an expression fa¥ (2C') onF,, .

/\i

N L

S—

FI Fo . . . . Fq Fy

e1 p1,p2 € D; p3,psa € Fj. In such a curve, the fiber componehtsmust each
contain one of the pointg,. To specify such a curve, then, we must first choose a
subset oft of the 2» pointsq, and takeF' = UF; the unique curve in the linear
series|k - F| containing them. Next, we have to single out one of thepeints,
and label the corresponding fib&}. At this pointps andps will be determined,
as the unique points of intersection Bf with the curves’; and(Cy respectively.
Finally, we choose a curv® € |C + (n — k)F| passing through the remaining
2n — k of the pointsg, and having a point ofn — k)-fold tangency with~. (Note
that the ordering of thé pointsq, chosen to lie on fibers does not matter; all that
counts is which one is chosen to lie &h)

Now, the linear serieC 4 (n — k) F| cuts on the curvé& = P! the complete
linear seriesOp1(n — k)|. This linear series is parametrized by the spite® of
polynomials of degree — k£ onP! modulo scalars; and in that projective space the
divisors consisting simply aof — & times a single point —that isp — &)th powers
of linear forms — form a rational normal curve. In the linear seiies- (n — k) F|,
then, the locus of curve® having a single point ofn — k)-fold intersection
with E is a cone over a rational normal curvelf—* (with vertex the subseries
E +|(2n — k)F| C |C + (n — k)F| of curves containingf); in particular, it
has degree. — k. There are thus exactly — k& curvesD linearly equivalent to
|C + (n — k)F| passing througlps, p2> and the remaining.2— k of the pointsg,
and having a point ofn. — k)-fold tangency withE. In sum, the number of fibers
X of this type in our family is(3") - & - (n — k).
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It remains to determine, for each such fiber of our family, the coefficient with
which the corresponding poihte B appears in the pullback divisgi (0). To do
this, we need to know the local geometry of the family nlear B; in particular,
we need to have the picture of the corresponding fibers of the famiilies B
and) — B. For the first, the only thing we need to know is which of the singular
points of the fibelX are limits of nodes of nearby fibers and (in the case of the point
of intersection ofD with E) how many. The answer, as provided in Proposition
2.7, is that the points of intersection bfwith the fibersF; are all limits of nodes
on nearby curves; and the remainifig — k¥ — 1) nodes of the general fiber of
the family tend to the point of intersection &f with E. When we normalize the
total space of the family, then, the curv@sand F; are pulled apart; and the point
of intersection ofD with £ becomes a node, so that the fiberlof— B overb
consists of a rational curvB with & fibersF1, . . ., Fj, and the curveD attached.

But as we also saw in Proposition 2% ,will not be smooth: at the point lying
over each point of intersection &fwith a fiberF;, X will have a singularity of type
A,_r_1. Resolving each of these, we arrive at this picture of the fibgf e B
overb

Finally, we can blow down the extraneous cur¥gsindG . for j # ¢ to arrive
at the picture of the fibe¥ of the family Z — B of semistable 4-pointed curves
with smooth total space

E Giy Gis Gzl F;

D

Inasmuch as there are: — k) rational curves in the chain connecting the
componentd) and F; containing the pair§p1, p2} and{ps, psa}, each such fiber
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represents a point of multiplicity — £ + 1 in the divisor¢*(0). In sum, then, the
fibers of this type contribute a total of

1 on
Z(k>-k-(n—k)-(n—k+l),

k=1

to the degree op*(0).

e p1,p3 € D; pa,pa € F; Or po,pa € D; p1,p3 € Fj. In the first of these
cases we are simply exchanging the locationg-0andp3 to obtain a fiberX
corresponding to a poittin the inverse image*(co); this will affect the count of
the number of such fibers, but not the final configuration on the semistable model
with smooth total space, so the multiplicity of each such pointin the divis@)
will be as in the preceding cagse— k + 1.

The difference here is that, because the fixed pairlies on one of the fiber
components, we can put the remaining fiber components througlt enlyof the
pointsq,,; at the same time, we can put the cueéhroughp, and the remaining
2n — k + 1. To specify such a curve, then, we must first choose a subgetdf
of the 2n pointsg, and takeF’ = UFj; the unique curve in the linear serigs: F|
containing them ang,; the component of' containingp, we call F;. As in the
preceding case, there will be exaatly- k curvesin the linear seri¢§' + (n— k) F|
passing through the remaining 2- & + 1 pointsq, and the poinp; and having a
point of intersection multiplicityr — & with E; the curveD can be any of these.
At this pointp4 will be determined, as the unique point of intersectiorFpfvith
the curveCy; while p3 can be taken to be any of the

(D-C3) = ((C+ (n—k)F)-C) =2n—k,

points of intersection o) with C'3. The number of fiberX of this type in our
family is thus(,*",) - (n — k) - (2n — k).

As we said, each such fibéf of our family is a pole of orden — £ + 1 of the
cross-ratio functiorp. Finally, since exchanging: with p4 (as in the second case
above) yields an identical result, the total contribution of the fibers of these types
to the poles ob is

n—1
2-Z<k2fl> n—k) - @n—k) - (n—k+1).

e3p1,p2 € D; p3 € F; andpy € Fj, 1 # j. This case is very similar to the first;
again, we have first to select a subset of the 2» pointsq, and takeF"” = UF; the
unique curve in the linear serigs- F'| containing them. We then have to single out
two of thesek points, and label the corresponding fibétsand F;, which in turn
determines the poinig = F; N C3 andps = F; N Cy. Finally, we take as befor®
to be any of thex — k curvesin|C + (n — k) F| passing througlp; andp, and the
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remaining 2 — k of the pointsy, and having a point ofn. — £)-fold tangency with
E. Thus, the number of fibers of this type in our family is(zlgb) k- (k=1)-(n—k).

At this point, we see another difference with the preceding case: here, to arrive
at the fiber of the family of semistable 4-pointed curves with smooth total space
we blow down the curves},, andG,, . for all m including: andj, to arrive at the
simpler fiber

D
/w
p2

p3 P4

Since this is already semistable, each such fiber represents a simple zero of
In sum, then, the fibers of this type contribute a total of

n—1 on
> (k> k-(k—1)-(n—k),
k=1
to the degree aop*(0).
For the remaining cases we indicate only the distribution of the ppjr=iisd the
resulting contribution; the reader should find no difficulty in supplying the details.
*4p1,p3 € D;p2 € Fjandps € Fj,i # j; 0rp2, pa € D; p1 € F; andps € Fy,
1 # j. The fibers of this type contribute a total of

n—1
zlgl(kz_”l)-(k—l)-(n—k)-(zn—k),

to the degree ap* (o).
o5 p3,pa € D; p1 € F; andp, € Fj, i # j. Such fibers contribute a total of

n—1 on
Z (k‘—Z) -(n—k)-(Zn—k)z,

to the degree op*(0).
esp1 € D,pp € F; andps, ps € Fj, 1 # j, 0rp1 € Fj, p2 € D andpz, ps € Fj,
1 # j. We get a contribution of

to the degree o*(0).

comp4058.tex; 8/07/1998; 12:07; v.7; p.48

https://doi.org/10.1023/A:1000401119940 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000401119940

PARAMETER SPACES AND ENUMERATION OF RATIONAL CURVES 203

e7p1 € D,p3 € F;andpy, ps € Fj,i # j;0rp2 € D, ps € F;, andpy, p3 € Fj,
1 # 7. These fibers contribute a total of

to the degree of* (o).
egp3 € D, p1 € Fyandpy, ps € Fj,i # j;0rps € D, p € F;, andps, p3 € Fy,
1 # 7. Contributing a total of

nl 2n> 2
2- -(2n—k)-(n—k)°,
gl(k_z (20— ) (0~}

to the degree ap* (o).

We come now to the last three cases, those in which none of the four pgints
lie on D. The next one is the last to contribute to the degreg*“().

®9 p1 € Fj, pp € Fj andps,ps € Fy, 1 # j # £ # 4. The total contribution of
such fibers is

Z(k 2)'(k—2)'(”—k)2-
k=1 \"
e10p1 € Fi;p3 € Fj andpa,psa € Fy; orpp € F; pa € F; andpy,p3 € Fy,

1 # j # £ # 1. Counting both possible exchanges, we see that the total contribution
of such fibers to the degree ¢f(o0) is

nl 2n> 2
2. -(k—=2)-(n—k)-.
gl(k_z (k=2) (n— k)

®11 p1,p3 € F; andpy, pg € F;, i # j The total contribution of such fibers to
the degree of*(o0) is thus

=l o
Z (k—Z) “(n—k)-(2n — 2k).

k=1

We are now ready to add up all the contributions to the degreé$(6) and
¢*(0), equating the results and solving §{2C'). We have

ded¢*(0)) = n- N(2C) +n® (nzf 1)
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2n
+<k B 2) (2n —k)>+ (k—2)(n — k))] :

while on the other hand

ded¢*(c0))
n—1
— n3<2:> +Y (n—k) l(kz_”l> (22n — k)(n — k + 1)
k=1

+2(2n —k)(k—=1)+2(k —1)(n —k))
2n
+ (k B 2) (2(2n — k)(n — k)

+2(k —2)(n— k) +2(n — k))]

Combining these, we arrive at the expression

n-N(2C)=n? ((2:> - (nZ_nl)) + 5,

where

(Note that we can now enlarge the formal limits of summation to inckude O
without affecting the sum; this will be convenient in the following calculations.)
To reduce this further, we separate it into two terms: we wfite S’ — S”, where

n—1
2n
I 2 o
S —kZ::O4n (n k)<k—1>
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n—1
= Z(n—k)kn l<2:> +2<k2—nl> + (kZ_nZ)] .
k=0

The expression fo§” telescopes nicely and we have simply

n—1
S" = Z(n—k) - kn - <2n]:_ 2).

k=0

and

As for S’, we can combine that with the remaining two terms in the expression for
N (2C), and together they simplify. To start with, observe that

(C)-025)) =)

Now, combining this with the expression 6t above, we have
2n ! 2n
2 20, _
n(n_l>+1€z::c)4n(n k)<k—1>

) AR) Aol

Now we use standard binomial identities to reduce this to

n2< 2n >+r§4n2(n—k)< 2n )
n—1 k—1
k=0
o (2n+2 L2 2n+1 43 2n +1 P 2n+1
" ln-1 n—2 n—3 "l o

n—1
= n? Z(n —k) <2n]:_ 2).

k=0
Finally, we can combine this and the expression abovéforve have

2n 2n , "
() () s
bl 2n +2 ! 2n +2
=n Z(n—k)( f >—n2k(n—k)< i >
k=0 k

=0
n—1
. n_k2<2n+2>'
kg( ) i

n - N(20)
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We have therefore proved the

THEOREM 3.3.Let N(2C) be the number of irreducible rational curves in the
linear serieg2C| onT,, passing througt2n + 3 points, then

n—1
NEC) =Y (n - k)2<2”; 2).

k=0

For example, off, we haveN (2C') = 10; onF; we haveN (2C') = 69; and on
F4 we haveN (2C) = 406 and so on.

We now show how to arrive at an expressiondf2C) onF,, as a coefficient
of a simple generating function. We simply write out the sum involved, and then
telescope it using the standard binomial relations as before: that is, we write

_(2n+2 2n+2 2n + 2 2f2n+2
waoy (22 a2 D) o202 (75
and use the relations
2n+2 N 2n—+2 B 2n+ 3
n—1 n—-2) \n-1)
2n + 2 2n + 2 2n+3

and so on to rewrite this as
2n+3 2n+3 2n+3
N(@20) = (n_l)+3(n_2)+6(n_3>

f. oy nntD) (2n+3
2 0

_ ?:(n—l;rl) <2n;3>_

We can also think of this as the coefficientt®fin the product of the power series

Z (2”'[:— 3> tk — (1+ t)2n+3

and
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so that we can writéV (2C') onT,, as the coefficient

N(2C) =

(1+1t)2+3
1=1)° |,

3.4. AFORMULA FORF,

We conclude our paper with a formula for the general ruled surfaceHere

we define the function;, .. ;,(D;,, ..., D;,) giving the contribution to the cross-
ratio corresponding to a given decomposition= D1 + D, +--- + D; + E or

D = Dy + D, with D; € V;,(D;). Recall that the variety;(D) is the closure in

| D| of the locus of irreducible rational curves that have a point of contact of order
17 with the exceptional curv&. We define

Yigyit(D1, -, Dy) =[] (4;Ni; (D;))-

RS
ro (D1) — L,r¢(D2) — 1,76 (D3), . ..

3 (C-Dj) <(C Dy | (C© '.D2)> oy (C-Dj)?

11 12 >3 ij

>3 Y

_( | ro(D) =3 )
o (D1) — 2,76 (D2), 7 (D3), - - -

X

> (C- D;)? <i+1>+i Y. (C-Dj)(C-Dy)

j>2 tjoon Y ogj<kst

In these terms, we can state

THEOREM 3.4.Let D be a divisor on the surfacg,. Let N(D) be the num-
ber of irreducible rational curves ihD| that pass througho(D) general points
of F,. Then

nN(D) = > (D1-D2)y11(D1,D2)
D1+Dy=D

n
+3 >
t=2 D1+Dat-+Dy=D—FE

x Z H (E : Dij )7i1,...,it (Dl, c ,Dt).

il,...,’it j:ij:l
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