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Abstract. Let S be a smooth, minimal rational surface. The geometry of the Severi variety para-
metrising irreducible, rational curves in a given linear system onS is studied. The results obtained are
applied to enumerative geometry, in combination with ideas from Quantum Cohomology. Formulas
enumerating rational curves are found, some of which generalise Kontsevich’s formula for plane
curves.
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1. Introduction

In this paper we investigate the geometry of families of rational curves on a
nonsingular, rational surfaceS. All varieties are assumed to be projective overC .

Let D be an effective divisor class inS and letjDj be the set of all effective
divisors linearly equivalent toD; this is a projective space whose dimension we
denote byr(D). InsidejDj, we consider the locus of rational curves: we let

~V (D) = f[X] 2 jDj such thatX is an irreducible; rational curveg:

This is a locally closed subset ofjDj; we letV (D) � jDj be its closure. We call
V (D) the Severi varietyof rational curves associated to the divisor classD, and
we denote its dimension byr0(D). We have in generalr0(D) > r(D) � pa(D)
with equality holding in all the cases that we shall study.

The particular aspect of the geometry ofV (D) of concern to us here is its
degree, which we denote byN(D). This can be characterized directly: it is the
number of irreducible rational curves that are linearly equivalent toD and that
pass throughr0(D) general points ofS. The principal results of this paper is the
computation ofN(D) in some cases. For simplicity, we defineN(D) to be zero if
V (D) is empty.
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156 LUCIA CAPORASO AND JOE HARRIS

There are various approaches to the calculation of degrees of Severi varieties
(see [CH] for a different technique). We call the one we take here the ‘cross-ratio’
method; it is based on ideas of Kontsevich and Manin, expressed in the ‘First
Reconstruction Theorem’ of [KM]. In [KM] they describe a formula discovered
by Kontsevich, for the number of plane rational curves of given degree passing
through the appropriate number of points (the first proofs of it appear in in [RT]
and in [K] – [KM]). These ideas have also been used to give formulas for the
degrees of genus 0 Severi varieties on certain rational surfaces; see [CM], [DI] and
[KP].

For an illustration of how the cross-ratio method can be used to give a rather
simple proof of Kontsevich’s formula see [C] (see also [CH] for an even simpler
proof).

Let Fn = P(O
P1 � OP1(n)) be a Hirzebruch surface. The Picard group ofFn

has rank 2, and we choose generators as follows

Pic(Fn) = Z � C � Z � F;

whereC2 = n; F 2 = 0 andF � C = 1. We denote byE the unique curve of
negative self intersection, so thatE2 = �n andE � C � nF .

LetD be any divisor class on the surfaceS = Fn other thanE, and letm :=
(m1;m2; : : : ;mk) be any sequence of positive integers with

P
mi = (D �E). We

define the locally closed subvariety~Vm(D) � V (D) to be the locus of irreducible
rational curvesX such that, if� : P1 ! X is the normalization ofX, the pullback
divisor

��(E) =
X

mi � qi;

for some collection of distinct pointsq1; : : : ; qk 2 P1, and we letVm(D) be its
closure; for example, as we will see, ifm = (1;1; : : : ;1), thenVm(D) = V (D).
Whenm contains a single integeri greater than 1 (i.e.m = (i;1;1; : : : ;1)), we
denote these by~Vi(D) andVi(D) respectively. We set

ri0(D) = dim(Vi(D))

and

Ni(D) = degVi(D):

We haveV (D) for V1(D),N(D) = N1(D) andr0(D) = r1
0(D). We defineNi(D)

to be zero ifVi(D) is empty.
Similarly, let 
 = fp1; : : : ; pkg � E � Fn be any collection ofk distinct

points. We let~W

m(D) � V (D) be the locus of irreducible rational curvesX such

that, if � : P1 ! X is the normalization ofX, then for some collection of distinct
pointsq1; : : : ; qk 2 P1 we have

�(qi) = pi
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and

��(E) =
X

mi � qi

and again letW

m(D) � V (D) be its closure.

Now we give a list of some formulas including all the ones that we prove in this
paper. They are very similar from a formal point of view. We state them in a way
that highlights the analogies.

Fix two curvesC3 andC4 onS. For any pair of divisor classesD1 andD2 we
introduce the function


(D1;D2) :=

N(D1)N(D2)

" 
r0(D)� 3

r0(D1)� 1

!
(D1 � C3)(D2 � C4)

�
 
r0(D)� 3

r0(D1)� 2

!
(D2 � C3)(D2 � C4)

#
:

Using this notation, we state the following results

Recursion for P2 ([KM]) LetC3 andC4 be two fixed lines in the plane, then

N(D) =
X

D1+D2=D


(D1;D2)(D1 �D2):

Recursion for P1� P1 ([KM], [DI], [KP]) LetC3 andC4 be two fixed elements of
the two distinct rulings, then

N(D) =
X

D1+D2=D


(D1;D2)(D1 �D2):

The first new result of this paper is a recursion formula for the degrees of Severi
varieties of rational curves onF2. The recursion contains now a new term which is
due to the contribution of degenerate curves containingE.

Recursion for F2 (Theorem 3.2)LetC3 andC4 be two fixed elements of the class
C, then

2N(D) =
X

D1+D2=D


(D1;D2)(D1 �D2)

+2
X

D1+D2=D�E


(D1;D2)(D1 � E)(D2 � E):
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Finally, onFn , the general reducible curvesX = [Xi 2 jDj that are limits of
irreducible rational curves and containE have the property that each component
Xj may have a point of tangency of orderij with E – that is, will belong to
Vij (Dj), whereDj is the divisor class ofXj . Accordingly, we shall define later
(Section 3.4) a generalized version of the number
(D1;D2); this will be a function

i1;i2;:::;it(D1;D2; : : : ;Dt) depending recursively on the degreesNij (Dj). In these
terms, we give a formula expressing the degreeN(D) of V (D) on Fn in terms of
the degrees of the tangential Severi varieties of smaller divisor classes.

A sample formula for Fn (Theorem 3.4)

nN(D) =
X

D1+D2=D

(D1 �D2)
1;1(D1;D2)

+
nX
t=2

X
D1+D2+���+Dt=D�E

X
i1;:::;it

�
Y

j:ij=1

(E �Dj)
i1;:::;it(D1; : : : ;Dt):

The difference here is that in casen > 3 this does not give a complete recursion:
to be able to enumerate rational curves on such surfaces, we would need formulas
for the degrees of the ‘tangential’ Severi varieties as well, that is, we need formulas
for Ni(D). The first case for which this occurs is that ofF3. Very possibly a
complete recursion could still be obtained using the cross-ratio method, although
the level of difficulty seems to us to get very high. Instead we found a different
technique that we successfully applied in a few cases; for example, we obtained a
complete set of recursions for the surfaceF3. This different method is the subject
of another paper of ours (cf. [CH]); it also is heavily based on the deformation
theory results that are developed in the second chapter of this paper.

Finally, we obtain a closed formula for the class 2C on any ruled surfaceFn .

Closed formula for 2Con Fn (Theorem 3.3)

N(2C) =
n�1X
k=0

(n� k)2
 

2n+ 2
k

!
:

2. Degenerations of rational curves

2.1. THE BASIC SET-UP

We start with the complete linear systemjDj associated to a divisor classD on
the ruled surfaceS = Fn , and with the Severi varietyV (D) � jDj. We then
chooser0(D)�1 general pointsq1; : : : ; qro(D)�1 2 S, and let� be the intersection
ofV (D)with the linear subspace of curves injDj passing throughq1; : : : ; qro(D)�1;
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we letX � �� S be the corresponding family of curves over�.
Next, we let�� ! � be the normalization of the base�, andX � = (X ��

��)� �! �� the normalization of the pullback of the family to��, so thatX � ! ��

is a family whose general fiber is a smooth rational curve. IfX is a fiber ofX ! �,
the notationX� will be used for a corresponding fiber of the familyX � ! �� ,
which may differ from the normalization ofX.

Then we fix two curvesC3 andC4 in Fn , which will be linearly equivalent toC.
We need to make a further base changeB ! �� , so that the points of intersection
of the curves in our family withC3 andC4 become rational over the base. We thus
letB ! �� be any finite cover, unramified at the pointsb 2 �� with X�

b singular,
and letX 0 ! B be the pullback of the familyX � ! �� to B. (By Propositions
2.1 and 2.5, the mapB ! �� introduced in Chapters 1 and 3 in order to define
the sectionspi will indeed be unramified at the points ofB corresponding to the
singular fibers ofX � ! B.) Because the results of this chapter are all local in the
base of our family, however, we will not need to introduce this extra step in the
construction. For the remainder of this chapter, accordingly, we will takeB = �� ;
and all of the results of the chapter describing the mapX � ! �� will still hold
after the base changeB ! �� .

Next we introduce thenodal reductionof the familyX 0 ! B. That is to say, after
making a base change~B ! B and blowing up the pullback familyX 0�B

~B ! ~B,
we arrive at a familyY ! ~B such that

(1) Y ! ~B is a family all of whose fibers ofY ! ~B are reduced curves having
only nodes as singularities;

(2) the total spaceY is smooth;
(3) Y admits a regular birational mapY ! X 0 �B

~B over ~B.

In fact, most of our concerns with this definition will turn out in the end to be
unnecessary: we will see below as a corollary of Propositions 2.6 and 2.7 that in
factX 0 ! B is already a family of nodal curves. Thus, in practice, we will not
have to make a base change at all at this stage, andY will be simply the minimal
desingularization ofX 0. For this reason (and becauseB is itself already an arbitrary
finite cover of the normalization�� of our original base�) we will abuse notation
slightly and omit the tilde in~B, that is, we will speak of the familyY ! B.

One further remark: in the applications we will have four sections of the family
Y ! B and will correspondingly want to consider this as a family of four-pointed
nodal curves. For this reason, we may want to make further blow-ups at points
where these sections cross. By Propositions 2.1 and 2.5, however, the sections in
question will cross only at smooth fibers ofY ! B and so this will not affect our
descriptions of the singular fibers of the family.

The final construction is one that we will use only in the following chapter,
but we mention it here just to have all the definitions in one place. After arriving
as above at a familyY ! B of nodal curves with four disjoint sectionspi, we
may then proceed to blow down ‘extraneous’ components of fibersY of Y ! B:
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160 LUCIA CAPORASO AND JOE HARRIS

that is, any component ofY that meets the other components ofY in only one
point, and that meets at most one of the sectionspi. Iterating this process until
there are no extraneous components left, we arrive at what we will call theminimal
smooth semistable modelof our family: that is, a familyZ ! B such thatZ is
smooth, the fibers are nodal, the sectionspi are disjoint andZ ! B is minimal
with respect to these properties. Note that the special fiberZ of Z must be a chain
of rational curvesG0; : : : ; G` with two of the sections meeting each of the two end
components

(the casè = 0 is simply the case whereZ is irreducible). Finally, we can blow
down the intermediate componentsG1; : : : ; G`�1 in this chain to arrive at a family
W ! B of 4-pointed stable curves, called thestable modelof our family. The
special fiber of this family will have just two components (or one, if` = 0), with a
singularity of typeA` at the point of their intersection.

In sum, we have the diagram of families and maps.

2.2. THE MAIN RESULTS FROM DEFORMATION THEORY

We give here a summary of the main results to be proved in this chapter.
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� The first is Proposition 2.1 in which we consider the Severi varietiesV (D) and
Vm(D), compute their dimension and describe the geometry of their general
point. In particular, we characterize the general fiber of the familyX ! �.
The results are unsurprising: for example, the general point[X] of V (D)
corresponds to a curveX with only nodes as singularities; general points
[X], [X 0] of, respectively,V (D) andV (D0) correspond to curvesX, X 0 that
intersect transversely.

� Then, in Proposition 2.5, we study the geometry of the general point of the
boundary ofV (D). We do that by listing all types of reducible fibers that
occur in the familyX ! �. This result is not predictable on the basis of
a simple dimension count; in most linear systemsjDj on Fn the subvariety
corresponding to reducible rational curves containingE is larger-dimensional
thanV (D); so the question of which points of the former lie in the closure of
the latter does not have an immediate answer.

� The third result is Proposition 2.6, which is specifically about the family
X ! �. We describe the geometry of the base� in a neighborhood of each
point[X] 2 � corresponding to a degenerate fiberX. In particular, we say how
many branches� has at[X] and say how the nodes of the nearby irreducible
fibers approach the singularities ofX as we approach[X] along each branch
of �.

� Finally we have Proposition 2.7, describing the singularities of the total space
of the familiesX ! � andX � ! �� . This will be a crucial ingredient in
calculating the multiplicities of zeroes of the cross-ratio function on the base
of our family.

One word of warning is in order. Many of both the statements and proofs of
these propositions are just routine verifications of statements easily guessed on the
basis of naive dimension counts. At the same time, mixed in with these largely
predictable statements are some interesting phenomena. These are described in the
second parts of Propositions 2.5, 2.6 and 2.7, in which we describe the geometry
of the one-parameter familiesX ! � andX � ! �� in a neighborhood of the
reducible fibers containingE. Near such a curve, the local geometry of the universal
family over the Severi variety is, to us, somewhat surprising.

2.3. GEOMETRY OF SEVERI VARIETIES

Here is the first result about the varietiesVm(D) defined in the introduction.

PROPOSITION 2.1.Let jDj and jD0j 6= jEj be any linear series on the surface
S = Fn ; let G � S be any fixed curve not containingE and letP1; P2; : : : 2 S

be any given finite collection of points. Letm = (m1;m2; : : :) be any collection of
positive integers with

P
mi = (D �E).

(1) If Vm(D) is nonempty, then it has pure dimension
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162 LUCIA CAPORASO AND JOE HARRIS

dim(Vm(D)) = �(KS �D)� 1�
X

(mi � 1):

(2) A general point[X] of any component ofVm(D) corresponds to a curve
X � S having only nodes as singularities, smooth everywhere alongE,
intersectingG transversely and not containingPi for anyi.

(3) If [X] and [X 0] are general points of irreducible components ofVm(D) and
Vm0(D0) respectively, thenX andX 0 intersect transversely, and none of their
points of intersection lie onG or E.

REMARK. Many of the techniques necessary to prove this statement are in [H].
In fact, many of these assertions are proved there, but unfortunately with slightly
different hypotheses: they are proved first on a general rational surfaceS, but only
for V (D), that is, without the tangency condition (Proposition (2.1) of [H]); and
then with a single tangency condition, but only with respect to a line in the plane
(Lemma (2.4) of [H]).

Proof.We start with the dimension statement. The assertion that the dimension
of V (D) is everywhere equal to�(KS � D) � 1 is standard deformation theory
(and is well known; c.f. [K]). To see it, observe first that if[X] 2 ~V (D) is any
point and�:X� ! X � S the normalization of the corresponding curve, the
first-order deformations of the map� are given by sections of the pullback��(TS)
of the tangent bundle toS. Now, the tangent bundle to the ruled surfaceS = Fn is
generated by its global sections everywhere except alongE; sinceXdoesn’t contain
E, it will likewise be true that the pullback��(TS) will be generically generated
by its global sections. SinceX� �= P1, it follows in turn thath1(X� ; ��(TS)) = 0.
The deformations of the map� are thus unobstructed, from which it follows that
the space of such deformations is smooth of dimension

h0(X� ; ��(TS)) = deg(��(TS)) + 2

= �(KS �D) + 2:

If we mod out by automorphisms of the domainP1, we see that the space of
deformations of the image curveX � S as a rational curve has dimension

h0(P1; ��(TS))� 3 = �(KS �D)� 1;

which is the same as the dimension ofT[X]V (D).
We next establish the

CLAIM. The dimension of~Vm(D), and hence ofVm(D), is everywhere at least
r0(D)�

P
(mi � 1).

To see this, setl = (D � E). Let [X] 2 ~V (D) be any point,U an analytic
neighborhood of[X] in ~V (D), X � U � S ! U the universal family of curves
overU , andX � andU� the normalizations ofX andU ; we may assume that the
map� :X � ! U� is smooth. Now letX �

l be thelth symmetric fiber product of
X � ! U� . We then have a map
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� : U ! X �
l [X] 7!  �

[X]�
�
[X](E):

Now, inside the symmetric productX �
l , the locus�m of divisors having points

of multiplicities mi or more is irreducible of codimension
P
(mi � 1); since

~Vm(D)\U is an open subset of the inverse image��1(�m), it follows that it must
have dimension at least dim(V (D))�P(mi � 1) everywhere.

Note that an analytic neighborhoodU of any point of~Vm(D) admits a map to
Ek, sending[X] 2 U to the imagesqi = �(pi); the fibers of this map are analytic
open sets in the varietiesW


m(D). In particular, we have

dim(Vm(D)) 6 dim(W

m(D)) + k;

so that in order to prove the opposite inequality dim(Vm(D)) 6 r0(D)�
P
(mi �

1), it is enough to show that the dimension of the varietyW

m(D) is equal to

r0(D)�
P
mi for any subset
 = fp1; : : : ; pkg � E.

To prove the remaining parts of the Proposition we first identify the projective
tangent space to the space of deformations of a given reduced curveX preserving
the geometric genus ofX; and then the subspaces corresponding to deformations
that also preserve singularities other than nodes and/or tangencies with fixed curves.
This is the part that is in common with [H], and for the most part we simply recall
here the statements of the relevant results (Theorem 2.2 and Lemma 2.3). Then, to
apply these, we need to estimate the dimension of these subspaces ofjDj; this is
carried out in Lemma 2.4 and the following argument.

We identify the tangent space to the linear seriesjDj at [X] with thecharacter-
istic series

H0(X;OX (X)) =
H0(S;OS(X))

C �
;

where� 2 H0(S;OS(X)) is the section vanishing alongX (this identification is
natural up to scalars; more precisely, the tangent space toP(H0(S;OS(X))) at
[X] = C � is

Hom

 
C �;H0(S;OS(X))

C �

!
=
(C �)� 
H0(S;OS(X))

C �
:

Now suppose that we are given any subvarietyW of the linear seriesjDj on
S. Let [X] 2 W be a general point ofW . The following theorem of Zariski ([Z],
Theorems 1 and 2) characterizes the tangent space toW at [X].

THEOREM 2.2. (Zariski’s theorem) In terms of the identification of the tan-
gent space to the linear seriesjOS(D)j at [X] with the characteristic series
H0(X;OX (X)),

(1) The tangent spaceT[X]W is contained in the subspaceH0(X; I(X)) of
H0(X;OX (X)), whereI � OS is theadjoint idealof X;
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(2) If X has any singularities other than nodes, thenT[X]W is contained in a
subspaceH0(X;J (X)) whereJ $ I is an ideal strictly contained in the adjoint
ideal.

This characterizes the tangent space toV (D) at a general point[X]. (If the
fact that it does is not clear, it will be after Lemma 2.4 below.) Now, we have to
consider the additional information coming from the tangency withE. To express
this, note first that, if�:X� ! X is the normalization ofX andJ � OX is any
ideal contained in the adjoint ideal ofX, then the pullback map gives a natural
bijection between idealsJ � I � OX contained inI and ideals��J � ��I �
OX� . We will invoke this correspondence implicitly in our notation: ifp 2 X�

is any point, andJ � OX any ideal contained in the adjoint ideal ofX, we
will write J (�mp) � OX to mean the ideal inOX whose pullback toX� is
��J 
OX� (�mp). In these terms, we have the following.

LEMMA 2.3. LetG � S be any fixed curve andp 2 G a smooth point ofG. Let
W be any subvariety ofjDj. If the general point[X] of W satisfies the condition:
there is a pointq 2 X� such that�(q) = p and

multq(�
�(G)) = m;

then the tangent space toW at [X] satisfies

T[X]W � H0(X;I(X)(�mp)):

Moreover, ifX has any singularities other than nodes, or is singular at the point
p, we have

T[X]W � H0(X;J (X)(�mp));

whereJ $ I is an ideal strictly contained in the adjoint ideal.
Proof. We will prove the Lemma by applying Zariski’s theorem to the proper

transform ofX on the surface~S obtained by blowing upS = Fn a total ofm times
along the curveE. To carry this out, letS1 ! S0 be the blow-up ofS0 = S at the
pointp, E1 � S1 the exceptional divisor of the blow-up andp1 2 E1 the point of
intersection ofE1 with the proper transform ofE in S1. Similarly, letS2 ! S1 be
the blow-up ofS1 at the pointp1, E2 � S2 the exceptional divisor of the blow-up
andp2 2 E2 the point of intersection ofE2 with the proper transform ofE in S1,
and so on, until we arrive at the surface~S = Sm; we will denote by�: ~S ! S the
composite of the blow-up maps, by~X the proper transform ofX in ~S and by ~Ei

the proper transform ofEi in ~S; so that the pullback to~S of the divisorE is given
by

��E = ~E +
X

i � ~Ei:
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We denote byX 0 the branch ofX corresponding to the pointq 2 X� , that is, the
image of an analytic neighborhood ofq in X� , by ~X 0 its proper transform in~S,
and by~p the point of ~X 0 lying overp.

Now, letXi be the proper transform ofX in Si, and letki be the multiplicity of
Xi�1 at the pointpi�1; for eachj = 1; : : : ;m we will set

lj = k1 + k2 + � � � + kj:

Thus, for example, we have the equality of divisors

��X = ~X +
mX
i=1

li � ~Ei:

Similarly, we letX 0
i be the proper transform onX 0 in Si, k0i the multiplicity of

X 0
i�1 atpi�1 andl0j = k01+ � � � k0j . Note thatlj > l0j for eachj; and the requirement

thatX 0 have intersection multiplicitym with E at p is equivalent to the assertion
that

multp(X 0 � E) = (��X 0 � ~E) = l0m = m;

so that we have in particularlm > m, with equality if and only if (locally)X = X 0.
We can also write the intersection numbermp(X

0 �E) as

multp(X
0 � E) = multq( ~X

0 � ��E) = mq( ~X
0 � ( ~E +

X
j � ~Ej));

so we see that one of three things occurs: either

� X 0 is smooth,ki = 1 for all i, and ~X 0 meets the last exceptional divisorEm

transversely; or
� ~X 0 passes through the point~Ei \ ~Ei�1 for somei < m; or
� for somej < m, ~X 0 meets the exceptional divisor~Ej at a point other than
~Ej \ ~Ej�1 or ~Ej \ ~Ej+1, and has a point of intersection multiplicitym=j > 1
with ~Ej .

We now compare the adjoint idealIX of X with that of ~X. The basic fact here
is that ifC � S is any curve on a smooth surface,p 2 C a point of multiplicity
m, and ~C � ~S the proper transform ofC in the blow-up�: ~S ! S of S at p, the
adjoint ideals ofC and ~C are related by the formula

��IC = I ~C(�(m� 1)E);

whereE is the exceptional divisor. Applying thism times to the curveX, we have

��IX = I ~X

�
�
X

(lj � j) ~Ej

�
:

Now, [X] 2 W being general, any deformation ofX coming from the fami-
ly W preserves the multiplicitieski, and hence the decomposition��X = ~X +P
li ~Ei. It also preserves the geometric genus of~X, so that identifying the space
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H0( ~X;O ~X(
~X)) of deformations of~X � ~S with a subspace of the deformations

H0(X;OX (X)) of X � S via the pullback map, we have

T[X]W � H0( ~X;I ~X(
~X))

= H0
�
~X; (��I ~X)

�X
(lj � j) ~Ej

��
��X �

X
lj ~Ej

��

= H0
�
~X; (��IX)

�
��X �

X
j ~Ej

��
= H0( ~X;��(IX(X))(�lmq))

= H0(X;IX(�lmp))

� H0(X;IX(�mp)):

Note that the inclusion in the last line of the above sequence is proper ifX 6= X 0.
Now, suppose thatX = X 0 is not smooth atp. In this case, as we noted~X 0 will
either be singular at~p or be tangent to~Ei there, or else will pass through the
point ~Ei \ ~Ei�1 for somei. In the first case, since~X has a unibranch singularity,
its deformations correspond to sections ofH0( ~X;K( ~X)) for some idealK strictly
contained in the adjoint idealI ~X ; while in the latter two cases the deformations cor-
respond to sections ofH0( ~X;I ~X(

~X)) vanishing atq. In either case, the inclusion in
the first line of the equation above is strict. ThusT[X]W � H0(X; IX (�(m+1)q))
unlessX is smooth atp, and the remainder of the statement of the Lemma follows.2

To conclude the proof of Proposition 2.1 we need one more fact. To state it,
letX 2 jDj be any irreducible rational curve,�:X� ! X the normalization and
p1; p2; : : : 2 X� any points; suppose that the divisor��(E) has multiplicitymi at
pi. LetI � OS be the adjoint ideal ofX, and set

K = I
�
�
X

mipi

�
� OX :

Let K0 be any ideal of index 2 or less inK – that is, any idealK0 � K with
h0(K=K0) 6 2, or equivalently an ideal of the form

K0 = K(�q � r);

for some pair of pointsq; r 2 X� . We will need these idealsK0 � K of index 2 in
order to see, for example, that a general curveX 2 V (D) does not have a node on
E. In these terms, our result is the

LEMMA 2.4. The idealK0 imposes independent conditions on the linear series
jOX(X)j, i.e.,

h0(X;K0(X)) = h0(X;OX (X)) � dimC (OX=K0):
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In particular,K imposes independent conditions onjOX(X)j, that is,

h0(X;K(X)) = r0(D)�
X

mi:

Proof.By the adjunction formula we have

KX� = ��(KS 
OS(X)
 I):

Thus,

��(OS(X)
K) = KX� 
 ��(OS(�KS))
OX�

�
�
X

mipi

�
:

Now, ��E �Pmipi > 0, and onS = Fn , we have

KS = OS(�C �E � 2F );

so that we have an inequality of divisor classes

��(OS(X)
K) > KX� 
 ��OS(C + 2F ):

Moreover, the divisor classC + 2F has intersection number at least 3 with any
irreducible curveX not linearly equivalent to eitherF orE, so it follows that

deg(��(OS(X) 
K)) > �2+ 3= 1:

Thus

deg(��(OS(X) 
K0)) > �1;

so thath1(X� ; ��(OS(X) 
K0)) = 0, and the result follows. 2

We can now complete the proof of Proposition 2.1. We have already established,
in the Claim above, that

dim( ~Vm(D)) > r0(D)�
X

(mi � 1);

but applying Lemmas 2.3 and 2.4 in turn we see that for any subset
 = fp1; : : : ;

pkg � E,

dim( ~W

m(D)) 6 h0(X;K(X))

= r0(D)�
X

mi

and hence

dim( ~Vm(D)) 6 dim( ~W

m(D)) + k

= r0(D)�
X

(mi � 1);

comp4058.tex; 8/07/1998; 12:07; v.7; p.13

https://doi.org/10.1023/A:1000401119940 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000401119940


168 LUCIA CAPORASO AND JOE HARRIS

so that equality must hold. Moreover, if a general point[X] 2 Vm(D) corresponded
to a curveX with singularities other than nodes, the second inequality above would
be strict; soX must be nodal, and smooth at its points of intersection withE.

We can eliminate all the other possible misbehaviors of our general curveX

similarly. If the pointp 2 X� is mapped to one of the pointsPi, we would have

dim( ~Vm(D)) 6 h0(X;K(X)(�p))

< h0(X;K(X));

and if the multiplicity of the pullback divisor��(G) at p werem > 1 we would
have

dim( ~Vm(D)) 6 h0(X;K(X)(�(m � 1)p))

< h0(X;K(X)):

Suppose next thatX had a node onE, with branches corresponding to a pair
of pointsq; r 2 X� and the branch corresponding tor transverse toE. It would
follow that

h0(X;K(X)(�q � r)) = h0(X;K(X)) � 1;

since a section ofK(X) vanishing atq but not atr would correspond to a defor-
mation ofX in ~Vm(D) in which the two branches would meetE in distinct points.

Finally, to prove part 3 of Proposition 2.1, we simply letX 0 be a general member
of the family ~Vm0(D0) and apply the above toX 2 ~Vm(D), includingX 0 in G and
its points of intersection withG andE among the pointsPi. 2

The next Proposition is stated as a characterization of the reducible elements
of the one-parameter familyX � ! �, but in fact it is a characterization of the
codimension one components of the boundaryV (D) n ~V (D) of V (D).

PROPOSITION 2.5.LetX � S be any reducible fiber of the familyX ! �.

(1) If X does not containE, thenX has exactly two irreducible componentsX1

andX2, with [Xi] 2 V (Di) andD1 +D2 = D. Moreover[Xi] is a general
point inV (Di).

(2) If X does containE, thenX has irreducible componentsE, X1; : : : ;Xk,
with [Xi] 2 V (Di) andE + D1 + � � � + Dk = D. Moreover eachXi is
general inVmi

(Di) for some collectionm1; : : : ;mk of positive integers such
that

P
(mi � 1) = n� k.

REMARK. Notice that by Proposition 2.1, the above result says that ifX does not
containE, then it has only nodes as singularities. And, ifX containsE, away from
thek points of tangency ofE with the curvesXi,X has only nodes as singularities.

Proof. Assume first thatX does not containE. Write the divisorX asX =Pk
i=1 ai �Xi whereai > 0 and theXi are irreducible curves inS. We claim first
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that since[X] 2 V (D), all the curvesXi must be rational. To see this, take any
one-parameter familyX ! B of irreducible rational curves specializing toX.
Proceeding as in 2.1 we arrive at a familyY ! B of nodal curves, with general
fiberP1, that admits a regular mapY ! X . Now, since the fibers ofY ! B are
reduced curves of arithmetic genus 0, every component of every fiber ofY must
be a rational curve. Thus every component ofX is dominated by a rational curve
and so must be itself rational.

Thus[Xi] 2 V (Di), whereDi are divisor classes such that
P
aiDi = D. On

the other hand, sinceX is a general member of an(r0(D)�1)-dimensional family,
we must have

kX
i=1

r0(Di) > r0(D)� 1

kX
i=1

(�(KS �Di)� 1) > (�KS �D)� 2 =
kX
i=1

ai(�KS �Di)� 2:

Comparing the two sides, we see that

2� k �
kX
i=1

(ai � 1)(�KS �Di) > 0:

But(�KS �Di) > 2 for any curveDi onS other thanE; so we may conclude that all
ai = 1 and thatk 6 2. Moreover, ifk = 2 we have equality in the above inequality,
which says that the pair of curves(X1;X2) is general inV (D1)� V (D2).

We come now to the case whereX containsE. The first thing we see here is
that the dimension-count argument we used above doesn’t work: since

(�KS � (X � aE)) = (�KS �X) + a(n� 2);

the sums
P
aiXi of rational curvesXi 2 jDij may well move in a larger-

dimensional family thanX itself.
The key here is to look at the semistable reduction of a family of curves in~V (D)

specializing toX. This will allow us to limit the number of points of intersection
of the curvesXi withE, that is to say, to show that in fact theXi belong toVm(Di)
for suitablem. This replaces the naive bound above on the dimension of the family
of such curvesX with a stronger one, which turns out to be sharp.

Consider then the familyY ! B obtained fromX ! � as in Section 2.1. We
can thus assume that the total spaceY of the family is smooth and every fiber ofY
is a union of smooth rational curves meeting transversely, and whose dual graph is
a tree.

Now, let Y be the special fiber ofY ! B. We decomposeY into two parts:
we let YE be the union of the irreducible components ofY mapping toE, and
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YR the union of the remaining components. Next, we decomposeYR further into
k parts, lettingYi be the union of the components mapping toXi. Denote the
connected components ofYE by Zi, and for eachi let �i be the degree of the
map�jYi : Zi ! E, so that

P
�i = a. Similarly, let fZi;jgj be the connected

components ofYi and�i;j the degree of the restriction�jZi;j :Yi;j ! Xi, so thatP
j �i;j = ai.
Note that the inverse image ofE in Y is given by��1(E) = YE [�1[� � � [�b.

(where� : Y ! S is the natural map.)
As we indicated, the essential new aspect of the argument in this case is keeping

track of the number of points of intersection of theXi with E. To do this, we note
that, over any such point, there will be a point of intersection of a component of
Yi with the inverse image��1(E); which by the expression above for��1(E) will
be either a point of intersection ofYi with YE or one of theb points of intersection
of the�i with Y .

It thus remains to bound the number" of points of intersection ofYE with the
remaining partsYi of Y . This we can do by using the fact that the dual graph ofY is
a tree: this says that the number of pairwise points of intersection of the connected
componentsZi;j of Yi and the connected componentsZi of YE is equal to the total
number of all such connected components, minus one. Thus,

" = #(YR \ YE) = #fconnected components ofYEg

+
X

#fconnected components ofYig:

Note that the degree�i > 0 on each componentZi of YE, so that

#fconnected components ofYEg 6 a

and similarly

#fconnected components ofYig 6 ai:

Thus we can deduce in particular that

" 6 a+
X

ai � 1:

Now, sayXi 2 ~Vmi(Di) for eachi = 1; : : : ; k. Let �i:X�
i ! Xi be the nor-

malization map. Choose any irreducible componentX0
i of Y dominatingXi (and

hence dominating the normalizationX�
i ), and let�i:X�

i ! Xi be the restriction
of � toX�

i . Trivially, the total number of points of the pullback��i (E) of E toX�
i

is

#��i (E) 6 #��i (E) = #(X0
i \ YE)

and henceX
#��i (E) 6

X
#(X0

i \ YE) 6 #(YR \ YE) = "
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with strict inequality if anyai > 1. But the sum of degrees ofE on the curvesXi

is at leastX
deg(��iE) >

��X
Xi

�
� E
�

=
��
D � aE �

X
(ai � 1)Di

�
� E
�

= (D � E) + an�
X

ai(Di �E):

Comparing the number of points of the pullbacks ofE to the normalizationsX�
i

with the degrees of these pullbacks, we conclude that there must be multiplicities
in these divisors: specifically, the sum

P
(mi

j � 1) of the multiplicities minus one
must be the difference of these numbers, so thatX

(mi
j � 1) >

X
deg��i (E)� "� (D �E)

> (D �E) + an�
X

(ai � 1)(Di � E)

�a�
X

ai + 1� (D �E)

> a(n� 1)�
X

(ai � 1)(Di � E)�
X

ai + 1:

This in turn allows us to bound the number of degrees of freedom of the curves
Xi: we haveX

dim ~Vmi(Di) =
X

r0(Di)�
X

(mi
j � 1)

=
kX
i=1

((�KS �Di)� 1)�
X

(mi
j � 1)

6
X

(�KS �Di)� k � a(n� 1)

+
X

(ai � 1)(Di �E) +
X

ai � 1:

On the other hand, this must be at least equal to the dimension ofV (D) minus
one, that is,

r0(D)� 1 = (�KS �D)� 2

= a(�KS �E) +
X

ai(�KS �Di)� 2

= a(n� 2) +
X

ai(�KS �Di)� 2:

In the end, then, we must have

a(n� 2) +
X

ai(�KS �Di)� 2

6
X

(�KS �Di)� k � a(n� 1)

+
X

(ai � 1)(Di �E) +
X

ai � 1:
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We can (partially) cancel thea(n�1) anda(n�2) terms, and combine the terms
involving (�KS �Di) to rewrite this as

a+
X

(ai � 1)(�KS �Di)� 1 6
X

(ai � 1)(Di �E)� k +
X

ai � 1;

or, in other words,

a+
X

(ai � 1)[((�KS �E) �Di)� 1]� 1 6 0:

Now, we have already observed that�KS � E = C + 2F meets every curve
Xi strictly positively, so that the sum in this last expression is nonnegative. We
conclude thata = 1, and (since anyai > 1 would have led to strict inequality) that
all ai = 1. Next, since there is a unique component ofY mapping to eachXi, each
curveXi will have at most one point of intersection multiplicitym > 1 with E.
Thus, finally,Xi is a general member of the family~Vm(Di) for some collection of
integersm1; : : : ;mk with

P
(mi�1) = n�k, completing the proof of Proposition

2.5. 2

Note that we have not said here that every reducible curve satisfying the condi-
tions of the Proposition in fact lies in the closure of the locus of irreducible rational
curves. This is true, and is not hard to see in the case of curves of types (1); but for
curves of type (2) it is a deeper fact, and we will require the proof of Proposition 2.7
to establish it.

Having characterized as a set the locus� of curves inV (D) passing through
q1; : : : ; qro(D)�1, we now turn to a statement about the local geometry of� around
each point.

We introduce one bit of terminology here. LetX be a fiber ofX ! �; and, in
case� is locally reducible at the point[X] 2 �, pick a branch of� at [X] (that is,
a pointb of the normalization�� of � lying over[X]). LetP be a node ofX. We
then make the following

DEFINITION. If P is a limit of nodes of fibers ofX ! � nearX in the chosen
branch–that is, if(P; b) is in the closure of the singular locus of the mapX ��

(�� n fbg) ! ��–we will say thatP is anold node ofX. If (P; b) is an isolated
singular point of the mapX �� (�

� n fbg)! �� we will say thatP is anewnode
of X.

Equivalently,P is an old node if the fiberX� of X � ! �� overb is smooth at
the (two) points lying overP ; if it is a new node,X� will have a single point lying
overP , which will be a node ofX� .

Note that ifP is a singular point ofX other than a node, the situation is not so
black-and-white. For example, ifP is anm-fold tacnode – that is, if the curveX
has two smooth branches atP with contact of orderm – then a priori, any number
n 6 m of nodes of nearby fibers may approachP along any branch of� at [X],
with the result that the fiber ofX � ! �� over the corresponding pointb 2 �� will
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have an(m � n)-fold tacnode overP , or will be smooth overP if n = m. (The
proof of the relevant casen = m� 1 will emerge in the proof of Proposition 2.7.)

In these terms, we can state

PROPOSITION 2.6.LetX be a reducible fiber of the familyX ! �. Keeping the
notations and hypotheses of Proposition2:5,

(1) If X = X1 [X2 does not containE, andX1 andX2 meet at(D1 �D2) = `

pointsP1; : : : ; P`, then in a neighborhood of[X] � has` smooth branches
�1; : : : ;�`; along�i the pointPi is new, and all other nodes ofX are old.

(2a) If X = E [ X1 [ : : : [ Xk, andXi meetsE transversely in(Di � E) = `i
pointsPi;1; : : : ; Pi;`i , then in a neighborhood of[X] � consists of

Q
`i smooth

branches�� = �(�1;:::;�k). Along�� the pointsP1;�1; : : : ; Pk;�k are new, and
all other nodes ofX are old.

(2b) If X = E [X1 [ � � � [Xk, andXi meetsE transversely in(Di � E) = `i
pointsPi;1; : : : ; Pi;`i for i = 2; : : : ; k, whileD1 has a pointP of intersection
multiplicitym > 2 withE, then in a neighborhood of[X] � consists of

Qk
i=2 `i

smooth branches�� = �(2;:::;�k). Along�� the pointsP2;2; : : : ; Pk;k are new;
all other nodes ofX are old; and exactlym � 1 nodes of nearby fibers will
tend toP .

REMARK 1. The proof of this Proposition will not be complete until the end of
the following section. More precisely, we will postpone the proof of the existence
and smoothness of the branches of�. Actually, cases 1 and 2a could very well be
proved here, but it is more convenient do it later (that is, at the beginning of the
proof of Proposition 2.7).

REMARK 2. We believe that an analogous description of the familyX ! � may
be given without the assumption that the components of the curveX other thanE
have altogether at most one point of tangency withE, and otherwise intersectE
transversely in distinct points. The restricted statement above will suffice for our
present purposes. We hope to prove the general statement in the future.

REMARK 3. The statement of Proposition 2.6 can also be expressed in terms of the
normalized familyX � ! �� , and indeed that is how we will use it in the following
chapter. In these terms, the statements are:

(1) If [X] is a point of� corresponding to a curveX in our family not containing
E, then there will be(D1 � D2) = ` points of�� lying over [X], corresponding
naturally to the nodes ofX. The fibers ofX � ! �� over these points will be the
normalizations ofX at all the nodes ofD1 andD2 and at all but one of thèpoints
of intersection ofD1 with D2.

(2a) If X = E +D1 + � � � +Dk containsE and the componentsDi intersect
E transversely, then the fibers ofX � ! �� over points lying over[X] 2 � are
the curves obtained by normalizingX at all nodes of theDi, at all the points of
pairwise intersection of theDi, and at all but one of the points of intersection ofE
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with each of the componentsDi. In other words, the fibers consist of the disjoint
union of the normalizations~Di of the curvesDi, each attached toE at one point.

(2b) If X = E +D1 + � � � +Dk as before and one of the componentsD1 of
X has a smooth pointP of intersection multiplicitym > 2 withE, then the fibers
X� ofX � ! �� corresponding to[X] 2 � are the curves obtained by normalizing
X at all nodes of theDi, at all the points of pairwise intersection of theDi, at
all but one of the points of intersection ofE with each of the componentsDi for
i = 2; : : : ; k, at all the transverse points of intersection ofD1 with E, and finally
taking the partial normalization ofX atP having an ordinary node overP . (The
fact that each fiber ofX � ! �� lying overX has an ordinary node overP follows
either from the fact that the�-invariant of the singularityP 2 X is m and that,
along each branch,m�1 nodes of nearby fibers tend toP ; or – what is essentially
the same thing – the fact that the arithmetic genus of the fibers ofX � ! �� are
zero. This will be verified independently in the course of the proof of Proposition
2.7.) The picture is therefore similar to the preceding case: the fibers consist of the
disjoint union of the normalizations~Di of the curvesDi, each attached toE at one
point. The one difference is that, while fori = 2; : : : ; k the point of attachment of
the normalizations~Di with E can lie over any of the points of intersection ofDi

withE, the point of intersection of the normalization ofD1 with E can only be the
point lying overP .

A typical picture of the original curveX and its partial normalizationX� is
this:

comp4058.tex; 8/07/1998; 12:07; v.7; p.20

https://doi.org/10.1023/A:1000401119940 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000401119940


PARAMETER SPACES AND ENUMERATION OF RATIONAL CURVES 175

Proof. Consider first of all a reducible curveX in our family that does not
containE. By Proposition 2.5, this must be of the formX = X1[X2 whereXi is
a general member of the familyV (Di) with D1 +D2 = D. In particular,Xi is an
irreducible rational curve withpa(Di) nodes, andX1 andX2 intersect transversely
in (D1 �D2) points. Note that

pa(Di) =
(Di �Di) + (Di �KS)

2
+ 1;

so that the total number of nodes ofX will be

pa(D1) + pa(D2) + (D1 �D2) = pa(D) + 1:

In other words, along any branch of�, all but one of the nodes ofX will be limits
of nodes of nearby fibers (that is, will be old nodes), while one node ofX will be
a new node. Note also that not any node ofX can be the new node: that must be
one of the points of intersection of the two componentsX1 andX2; otherwise the
fiber of the normalizationX � would be disconnected.

In caseX containsE, the analogous computation yields thatX haspa(D) + k

nodes (orpa(D)+k�m nodes and one tacnode of orderm in case(2b)); henceX
hask new nodes (or,k�1 in (2b)). Then the analysis in the proof of Proposition 2.5
shows that in the normalization of the total space of the family, the corresponding
fiber will consist of a curve~E mapping toE, plus the normalizations~Xi of the
curvesXi, each meeting~E in one point and disjoint from each other. In particular,
all the nodes ofX arising from points of pairwise intersection of the components
Xi are old. As for the points of intersection of the componentsXi with E, there
are two cases. First, if a componentXi has a point of contact of orderm > 1 with
E, that must be the image of the point~Xi \ ~E 2 X � ; and all the other points of
Xi \ E will be old nodes ofX on any branch. On the other hand, if a component
Xi intersectsE transversely, any one of its points of intersection withE can be a
new node.

2.4. SINGULARITIES OF THE TOTAL SPACE

We come to the fourth result, in which we describe the singularities of the total
space of the normalized familyX � ! �� along a given fiberX� . (Given a fiberX
over�, we will fix a corresponding fiberX� throughout.)

We keep a simplified form of the notation introduced in the statement of Propo-
sition 2.6: we denote byP1; : : : ; P` the new nodes ofX alongE, coming from
transverse points of intersection of other components ofX with E; and byP (if it
exists) one double point ofX other than a node, coming from a point of contact of
orderm > 2 of E with another component ofX. We recall that the nearby fibers
of our family are smooth nearPi, there will be one pointpi of X � lying over each
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Pi, which will be a node ofX� , while the nearby fibers havem� 1 nodes tending
to the pointP , so that the partial normalizationX� ! X will again have one point
p lying overP , and that point will be a node ofX� . With all this said, we have

PROPOSITION 2.7 (1)If X does not containE, or ifX containsE and the closure
ofX n E intersectsE transversely, thenX � is smooth alongX� .

(2) In caseX does containE and the closure ofX n E has a pointP
of intersection multiplicitym > 2 with E, the pointp of X� lying overP is a
smooth point ofX � ; the other nodespi ofX� will be singularities of typeAm�1 of
X � .

Proof. We start with the first statement, which is by far the easier. Recall that
by the two previous propositionsX, being a general point on a codimension-one
locus inV (D), will havepa(D) + k or pa(D) + 1 nodes, depending whetherX
does or doesn’t containE. Of these,pa(D) will be old nodes and the remaining
ones are new nodes; ifE is contained inX, then the new nodes all lie onE. Let
r1; : : : ; rpa(D) be the old nodes ofX and letP be any fixed new node. The fiber
X� of X � lying overX will be the partial normalization ofX atr1; : : : ; rpa(D), so
thatX � will certainly be smooth there, and we need only concern ourselves with
the point ofX � lying overP .

Consider, in an analytic neighborhood of[X] in jDj, the locusW of curves that
pass through the base pointsq1; : : : ; qr0(D)�1 and that preserve all of the old nodes
of X. The projective tangent space toW at [X] will be contained in the sub-linear
series ofjDj of curves passing through thepa(D) old nodes ofX and through
q1; : : : ; qr0(D)�1. This gives a total ofr0(D) � 1 + pa(D) = r(D) � 1 points
which, by an argument analogous to the proof of Lemma 2.4, impose independent
conditions on the linear seriesjDj. We only exhibit the proof in caseE is a
component ofX, the other case being similar and easier. LetH be the ideal sheaf
of the subscheme ofS given by the old nodesr1; : : : ; rpa(D), and let� : ~X ! X be
the normalization map. We have to show thatr1; : : : ; rpa(D) impose independent
conditions onjDj, which will follow (cf. Lemma 2.4) from

H1( ~X; ��(OS(X)
H)) = 0:

This, by the adjunction formula, is equivalent to

H0( ~X; ��(KS 
 I)
 (��H)�1) = 0;

whereI is the adjoint ideal ofX. Now notice that the line bundle��(I)
��(H)�1

has degree�k on the component of~X lying overE, and degree�1 on every other
component. SinceKS has degreen� 2 = k � 2 onE and negative degree onXi,
the line bundle��(KS 
 I)
 (��H)�1 cannot have any sections.
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We conclude thatW is smooth of dimension 1. Notice that this completes the
proof of Proposition 2.6, parts (1) and (2a).

To analyze the total space ofX � we consider the map fromW to the versal
deformation space of the node(X;P ). This has nonzero differential becauseP
is not a base point of the linear series of curves passing throughq1; : : : ; qr0(D)�1
and through thepa(D) old nodes ofX (to see this, the argument above applied to
the ideal sheaf of the union of the old nodes ofX andP will work). Thus the
family X � ! �� has local equationxy � t = 0 nearp; in particular, it is smooth
atp.

We turn now to the second part, which will occupy us for the remainder of
this chapter. We will start by carrying out a global analysis of the family in a
neighborhood of the whole fiberX, and then proceed to a local analysis around the
pointP specifically. From the global picture we will establish that, for some integer

, the pointP will be a singularity of typeA
 and the pointsPi all singularities of
typeA
m. The local analysis will then show that in fact we have
 = 1.

To carry out the global analysis, we use the familyY ! �� and the map
�:Y ! Fn (cf. Section 2.1), whereY is the minimal desingularization of the
surfaceX � . Since the singularities of the fiber ofX � are all nodes, the total
spaceX � will have singularities of typeA� at each; let us say the pointp is an
A
 singularity ofX � , and the pointpi anA
i singularity. When we resolve the
singularity atp we get a chainG1; : : : ; G
�1 of smooth rational curves; likewise,
pi is replaced by a chainGi;1; : : : ; Gi;
i�1 of smooth rational curves. Denoting the
component ofX meetingE atPi byDi and the component meetingE atP byD
(we are not assuming here that these are distinct irreducible components ofX), we
arrive at a picture of the relevant part of the fiberY of Y .

We now look at the pull-back ofE from Fn toY. We can write it as

��(E) = k � E +
X

ai �Gi +
X

ai;j �Gi;j +E0;
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whereE0 is a curve inY that meets the fiberY only alongDi andD, with
(E0 �Di) = (E � �(Di))� 1 and(E0 �D) = (E � �(D))�m.

We can use what we know about the degree of this divisor on the various
components ofY to impose conditions on the coefficientsk, ai andai;j . First,
since� maps componentsGi andGi;j to points inFn ,

degGi
(��(E)) = degGi;j

(��(E)) = 0:

Now, each of the curvesGi andGi;j has self-intersection�2; so, settinga
 =
ai;
i = 0 anda0 = ai;0 = k, we get

ai�1� 2ai + ai+1 = 0;

for eachi = 1; : : : ; 
 � 1; and similarly

ai;j�1� 2ai;j + ai;j+1 = 0;

for eachj = 1; : : : ; 
i � 1–in other words, the sequencesa0; : : : ; a
 andai;0; : : :,
ai;
i are arithmetic progressions. On the other hand, the map� restricted to the
componentDi is transverse toE at Pi = �(pi); so the multiplicity atpi of the
restriction toDi of the divisor��(E) � E0 is one. This says thatai;
i�1 = 1; and
similarly a
�1 = m. Following the arithmetic progressiona0; : : : ; a
 up fromD

toE, we arrive atk = 
 �m and hence
i = 
 �m.
The proof of the Proposition will be completed once we show that
 = 1, that

is, thatp is a smooth point ofX � .
Note that this part of the analysis did not rely, except notationally, on the

hypothesis that all but one point of intersection ofE with the remaining components
of X are transverse. If the pointsPi were points of intersection multiplicitymi

of E with other componentsDi of X, we could (always assuming thatmi � 1
nodes of the general fiber of our family approachPi) carry out the same analysis
and deduce that for some integerk, the pointpi was a singularity of typeAk=mi

–
loosely speaking, the singularity ofX � atpi is ‘inversely proportional’ to the order
of contact ofDi withE atPi. The remaining question then would be, is the number
k as small as possible, that is, the least common multiple of themi? That is what
we will establish with the following local analysis, which does ultimately rely on
the hypothesis that all but one of themi are one.

2.4.1.The versal deformation space of the tacnode.We now carry out the analysis
around the pointP . The versal deformation ofP 2 X � Fn has the vector space
OFn;P=J as base, whereJ is the Jacobian ideal ofX atp. Choose local coordinates
x; y for Fn centered atP , so that the curveE is given asy = 0 and the equation of
X is
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y(y + xm) = y2 + yxm = 0:

The Jacobian ideal of this polynomial isJ = (2y + xm; yxm�1). The monomials
y; xy; x2y; : : : ; xm�2y and 1; x; x2; : : : ; xm�1 form a basis forOFn;P=J , so that
we can write down explicitly a versal deformation space: the base� will be
an analytic neighborhood of the origin in affine spaceA 2m�1 with coordinates
�0; �1; : : : ; �m�2 and�0; �1; : : : ; �m�1, and the deformation space will be the
family S ! �, with S � �� A 2, given by the equation

y2 + yxm + �0y + �1xy + � � �+ �m�2x
m�2y

+�0 + �1x+ �2x
2 + � � �+ �m�1x

m�1 = 0:

Inside� we look closely at the closures�m�1 and�m of the loci corresponding

to curves withm� 1 andm nodes, respectively. We have

LEMMA 2.8. (1) �m is given in� by the equations�0 = � � � = �m�1 = 0; in
particular it is smooth of dimensionm� 1.

(2)�m�1 is irreducible of dimensionm, withm sheets crossing transversely at
a general point of�m.

Proof. We introduce thediscriminantof the polynomialf above, viewed as a
quadratic polynomial iny:

� = ��;�(x) = (xm + �m�2x
m�2 + � � � + �1x+ �0)

2

�4(�m�1x
m�1 + � � � + �1x+ �0)

Note that the map� : �! V to the spaceV of monic polynomials of degree 2m

in x with vanishingx2m�1 term is an isomorphism of� with a neighborhood of
the origin inV : given an equation

(xm + �m�2x
m�2 + � � � + �1x+ �0)

2 � 4(�m�1x
m�1 + � � � + �1x+ �0)

= x2m + c2m�2x
2m�2 + � � �+ c1x+ c0;

we can write

�m�2 =
c2m�2

2
; �m�3 =

c2m�3

2
;

�m�4 =
c2m�4 � �2

m�2

2
=

4c2m�4 � c2
2m�2

8
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and so on, recursively expressing the coefficients�i as polynomials in the coef-
ficients c2m�2; : : : ; cm. We can then solve for the�i in terms of the remaining
coefficientscm�1; � � � ; c0, thus obtaining a polynomial inverse to the map�.

Now, since the equationf above forS is quadratic iny, the fibers ofS ! �
are expressed as double covers of thex-line. The discriminant� is a polynomial of
degree 2m in x, so that the general fiber ofS ! �, viewed as a double cover of
thex-axis, will have 2m branch points nearP . To say that any fiberS�;� hasm
nodes is thus tantamount to saying that��;�(x) hasm double roots – that��;�(x)
is the square of a polynomial of degreem. The locus of squares being smooth of
dimensionm� 1 in V , we see that�m is smooth of dimensionm� 1; indeed, it
is given simply by the vanishing�0 = � � � = �m�1 = 0.

Similarly, to say that a fiberS�;� hasm�1 nodes amounts to saying that��;�(x)
hasm � 1 double roots, i.e., that it can be written as a quadratic polynomial inx

times the square of a polynomial of degreem� 1

��;�(x) = (xm�1 + �m�2x
m�2 + � � �+ �1x+ �0)

2(x2 + �1x+ �0):

The Lemma is then proved. 2

Now we consider the natural map from a suitable analytic neighborhoodW

of [X] to �. To set this up, letr1; : : : ; rk be the old nodes ofX; since all the
singularities ofX other thanP are nodes, this will consist ofb nodes onE
and k � b nodes lying offE whereb = (D � E). Sincem � 1 nodes of the
general curve of our family tend toP , we havek = pa(D) � m + 1. Now
consider, in an analytic neighborhood of the point[X] 2 jDj, the locusW of curves
passing through ther0(D)� 1 assigned pointsq1; : : : ; qr0(D)�1 and preserving the
nodesr1; : : : ; rk of X – that is, such that the restriction of the family of curves
fD�g�2jDj to W is equisingular at each pointri of X. Since this is a total of
r0(D) � 1+ pa(D) �m + 1 = r(D) �m points and they impose independent
conditions on the linear seriesjDj, we see thatW is smooth of dimensionm at
[X].

We then get a natural map� : W ! � such that�([X]) = 0. We will prove that
� is an immersion and that the intersection of�(W )with�m�1 is the union of�m

with a smooth curve	; moreover	 and�m will have contact of orderm at the
origin. This will conclude the proof of Proposition 2.6; in fact the original family
X ! � will be the pullback toW of the restriction to	 of the versal deformation
S ! �.

To illustrate, here is a representation of the simplest casem = 2. This does not
convey the general picture, because�(W )\�m�1 happens to be proper. Also, the
picture is inaccurate in at least one respect: the actual surface�1 in the deformation
space of a tacnode is also singular along the locus of curvesS�;� with cusps.
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(Note that we see again locally the picture that we have already observed globally
in the linear seriesjDj: the closure of the varietyV (D) of irreducible rational
curves has the expected dimension; but the locus of rational curves has another
component of equal or larger dimension.)

Now that we have a basic picture of the deformation space�, the crux of our
argument will be to describe the pullback of the loci�m and�m�1 under the map
� : W ! � (or, equivalently, the intersection of�(W ) with these loci). We start in
the following subsection by saying what we can about the geometry of the map�.

2.4.2.The deformations coming fromV (D). Let � : W ! � be as before, denote
byH the subspace of� given by�0 = 0. Then we have

LEMMA 2.9. The map� is an immersion; the tangent space to the image at the
origin contains the plane�0 = � � � = �m�1 = 0 but is not contained inH.

REMARK. It is important to note here, and throughout the following argument,
that while the loci�m and�m�1 are well-defined subsets of the base� of the
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deformation space of our tacnode,H is not; it depends on the choice of coordinates.
It is well-defined, however, as a hyperplane in the tangent spaceX(�) = OFn;P =J
to� at the origin: it corresponds to the quotientm=J � OFn;P=J of the maximal
idealm � OFn;P .

Proof.The projective tangent space toW at the point[X] is the sublinear series
of jDj of curves passing through the pointsr1; : : : ; rk andq1; : : : ; qr0(D)�1. The
kernel of the differential at[X] of the map� is thus the vector space of sections
of the line bundleL = OFn(D) vanishing atr1; : : : ; rk andq1; : : : ; qr0(D)�1 and
lying in the subsheafL 
 J , whereJ � OFn;P is as before the Jacobian ideal
of [X] at P . The zero locus of such a section will be a curve in the linear series
jDj containingr1; : : : ; rk; q1; : : : ; qr0(D)�1 andP and so must containE, that is,
must be of the formE + G with G 2 jD � Ej. Moreover, from the description
above ofJ we see thatG must also have contact of order at leastm with E atP
as well as pass through thek � b nodes ofX lying off E and the assigned points
p1; p2; q3; : : : ; qr0(D)�1. This represents a total of

m+ r0(D)� 1+ pa(D)�m+ 1� b = r(D)� b = r(D �E) + 1;

conditions, so we need to show that they are independent to conclude that no such
curve exists. But they are also a subset of the adjoint conditions ofX, hence impose
independent conditions on the seriesjD+KFn j = jD �C �E � 2F j, and hence
on the seriesjD �Ej.

The remaining statements of the lemma, that the tangent space to the image
contains the plane�0 = � � � = �m�1 = 0 but is not contained in the hyperplane
�0 = 0, follow from the facts that the image contains the subvariety�m and
that not every curve in the linear seriesjDj containingr1; : : : ; rk; q1; : : : ; qr0(D)�1
containsP . 2

To complete the proof of Proposition 2.7, we thus have to establish the following
lemma about the geometry of the deformation space�.
LEMMA 2.10. Let� � � be a smooth,m-dimensional variety such that

(1)� contains�m;
(2) the tangent space to� at the origin is not contained inH.

Then the intersection�\�m�1 consists of the union of�m and a smooth curve
	 having contact of orderm with�m at the origin.

Our proof of this Lemma is lengthy and roundabout; it occupies the remainder
of this chapter. We give here a summary of the four main steps:
� First, in 2.4.3 we treat a special case. In Lemma 2.11 we prove Lemma

2.10 by direct calculation when� is the linear subspace of� given by equations
�1 = � � � = �m�1 = 0. The results of 2.4.3 also appear in [R]; we include our
proof for the sake of completeness.
� Secondly, in subsection 2.4.4, we introduce the the blow-up~� of � along

�m, and translate Lemma 2.11 into the statement that the proper transform~�m�1

comp4058.tex; 8/07/1998; 12:07; v.7; p.28

https://doi.org/10.1023/A:1000401119940 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000401119940


PARAMETER SPACES AND ENUMERATION OF RATIONAL CURVES 183

of �m�1 in ~� is smooth at the point Q, and has contact of orderm with the
exceptional divisorZ of the blow up there.
� Third, we use the automorphisms of the deformation space� (and its blow-

up ~�) to deduce that~�m�1 is smooth everywhere along the open subset�0 =
� n (�\ ~H) of the fiber� of the blow up over the origin, and has contact of order
m with the exceptional divisorZ (Lemma 2.15). Lemma 2.14 will say that~�m�1

contains�, and the global analysis will say that the intersection multiplicity of
~�m�1 with Z at a general point of� is at leastm. Then the special case, together
with Lemma 2.13, implies that the intersection multiplicity is at mostm, and hence
exactlym, at any point of�0; and that~�m�1 is smooth along�0.
� Finally, for any subvariety� � � satisfying the hypotheses of Lemma 2.10,

its proper transform in~� will intersect� transversely at a point of�0, and the
desired result – that the intersection of�m�1 with � consists of the union of�m

and a smooth curve having contact of orderm with �m at the origin – follows.

2.4.3.A special case.We will start by considering the intersection of�m�1 with
the simplest possible variety satisfying the hypotheses of Lemma 2.10, the plane
�0 given by�1 = � � � = �m�1 = 0. We obtain

LEMMA 2.11. The intersection of�m�1 with�0 consists of the union of�m with
multiplicity m and a smooth curve	 having contact of orderm with �m at the
origin.

Proof.Restricting to�0, we can rewrite the equation of the family more simply
as

y2 + yxm + �0y + �1xy + � � �+ �m�2x
m�2y + � = 0

and the discriminant as

�(x) = (xm + �m�2x
m�2 + � � �+ �1x+ �0)

2 � 4�:

We need now to express the condition that� hasm�1 double roots. One obviously
sufficient condition is that� = 0, so that� is a square. If we assume� 6= 0,
however, things get more interesting. To see the locus of(�0; : : : ; �m�2; �) that
satisfy this condition, set

�(x) = xm + �m�2x
m�2 + � � �+ �1x+ �0

and write

�(x) = �(x)2 � 4 = (�(x) + 2
p
�) � (�(x)� 2

p
�):

Now, if � 6= 0, the two factors in this last expression have no common factors; so
if their product hasm� 1 double roots, each must have a number of double roots
itself: �(x)+2

p
� and�(x)�2

p
� are polynomials of degreem with a combined

total ofm � 1 double roots. In fact, this uniquely characterizes� and� up to a
one-parameter group of automorphisms ofP1, as we will prove in the following.
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LEMMA 2.12. Let
 be a nonzero scalar, and letm be a positive integer. There is
a polynomial�(x) of degreem, monic with noxm�1 term, such that

(1) if m is odd, the polynomials�(x) + 
 and �(x) � 
 each have(m � 1)=2
double roots.

(2) if m is even,�(x) + 
 hasm=2 double roots and�(x) � 
 has(m � 2)=2
double roots.

In both cases,� is unique up to replacing�(x) by �(�x), where� is anmth
root of unity.

Proof.Suppose that�(x) is a polynomial satisfying the conditions of the lemma.
Take first the case ofm = 2` + 1 odd, and consider the map� : P1 ! P1 given
by �(x). This is a map of degreem, sending the point1 to 1, and totally
ramified there. In addition the hypotheses assert that over the points�
 in the
target we havè ramification points. The point is, this accounts for a total of
(m�1)+2(`�1) = 2m�2 ramification points, and these are all a map of degree
m from P1 to P1 will have. We have thus specified the covering� up to a finite
number of coverings, and our principal claim is that in fact we have described�

uniquely, up to automorphisms of the domain.
This is combinatorial. The monodromy permutation� around the point1 is

cyclic, while the the monodromy permutations� and� around
 and�
 are each
products of̀ disjoint transpositions. Our claim that there is a unique such covering
of P1 by P1 amounts then to the assertion that, up to the action of the symmetric
groupSm by conjugation, there is a unique pair of permutations� and�, each a
product of̀ disjoint transpositions, whose product� � � is cyclic of orderm. This
is an easy combinatorial exercise. To complete the proof of Lemma 2.12, consider
the effect on� of automorphisms of the domain. The requirement that�(1) =1
– that is, that�(x) is a polynomial! – restricts us to the group of automorphisms
x 7! ax + b; the requirement that�(x) have noxm�1 term limits us to automor-
phisms of the formx 7! ax; and the fact that�(x) is monic says thata must be an
mth root of unity. 2

Note that, in casem is odd, by uniqueness we must have�(x) = ��(�x); that is,
� will be odd. Similarly, in casem is even (where the two branch points�
 have
different multiplicity) we must have�(x) = �(�x), so that� will be even. This
will not be logically relevant to the following calculation, but will be reflected in
the notation.

Back to the proof of Lemma 2.11. Note that if we do not specify the value of


the polynomial�(x) will not be unique; we can replace it withum�(x=u) for any
nonzero scalaru. Now, suppose first thatm = 2` is even. Choose
 = 1, and let

�(x) = xm + cm�2x
m�2 + cm�4x

m�4 + � � �+ c0;
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be the polynomial satisfying the conditions of the lemma. Then any collection
(�0; �1; : : : ; �m�2; �) with � 6= 0 such that the discriminant

�(x) = (xm + �m�2x
m�2 + � � �+ �1x+ �0)

2 � 4�;

hasm� 1 double roots, must be of the form

�0 = t` � c0; �1 = 0;

�2 = t`�1 � c2; �3 = 0;

�4 = t`�2 � c4

and so on, ending with�m�2 = t � cm�2; with finally � = tm=4. This is then a
parametric representation of the closure	 of the intersection�0 \ (�m�1 n�m).
It is obviously a curve; the fact that it is smooth is visible from the coordinate
�m�2 = t � cm�2; and we see that it has contact of orderm with H from the
exponent in the expression for�.

Finally, in casem = 2`+ 1 is even we get a similar expression. Let

�(x) = xm + cm�2x
m�2 + cm�4x

m�4 + � � �+ c1x;

be the polynomial satisfying the conditions of the lemma for
 = 1. Then any
collection(�0; �1; : : : ; �m�2; �) with � 6= 0 such that the discriminant

�(x) = (xm + �m�2x
m�2 + � � �+ �1x+ �0)

2 � 4�;

hasm� 1 double roots must be of the form

�0 = 0; �1 = t` � c1;

�2 = 0; �3 = t`�1 � c3;

ending with�m�2 = t � cm�2; again we have� = tm=4. So once more we see that
	 is a smooth curve having contact of orderm with H at the origin. 2

Let us now prove Lemma 2.10 and Proposition 2.7 in this special case. First,
in the casem = 2` even, the restrictionS	 ! 	 of the familyS ! � to 	 has
equation

y2 + y(xm + tcm�2x
m�2 + t2cm�4x

m�4 + � � �+ tm=2c0) + (tm=4) = 0:
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186 LUCIA CAPORASO AND JOE HARRIS

We can think of the total spaceS	 of this family as a double cover of the(x; t)-
plane, with branch divisor the zero locus of the discriminant

� = (xm + tcm�2x
m�2 + t2cm�4x

m�4 + � � � + tm=2c0)
2 � tm:

By hypothesis, for each value oft the polynomial� is the product of the square of
a polynomialgt(x) of degreem� 1 and a quadratic polynomialht(x). Since� is
even,g2 andh must each be; and given the homogeneity of� with respect tot and
x we see that we can write

� = x2(x2 � �1t)
2(x2 � �2t)

2 � � � (x2 � �`�1t)
2 � (x2 � �t);

for suitable constants�1; : : : ; �`�1 and�. For example, in casem = 2, the equation
of S	 is simply

y2 + y(x2 + t) + (t2=4) = 0

and the discriminant is just� = x2(x2 � 2t). In general, the branch divisor ofS	
over the(x; t)-plane will be simply a union of thet-axis, with multiplicity 2;`� 1
parabolas tangent to thex-axis at the origin, each with multiplicity 2; and one more
parabola tangent to thex-axis at the origin and appearing with multiplicity 1. The
double coverS	 will thus be nodal over the double components of this branch
divisor, and smooth elsewhere.

Finally, the normalizationS�	 of the total spaceS	 will be the double cover of
the(x; t)-plane branched over the single component of multiplicity 1 in the branch
divisor; that is, it will have equation

y2 = x2 � �t

and in particular, since the component(x2 � �t) is smooth,S�	 will be smooth as
well, establishing Proposition 2.7 for this particular family.

The picture in casem = 2`+1 is odd is exactly the same: hereS	 has equation

y2 + y(xm + tcm�2x
m�2 + t2cm�4x

m�4 + � � �+ tm=2c1x)� (tm=4) = 0

with discriminant

� = (xm + tcm�2x
m�2 + t2cm�4x

m�4 + � � �+ tm=2c1x)
2 � tm

= (x2 � �1t)
2(x2 � �2t)

2 � � � (x2 � �`t)
2 � (x2 � �t);

for suitable constants�1; : : : ; �` and�. For example, in casem = 3, the equation
of S	 will be

y2 + y(x3 � 3tx)� t3 = 0;
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(we are scalingt here to make the coefficients nicer), and the discriminant is just

� = (x3 � 3tx)2 + 4t3

= x6 � 6tx4 + 9t2x2 + 4t3

= (x2 + t)2(x2 + 4t):

In general, form odd the branch divisor ofS	 over the(x; t)-plane will be simply
a union of` parabolas tangent to thex-axis at the origin, each with multiplicity 2;
and one more parabola tangent to thex-axis at the origin and appearing with multi-
plicity 1. As before, the normalizationS�	 of the total spaceS	 will be simply the
double cover of the(x; t)-plane branched over the single component(x2 � �t) of
multiplicity 1 in the branch divisor; and as before, since this component is smooth,
S�	 will be smooth as well, establishing Proposition 2.7 in this case. 2

2.4.4.The geometry of the locus�m�1. In order to focus on the essential aspects
of the geometry of�m�1, and in particular to remove the excess intersection of
�(W ) \ �m�1, we will work on the blow-up� : ~� = Bl�m� ! � of � along
�m. To express our results, we have to introduce some notation. We will denote
byZ = ��1(�m) the exceptional divisor of the blow up, and by~�m�1 and ~W the
proper transforms of�m�1 and�(W ) in ~�.

Our goal will be to describe the intersectionZm�1 := ~�m�1\Z. The fibers ofZ
over�m are projective spacesPm�1 with homogeneous coordinates�0; : : : ; �m�1;
we will denote the fiber��1(0) of Z over the origin by�, by�0 � � the open set
given by�0 6= 0, and byQ the point of� with coordinates[1;0; : : : ;0] (this is the
point of intersection of~W with � in the example above).

Note that there is a more intrinsic characterization of�: the tangent space to
�m at the origin is the subspace ofOFn;P =J of polynomials divisible byy, so that
� – the projectivization of the normal space – is just the space of polynomials in
x modulo those vanishing to orderm atP = (0;0) and modulo scalars. In these
terms,�0 is simply the subspace of polynomials not vanishing at the origin andQ

the point corresponding to constants.
To study�m�1 we will take advantage of an equivariant action of the mul-

tiplicative groupC � on the mapS ! �. Explicitly, for any c 2 C � , we define
automorphisms�c of � and�c of S simultaneously by

x 7! cx; y 7! cmy;

�i 7! cm�i�i; �i 7! c2m�i�i:

Since�c and�c commute with the projectionS ! �, �c preserves the loci�k � �.
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In particular, since�c preserves�m, it lifts to an automorphism~�c of ~�; and since
�c preserves�m�1 the lifted action~�c will preserve~�m�1. We can read off from
the above expression the action of~�c on the fiber� of � : ~�! � over the origin:
in terms of the homogeneous coordinates�0; : : : ; �m�1, we have

~�c : [�0; : : : ; �m�1] 7! [cm�1�0; c
m�2�1; : : : ; c�m�2; �m�1]:

The key fact about this action, for our present purposes, follows immediately from
this description:

LEMMA 2.13. Every orbit of the action ofG on ~� that intersects�0 contains the
pointQ in its closure.

We are now prepared to state and prove our main lemma on the geometry of
Zm�1 and�m�1.

LEMMA 2.14. (1)The fibers ofZm�1 over�m are unions of linear spaces.
(2) For any arc�(t) in �m tending to the origin, the limiting position of the

fiberZ�(t) ofZm�1 over�(t) is contained in the complement of�0.
(3)� itself is an irreducible component ofZm�1.
Proof.The proof is by induction onm, using Lemma 2.11.
First we introduce a natural stratification of the locus�m. Identifying �m

with the space of monic polynomials of degreem in x with no xm�1 term, we
look at the loci of polynomials with roots of given multiplicity: for any partition
m = m1 +m2 + � � � +mk we define the locus�fm1; : : : ;mkg � � by

�fm1; : : : ;mkg := f(�0; : : : ; �m�2;0; : : : ;0) : x
m + �m�2x

m�2 + � � �+ �0

= (x� �1)
m1(x� �2)

m2 � � � (x� �k)
mk for some distinct�1; : : : ; �kg:

Note that the codimension of�fm1; : : : ;mkg in �m is
P
(m� � 1).

Suppose� is any point of�m other than the origin. Say� lies in the stratum
�fm1; : : : ;mkg, and write the corresponding polynomial as

(x� �1)
m1(x� �2)

m2 � � � (x� �k)
mk ;

with �1; : : : ; �k distinct. The fiberS� of S ! � over � is a reducible curve
consisting of two branches, thex-axis(y = 0) and the curvey = (x� �1)

m1(x�
�2)

m2 � � � (x � �k)
mk , which meet at thek pointsr1 = (�1;0); : : : ; rk = (�k;0)

with multiplicitiesm1; : : : ;mk.
Let �(i) be the versal deformation spaces�(S�; ri) of the singular points

ri 2 S�. By the openness of versality the natural map� from a neighborhoodU
of � in � to the product

Q
�(i) has surjective differential at� (the fibers are the

equisingular deformations ofS�, in which only the locations of the pointsri on the
x-axis vary). Let�mi�1 and�mi

� �(i) be the loci in�(i) analogous to�m�1

and�m in �, that is, the closures of the loci of deformations of the singular points
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ri 2 S� with mi � 1 andmi nodes nearri respectively. Then in the neighborhood
U of �, we have

�m = ��1(�m1 ��m2 � � � � ��mk
)

and

�m�1 =
k[
i=1

��1(�m1 � � � � ��mi�1� � � � ��mk
):

In other words, the locus�m�1 will havek branches in a neighborhood of�, each
containing�m, along theith of which the fibers ofS ! � will havemj nodes
tending torj for eachj 6= i andmi � 1 nodes tending tori.

We can use this description to give a more intrinsic characterization of the fiber
Z� = ��1(�) of Z over the point�, analogous to the one given above for�.
Briefly, Z� is the projectivization of the normal space to�m in � at�, which is
the product of the normal spaces to the�mi

in �(i) at the origin; this is just the
space of polynomials on thex-axis modulo those vanishing to ordermi at ri for
eachi.

We may now apply the induction hypothesis to describe, in these terms, the
fiber of Zm�1 over�. By the statement of the Lemma form = mi, the proper
transform of theith branch of�m�1 will intersectZ� in the linear subspace of
Z� corresponding to polynomials vanishing to ordermj at rj for eachj 6= i; the
intersection withZ� with the proper transform of�m�1 itself will be the union of
these linear subspaces.

This establishes part (1) of the Lemma. Now say that�(t) is any arc in�m

tending to the origin;�(t) will lie in some stratum�fm1; : : : ;mkg for all small
t 6= 0. As t goes to zero, the singular pointsri(t) of S�(t) approach the pointP ,
so that the limiting position of the intersection withZ�(t) of the proper transform
of the ith branch of�m�1 will be simply the linear space of polynomials whose
restriction to thex-axis vanishes to orderm�mi atP ; in particular, it is contained
in the hyperplane(�0 = 0) � � of polynomials vanishing atP . We have thus
proved parts (1) and (2) of the Lemma, given part (3) for allmi < m.

Finally, we need to prove for each new value ofm that� is an irreducible
component ofZm�1. Now, by Lemma 2.11, the pointQ = [1;0; : : : ;0] 2 � lies
in Zm�1. But we have completely described the closure inZm�1 of the inverse
image��1(�m n f0g) of the complement of the origin, andQ is not on it.Q must
thus lie on an irreducible component ofZm�1 not meeting��1(�m n f0g), that
is to say, an irreducible component ofZm�1 contained in�; sinceZm�1 has pure
dimensionm� 1, this irreducible component must be� itself. 2

For example, here is a picture ofZ1 in the casem = 2. In this caseZ1 has only
two components,� and a component finite of degree 2 over�2.
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Finally, we deduce

LEMMA 2.15. (1) ~�m�1 is smooth everywhere along�0.
(2) The intersection multiplicity of~�m�1 andZ along� ism.
Proof. We use the analysis carried out in Lemma 2.11. Let~�0 be the proper

transform of the linear space�0 in ~�. Since no component ofZm�1 other than�
passes throughQ, the only component of the intersection~�0 \ ~�m�1 containing
Q will be the proper transform~	 of the curve	 � � described in Lemma 2.11.
Since this is smooth, and the intersection~�0 \ ~�m�1 is proper in a neighborhood
of Q (~�0 and ~�m�1 each have dimensionm in the(2m� 1)-dimensional~�, and
their intersection is locally a curve) it follows that~�m�1 must be smooth atQ. By
Lemma 2.13, then, it must be smooth at every point of�0.

For the second statement, notice that Lemma 2.11 asserts that this is true when
restricted to the proper transform~�0, and it follows that it is true on~�m�1 2

End of the proof of Lemma2:10 and Proposition2:7. We shall now conclude
that the intersection of�m�1 with any subvariety� � � satisfying the hypotheses
of Lemma 2.10 – and in particular, the image�(W ) – is the union of�m and a
smooth curve	, such that	 has contact of orderm with �m at the origin. Notice
that this will conclude the proof of Proposition 2.6 as well. To begin with, the
proper transform~� of� in ~� intersectsZ in a section, crossing� at some pointR;
we likewise have from Lemma 2.9 thatR 2 �0. ~�m�1 is then smooth atR. Since
the tangent space to~�m�1 atR contains the tangent space to� and the tangent
space to~� atR is complementary to the tangent space to�, ~�m�1 and~� intersect
transversely in a smooth curve in a neighborhood ofR; since that curve is not
tangent to� atR, its image� � �m�1 \ � is again a smooth curve. Finally, the
intersection number of	 with �m in � will be the intersection number of~�m�1,
~� andZ atR; which by Lemma 2.15 will bem. We have thus completed the proof
of Lemma 2.10 and hence that of Proposition 2.7.
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3. Formulas

Before we prove our formulas, we need a simple result on the order of zeroes and
poles of the cross-ratio function�.

3.1. AREMARK ON THE CROSS-RATIO FUNCTION

Suppose we are given a familyf : X ! B over a smooth one-dimensional base
B, whose restriction~f : ~X = f�1( ~B)! ~B to the complement~B = B n fb0g of a
point b0 2 B is a family of smooth rational curves; and four sectionspi : ~B ! X ,
disjoint over ~B. We get a map~� : ~B ! �M0;4, which then extends overB; and the
problem is to determine the coefficient of the pointb in the pullback via~� of the
boundary components of�M0;4. To put it another way, the cross-ratio of the four
sectionsp1; p3; p2; p4 defines a rational function on~B and hence onB; and we ask
simply for the order of zero or pole of this function atb0.

We will answer this in terms of any completion of our family to a family of nodal
rational curves. Recall first of all the set-up of Section 2.1: we have a resolution
of singularitiesY ! B of the total space of our family, such thatY ! B is a
family of nodal curves and the extensions of the sectionspi to Y are disjoint. We
then proceed to blow down ‘extraneous’ components ofY to arrive at the minimal
smooth semistable model of our family: that is, a familyZ ! B such thatZ
is smooth, the fibersZb are nodal, the sectionspi are disjoint andZ ! B is
minimal with respect to these properties. Finally, we blow down the intermediate
components in this chain to arrive at a familyW ! B of 4-pointed stable curves.
The special fiberW of this family will have just two components (or one, if` = 0),
with a singularity of typeA` at the point of their intersection.

In these terms we prove

LEMMA 3.1. If the sectionsp1 and p2 (respectively,p1 and p3) meet the same
component ofY , then the pointb0 is a zero (respectively, pole) of multiplicity` of
the function�.

Proof.We will consider the case wherep1 andp2 meet the same component of
W . Note first that if we blow down the component ofW meetingp1 andp2, we
arrive at a smooth family, that is (replacingB if necessary by a neighborhood ofb0

in B), a productB � P1. (Equivalently, we could arrive at this family by blowing
down the component ofZ meetingp1 andp2, then doing the same thing on the
resulting surface, and so on` times.)p3 andp4 will remain disjoint from each other
in this process, and disjoint fromp1 andp2; butp1 andp2 will meet each other with
contact of order̀: in other words, we can choose an affine coordinatez onP1 and
a local coordinatet onB centered aroundb0 so that the sectionspi are given by

p1(t) = t`; p2(t) � 0; p3(t) � 1; andp4(t) � 1:
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The cross-ratio function is then�(t) = t`=(t`�1), which takes on the value 0 with
multiplicity ` at t = 0. 2

3.2. THE RECURSION FORF2

LetD be any effective divisor class other thanE on the ruled surfaceS = F2. We
are going to find a formula for the degreeN(D) of the varietyV (D) � jDj. To
set this up, we start by choosing as usualr0(D) � 1 general points onS, which
we labelp1; p2; q3; : : : ; qr0(D)�1, and consider the one-parameter familyX ! �
of curvesX 2 V (D) � jDj passing throughfp1; p2; q3; : : : ; qr0(D)�1g. As before,
we let�� be the normalization of� andX � ! �� the normalization of the pullback
family. Next, we fix general curvesC3 andC4 2 jCj in the linear seriesjCj, and
adopt as usual the convention that we will choose pointsp3 andp4 on the curves
X of our family lying onC3 andC4 respectively. Making the corresponding base
change, we arrive at a familyX ! B; as before, we will denote byY the minimal
desingularization ofX and byZ ! B the smooth semistable model.

Then we calculate the degree of the cross-ratio map� : B ! �M0;4
�= P1 in two

ways by equating the number of zeroes and poles of�. We get one contribution
to the degree of��(0) immediately from the curvesX in our family that happen
to pass through either of the two points of intersection ofC3 with C4; this gives a
total contribution of 2�N(D) to the degree of��(0).

The remaining zeroes and poles of� necessarily correspond to reducible curves
in the family fXg. There are two types of these: those that containE and those
that don’t. Consider first a reducible curveX in our family that does not containE.
By Proposition 2.5, this must be of the formX = X1 +X2 whereXi is a general
member of the familyV (Di) for some pair of divisor classesD1 andD2 adding
up toD. In particular,Xi is an irreducible rational curve withpa(Di) nodes, and
X1 andX2 intersect transversely in(D1 � D2) points. Moreover, by Proposition
2.6, the curve� will consist of (D1 � D2) smooth branches near the point[X],
corresponding to the points of intersection ofX1 andX2; thus there are(D1 �D2)
points in the normalization�� lying over each such point[X] 2 �.

How does such a fiber of the familyX ! B contribute to the degrees of either
��(0) or ��(1)? It depends on how the pointspi are distributed. If three or four
lie on one component, it does not contribute to either, but if there are two on each
it may: for example, ifp1 andp2 lie on the same component – sayX1 – ofX, and
p3 andp4 on the other, we get a zero of�. Now, as we observed in the proof of
Proposition 2.5, each componentXi ofX must contain exactlyr0(Di) of the points
p1; p2; q3; : : : ; qr0(D)�1. If X1 is to containp1 andp2, it will contain r0(D1)� 2 of
the pointsq�, andX2 will contain the remainingr0(D) � r0(D1) + 1 = r0(D2).
Thus, to specify such a fiber, we have first to break ther0(D) � 3 pointsq� into
disjoint sets ofr0(D1)�2 andr0(D2). The curveX1 can then be any of theN(D1)
irreducible rational curves in the linear seriesjD1j passing throughp1, p2 and the
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first set, whileX2 can then be any of theN(D2) irreducible rational curves in the
linear seriesjD2j passing through the second set. Altogether, then, we see that there
will be

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 2

!
;

points in� of this type, and correspondingly

N(D1)N(D2)(D1 �D2)

 
r0(D)� 3
r0(D1)� 2

!
;

such points in the normalization�� . Finally, if a fiber ofX ! B lying over such
a point of�� is to contribute to��(0), we have to choosep3 andp4 to lie onX2,
that is, to be any of the(D2 � C) points of intersection ofX2 with C3 andC4

respectively. There are thus a total of(D2 �C)2 fibers ofX ! B of this type lying
over each such point of�� .

To complete the calculation of the contribution of fibers of this type to the degree
of ��(0), we observe that the fiber of the normalizationX � over such a point will
have two components, the normalizations of the curvesXi, meeting at one point
(the point of each lying over the new node). Moreover, by Proposition 2.7, the total
spaceX � will be smooth at such a point; and it follows by Lemma 3.1 that the
corresponding point ofB will be a simple zero of�. In sum, then, fibers ofX ! B

of this type contribute a total of

N(D1)N(D2)(D1 �D2)

 
r0(D)� 3
r0(D1)� 2

!
(D2 � C)2;

to the degree of��(0).
The contribution of such fibers to the degree of the divisor��(1) is found

analogously, the only difference being that, in order to get a pole of the cross-ratio,
the pointsp1 andp3 must lie on one component – sayX1 – of X, while p2 and
p4 will lie on the other. Thus, instead of breaking ther0(D) � 3 pointsq� into
subsets ofr0(D1) � 2 andr0(D2), we divide them into subsets ofr0(D1) � 1
andr0(D2) � 1; and instead ofN(D1)N(D2)

� r0(D)�3
r0(D1)�2

�
such points in� of this

type we haveN(D1)N(D2)
� r0(D)�3
r0(D1)�1

�
. Similarly, instead of choosingp3 among

the(D2 �C) points ofX2\C3, we choose it among the(D1 �C) points ofX1\C3;
so that instead of(D2 � C)2 zeroes of the cross-ratio lying over each such point of
�� there will be(D1 �C)(D2 �C). Again, each pole of the cross-ratio corresponding
to a fiber of this type will have multiplicity one; so the total contribution to the
degree of��(1) is

N(D1)N(D2)(D1 �D2)

 
r0(D)� 3
r0(D1)� 1

!
(D1 � C)(D2 � C):
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It remains to add up the number of zeroes and poles of� coming from members
of our family containingE. Proposition 2.5 describes all such curves, and the
description is particularly simple, given that we are on the surfaceF2. There are
only two types: a degenerate memberX of our family must consist either of

(1) the union ofE and an irreducible rational nodal curveX1 2 jD � Ej, sim-
ply tangent at one point (which will be a smooth point ofX1) and meeting
transversely elsewhere; or

(2) the union ofE and two curvesXi 2 jDij, which will correspond to general
points of the varietiesV (Di) for some pair of divisor classesD1 andD2 with
D1 +D2 = D �E. In particular,X1 andX2 will intersect each other andE
transversely.

Now, we can forget about curves of the first type; in fact, sinceE cannot contain
any of the pointsp1; : : : ; p4, these will be distinct points ofX1. Hence the cross-
ratio function will not be zero or infinite at such a point ofB. On the other hand,
fibers of the second type may contribute. To see what our family looks like in a
neighborhood of such a curve, recall first that by Proposition 2.6, as we approach
X along any branch of�, all the points of intersection ofX1 andX2, as well as all
but one of the points of intersection of each curveXi with E, will be old nodes;
exactly one of the points of intersection of eachXi with E will be new. The fiber
of the normalized familyX � ! �� will thus consist of the normalizations ofX1

andX2, each meeting a copy ofE in one point and disjoint from each other
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Recall also that the total space ofX � will be smooth along such a fiber.
Again,E can’t contain any of the pointspi, and if three or four lie on either

curveXi the corresponding point ofB will be neither a zero nor a pole of�; but
we may get a contribution if two are on eachXi. Specifically, ifp1 andp2 lie on
one component – sayX1 – andp3 andp4 on the other, we get a zero of�; while if
p1 andp3 lie on a component – again, call this oneX1 – andp2 andp4 on the other,
we get a pole of�. That said, we can count the number of such fibers exactly as in
the preceding case.

We do the zeroes first. We begin by specifying a point[X] in � – that is, we
break the pointsq� into subsets of sizer0(D1) � 2 andr0(D2) respectively, and
chooseX1 among theN(D1) irreducible rational curves injD1j throughp1, p2 and
the first set andX2 among theN(D2) irreducible rational curves injD2j through
the second set. Next, a point in�� : we can take any of the(D1 �E)(D2 �E) points
of �� lying over[X] 2 �. Lastly, we have to choosep3 andp4 among the(D2 �C)
points of intersection ofX2 with C3 andC4 respectively. We have, in sum,

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 2

!
(D1 �E)(D2 �E)(D2 � C)2;

zeroes of� of this type.
The poles of the cross-ratio coming from such curves are counted in the same

way; the differences being exactly as in the preceding case: in specifying the point
[X] 2 � we have to choose a subset ofr0(D1) � 1 rather thanr0(D1) � 2 of the
pointsq�; andp3 must be chosen among the(D1 �C) points ofX1\C3. There are
thus a total of

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 1

!
(D1 �E)(D2 �E)(D1 � C)(D2 � C);

poles of this type.
There is one important difference between this case and the previous, however:

here, the fiber of the normalizationX � ! �� has three components, with the
componentsX1 andX2 containing the pointspi separated by the componentE.
Since by Proposition 2.7 the total spaceX � is smooth, we see by Lemma 3.1 that
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such points will be double zeroes and poles of�. The contribution to the degrees
of these divisors coming from fibers of this type is thus twice the number of such
fibers.

We can now calculate the degree of the divisors��(0) and��(1). We have

deg(��(0)) = 2 �N(D)

+
X

D1+D2=D
D1;D2 6=E

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 2

!
(D1 �D2)(D2 � C)2

+2 �
X

D1+D2=D�E

D1;D2 6=E

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 2

!

�(D1 �E)(D2 � E)(D2 � C)2:
Similarly,

deg(��(1))

=
X

D1+D2=D
D1;D2 6=E

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 1

!
(D1 �D2)(D1 � C)(D2 � C)

+2 �
X

D1+D2=D�E

D1;D2 6=E

N(D1)N(D2)

 
r0(D)� 3
r0(D1)� 1

!

�(D1 � E)(D2 �E)(D1 � C)(D2 � C):
To express the final result we introduce the notation


(D1;D2) := N(D1)N(D2)

" 
r0(D)� 3
r0(D1)� 1

!
(D1 � C)(D2 � C)

�
 
r0(D)� 3
r0(D1)� 2

!
(D2 � C)2

#
:

We now write deg(��(0)) = deg(��(1))) and solve the resulting equation for
N(D) to arrive at the recursion formula forN(D) on F2.

THEOREM 3.2Let D 2 Pic(F2) and letN(D) be the number of irreducible
rational curves in the linear seriesjDj that pass throughr0(D) general points of
F2; then we have

N(D) =
1
2

X
D1+D2=D
D1;D2 6=E


(D1;D2)(D1 �D2)
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+
X

D1+D2=D�E

D1;D2 6=E


(D1;D2)(D1 � E)(D2 �E):

3.3. THE CLASS2C ON Fn

We now analyze the linear seriesj2Cj on the ruled surfaceFn for anyn. We arrive
at a closed-form expression forN(2C) rather than a recursion. This is clear: since
every linear seriesjDj onFn withD < 2C that actually contains irreducible curves
has arithmetic genus 0, we can say immediately how many degenerate fibers of
each type there are in our one-parameter family of curves inj2Cj.

The dimension ofj2Cj is 3n+2. The arithmetic genus of the curves in the series
is n� 1, so that the expected dimension of the Severi variety isr0(2C) = 2n+ 3.
This is in fact the actual dimension: any irreducible nodal curveD 2 j2Cj is be
disjoint fromE (if it met E, it would contain it, having intersection number 0 with
it); so that the nodes ofD impose independent conditions onj2Cj.

So, we choose as usual 2n+2 general points onFn, which we labelp1; p2; q3; : : :,
q2n+2 and consider the one-parameter family of curvesX 2 j2Cj passing through
fp1; p2; q3; : : : ; q2n+2g; we denote this familyX ! �. As before, we let�� be
the normalization of� andX � ! �� the normalization of the pullback family.
Next, we fix general curvesC3 andC4 2 jCj in the linear seriesjCj, and adopt the
convention that we choose pointsp3 andp4 on the curvesX of our family lying
onC3 andC4 respectively. Making the corresponding base change, we arrive at a
family X ! B; as before, we denote byY the minimal desingularization ofX and
byZ ! B the smooth semistable model.

Now we consider the cross-ratio map� : B ! �M0;4
�= P1 as before; we shall

obtain a formula forN(D) from

deg��(0) = deg��(1):

Of course, we get one contribution to the degree of��(0) from the curves in our
family that pass through any of then points of intersection ofC3 with C4; this
gives a total contribution ofn �N(2C) to the degree of��(0).

The remaining zeroes and poles of� correspond to reducible curves in the
family fXg. As before we look first at curves that do not containE. They can only
be of the formX = D1 +D2 whereD1 andD2 are each linearly equivalent toC.

Such a fiber of the familyX ! B can be either a pole or a zero of�, depending
of course on how the pointspi are distributed. Namely, ifp1 andp2 lie on the same
componentDi andp3 andp4 on the other, we get a zero. To specify such a fiber,
we simply have to break the 2n pointsq� into disjoint sets ofn � 1 andn + 1.
The two componentsDi of the curveX will be the (unique) curve in the series
jCj containingp1, p2 and the first subset; and the unique curve in the seriesjCj
containing the second subset.
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Next, we have to count the number of points ofB lying over each point of�
corresponding to such a curve. Since the general curve of our family hasn�1 nodes,
and then nodes ofX = D1[D2 impose independent conditions on the seriesj2Cj,
the curve� hasn (smooth) branches at the point[X]; thus the normalization of�
hasn points lying over[X] (cf. Proposition 2.6). Moreover, for each of these points
there will be a point ofB for every possible choice of pointsp3 andp4; these can be
any of the(C � C) = n points of intersection of the componentDi not containing
p1 or p2 with C3 andC4 respectively. There are thus a total of

� 2n
n�1

�
� n � n2 fibers

of X ! � of this type.
Now, for each such fiber ofX ! �, the fiber ofX ! B will be simply the

normalization ofX at then� 1 old nodes.

In particular, it has just two components and is stable, and as we have seenX �

already is smooth at the node of such a fiber. Each such point is thus a simple zero
of �; so the total contribution to the degree of��(0) of such curves is

 
2n
n� 1

!
� n3:

Similarly, we could havep1 andp3 on the same componentDi andp2 andp4

on the other; in this case, we get a point of��(1). The only difference in this
case is that to specify such a fiber, we have to break the 2n pointsfq�g into two
disjoint sets ofn points apiece. The two componentsDi of the curveX will be the
(unique) curves in the seriesjCj containingp1 and the first subset; and the unique
curve in the seriesjCj containingp2 and the second subset. The rest of the analysis
is exactly the same – for each such curve, we getn3 points ofB, each of which is
a simple pole of the cross-ratio function� – so the total contribution to the degree
of ��(1) of such curves is

 
2n
n

!
� n3:

The remainder of the calculation will be spent evaluating the contributions to
the degree of the pullbacks of the boundary components of�M0;4 coming from the
curves in our original family containingE. As we have indicated, these curves are
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of n � 1 types: for eachk = 1; : : : ; n � 1 we have a finite number of curves in
our family consisting of the sum ofE, k fibersF1; : : : ; Fk of Fn ! P1 and an
irreducible curveD linearly equivalent toC + (n� k)F , with D having a single
point of(n�k)-fold intersection withE, as pictured below. For each of these types,
there are a number of possibilities for the distribution of the pointsp1; : : : ; p4 on
the various components. For each such distribution corresponding to pointsb in
the inverse image of a boundary component� of �M0;4, we consider the number
of fibersXb of that type and the coefficient with which the corresponding points
b 2 B appear in the divisor~��(�); in the end we will sum up the contributions to
arrive at an expression forN(2C) onFn .

�1 p1; p2 2 D; p3; p4 2 Fi. In such a curve, the fiber componentsFj must each
contain one of the pointsq�. To specify such a curve, then, we must first choose a
subset ofk of the 2n pointsq� and takeF = [Fi the unique curve in the linear
seriesjk � F j containing them. Next, we have to single out one of thesek points,
and label the corresponding fiberFi. At this pointp3 andp4 will be determined,
as the unique points of intersection ofFi with the curvesC3 andC4 respectively.
Finally, we choose a curveD 2 jC + (n � k)F j passing through the remaining
2n� k of the pointsq� and having a point of(n� k)-fold tangency withE. (Note
that the ordering of thek pointsq� chosen to lie on fibers does not matter; all that
counts is which one is chosen to lie onFi.)

Now, the linear seriesjC + (n� k)F j cuts on the curveE �= P1 the complete
linear seriesjO

P1(n� k)j. This linear series is parametrized by the spacePn�k of
polynomials of degreen� k onP1 modulo scalars; and in that projective space the
divisors consisting simply ofn� k times a single point – that is,(n� k)th powers
of linear forms – form a rational normal curve. In the linear seriesjC +(n� k)F j,
then, the locus of curvesD having a single point of(n � k)-fold intersection
with E is a cone over a rational normal curve inPn�k (with vertex the subseries
E + j(2n � k)F j � jC + (n � k)F j of curves containingE); in particular, it
has degreen � k. There are thus exactlyn � k curvesD linearly equivalent to
jC + (n� k)F j passing throughp1, p2 and the remaining 2n� k of the pointsq�
and having a point of(n� k)-fold tangency withE. In sum, the number of fibers
X of this type in our family is

�2n
k

�
� k � (n� k).
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It remains to determine, for each such fiber of our family, the coefficient with
which the corresponding pointb 2 B appears in the pullback divisor��(0). To do
this, we need to know the local geometry of the family nearb 2 B; in particular,
we need to have the picture of the corresponding fibers of the familiesX ! B

andY ! B. For the first, the only thing we need to know is which of the singular
points of the fiberX are limits of nodes of nearby fibers and (in the case of the point
of intersection ofD with E) how many. The answer, as provided in Proposition
2.7, is that the points of intersection ofD with the fibersFi are all limits of nodes
on nearby curves; and the remaining(n � k � 1) nodes of the general fiber of
the family tend to the point of intersection ofD with E. When we normalize the
total space of the family, then, the curvesD andFi are pulled apart; and the point
of intersection ofD with E becomes a node, so that the fiber ofX ! B overb
consists of a rational curveE with k fibersF1; : : : ; Fk and the curveD attached.

But as we also saw in Proposition 2.7,X will not be smooth: at the point lying
over each point of intersection ofE with a fiberFi,X will have a singularity of type
An�k�1. Resolving each of these, we arrive at this picture of the fiber ofY ! B

overb

Finally, we can blow down the extraneous curvesFj andGj;� for j 6= i to arrive
at the picture of the fiberZ of the familyZ ! B of semistable 4-pointed curves
with smooth total space

Inasmuch as there are(n � k) rational curves in the chain connecting the
componentsD andFi containing the pairsfp1; p2g andfp3; p4g, each such fiber
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represents a point of multiplicityn� k + 1 in the divisor��(0). In sum, then, the
fibers of this type contribute a total of

n�1X
k=1

 
2n
k

!
� k � (n� k) � (n� k + 1);

to the degree of��(0).
�2 p1; p3 2 D; p2; p4 2 Fi or p2; p4 2 D; p1; p3 2 Fi. In the first of these

cases we are simply exchanging the locations ofp2 andp3 to obtain a fiberX
corresponding to a pointb in the inverse image��(1); this will affect the count of
the number of such fibers, but not the final configuration on the semistable model
with smooth total space, so the multiplicity of each such point in the divisor��(0)
will be as in the preceding casen� k + 1.

The difference here is that, because the fixed pointp2 lies on one of the fiber
components, we can put the remaining fiber components through onlyk�1 of the
pointsq�; at the same time, we can put the curveD throughp1 and the remaining
2n� k + 1. To specify such a curve, then, we must first choose a subset ofk � 1
of the 2n pointsq� and takeF = [Fj the unique curve in the linear seriesjk � F j
containing them andp2; the component ofF containingp2 we callFi. As in the
preceding case, there will be exactlyn�k curves in the linear seriesjC+(n�k)F j
passing through the remaining 2n� k + 1 pointsq� and the pointp1 and having a
point of intersection multiplicityn � k with E; the curveD can be any of these.
At this pointp4 will be determined, as the unique point of intersection ofFi with
the curveC4; while p3 can be taken to be any of the

(D � C3) = ((C + (n� k)F ) � C) = 2n� k;

points of intersection ofD with C3. The number of fibersX of this type in our
family is thus

� 2n
k�1

�
� (n� k) � (2n� k).

As we said, each such fiberX of our family is a pole of ordern� k + 1 of the
cross-ratio function�. Finally, since exchangingp1 with p4 (as in the second case
above) yields an identical result, the total contribution of the fibers of these types
to the poles of� is

2 �
n�1X
k=1

 
2n
k � 1

!
� (n� k) � (2n� k) � (n� k + 1):

�3 p1; p2 2 D; p3 2 Fi andp4 2 Fj , i 6= j. This case is very similar to the first;
again, we have first to select a subset ofk of the 2n pointsq� and takeF = [Fi the
unique curve in the linear seriesjk �F j containing them. We then have to single out
two of thesek points, and label the corresponding fibersFi andFj , which in turn
determines the pointsp3 = Fi\C3 andp4 = Fj \C4. Finally, we take as beforeD
to be any of then� k curves injC + (n� k)F j passing throughp1 andp2 and the
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remaining 2n�k of the pointsq� and having a point of(n�k)-fold tangency with
E. Thus, the number of fibersX of this type in our family is

�2n
k

�
�k �(k�1)�(n�k).

At this point, we see another difference with the preceding case: here, to arrive
at the fiber of the family of semistable 4-pointed curves with smooth total space
we blow down the curvesFm andGm;� for all m includingi andj, to arrive at the
simpler fiber

Since this is already semistable, each such fiber represents a simple zero of�.
In sum, then, the fibers of this type contribute a total of

n�1X
k=1

 
2n
k

!
� k � (k � 1) � (n� k);

to the degree of��(0).
For the remaining cases we indicate only the distribution of the pointspi and the

resulting contribution; the reader should find no difficulty in supplying the details.
�4 p1; p3 2 D; p2 2 Fi andp4 2 Fj , i 6= j; or p2; p4 2 D; p1 2 Fi andp3 2 Fj ,

i 6= j. The fibers of this type contribute a total of

2 �
n�1X
k=1

 
2n
k � 1

!
� (k � 1) � (n� k) � (2n� k);

to the degree of��(1).
�5 p3; p4 2 D; p1 2 Fi andp2 2 Fj , i 6= j. Such fibers contribute a total of

n�1X
k=1

 
2n
k � 2

!
� (n� k) � (2n� k)2;

to the degree of��(0).
�6 p1 2 D, p2 2 Fi andp3; p4 2 Fj , i 6= j; or p1 2 Fi, p2 2 D andp3; p4 2 Fj ,

i 6= j. We get a contribution of

2 �
n�1X
k=1

 
2n
k � 1

!
� (k � 1) � (n� k)2;

to the degree of��(0).
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�7 p1 2 D, p3 2 Fi andp2; p4 2 Fj , i 6= j; orp2 2 D, p4 2 Fi, andp1; p3 2 Fj ,
i 6= j. These fibers contribute a total of

2 �
n�1X
k=1

 
2n
k � 1

!
� (k � 1) � (n� k)2;

to the degree of��(1).
�8 p3 2 D, p1 2 Fi andp2; p4 2 Fj , i 6= j; orp4 2 D, p2 2 Fi, andp1; p3 2 Fj ,

i 6= j. Contributing a total of

2 �
n�1X
k=1

 
2n
k � 2

!
� (2n� k) � (n� k)2;

to the degree of��(1).
We come now to the last three cases, those in which none of the four pointspi

lie onD. The next one is the last to contribute to the degree of��(0).
�9 p1 2 Fi, p2 2 Fj andp3; p4 2 F`, i 6= j 6= ` 6= i. The total contribution of

such fibers is

n�1X
k=1

 
2n
k � 2

!
� (k � 2) � (n� k)2:

�10 p1 2 Fi p3 2 Fj andp2; p4 2 F`; or p2 2 Fi p4 2 Fj andp1; p3 2 F`,
i 6= j 6= ` 6= i. Counting both possible exchanges, we see that the total contribution
of such fibers to the degree of��(1) is

2 �
n�1X
k=1

 
2n
k � 2

!
� (k � 2) � (n� k)2:

�11 p1; p3 2 Fi andp2; p4 2 Fj , i 6= j The total contribution of such fibers to
the degree of��(1) is thus

n�1X
k=1

 
2n
k � 2

!
� (n� k) � (2n� 2k):

We are now ready to add up all the contributions to the degrees of��(0) and
��(1), equating the results and solving forN(2C). We have

deg(��(0)) = n �N(2C) + n3

 
2n
n� 1

!
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+
n�1X
k=1

(n� k)

" 
2n
k

!
(k(n� k + 1) + k(k � 1))

+

 
2n
k � 1

!
(2(k � 1)(n� k))

+

 
2n
k � 2

!
((2n� k)2 + (k � 2)(n� k))

#
:

while on the other hand

deg(��(1))

= n3

 
2n
n

!
+

n�1X
k=1

(n� k)

" 
2n
k � 1

!
(2(2n� k)(n� k + 1)

+ 2(2n� k)(k � 1) + 2(k � 1)(n� k))

+

 
2n
k � 2

!
(2(2n� k)(n� k)

+2(k � 2)(n� k) + 2(n� k))

#
:

Combining these, we arrive at the expression

n �N(2C) = n3

  
2n
n

!
�
 

2n
n� 1

!!
+ S;

where

S =
n�1X
k=1

(n� k)

" 
2n
k

!
� (�kn) +

 
2n
k � 1

!
� 2(2n� k)n

+

 
2n
k � 2

!
� (�kn)

#
:

(Note that we can now enlarge the formal limits of summation to includek = 0
without affecting the sum; this will be convenient in the following calculations.)
To reduce this further, we separate it into two terms: we writeS = S0�S00, where

S0 =
n�1X
k=0

4n2(n� k)

 
2n
k � 1

!
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and

S00 =
n�1X
k=0

(n� k) � kn �
" 

2n
k

!
+ 2

 
2n
k � 1

!
+

 
2n
k � 2

!#
:

The expression forS00 telescopes nicely and we have simply

S00 =
n�1X
k=0

(n� k) � kn �
 

2n+ 2
k

!
:

As forS0, we can combine that with the remaining two terms in the expression for
N(2C), and together they simplify. To start with, observe that

n3

  
2n
n

!
�
 

2n
n� 1

!!
= n2

 
2n
n� 1

!
:

Now, combining this with the expression forS0 above, we have

n2

 
2n
n� 1

!
+

n�1X
k=0

4n2(n� k)

 
2n
k � 1

!

= n2

  
2n
n� 1

!
+ 4

 
2n
n� 2

!
+ 8

 
2n
n� 3

!
+ � � �+ (4n� 4)

 
2n
0

!!
:

Now we use standard binomial identities to reduce this to

n2

 
2n
n� 1

!
+

n�1X
k=0

4n2(n� k)

 
2n
k � 1

!

= n2

  
2n+ 2
n� 1

!
+ 2

 
2n+ 1
n� 2

!
+ 3

 
2n+ 1
n� 3

!
+ � � �+ n

 
2n+ 1

0

!!

= n2
n�1X
k=0

(n� k)

 
2n+ 2
k

!
:

Finally, we can combine this and the expression above forS00: we have

n �N(2C) = n3

  
2n
n

!
�
 

2n
n� 1

!!
+ S0 � S00

= n2
n�1X
k=0

(n� k)

 
2n+ 2
k

!
� n

n�1X
k=0

k(n� k)

 
2n+ 2
k

!

= n
n�1X
k=0

(n� k)2
 

2n+ 2
k

!
:
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We have therefore proved the

THEOREM 3.3.LetN(2C) be the number of irreducible rational curves in the
linear seriesj2Cj onFn passing through2n+ 3 points, then

N(2C) =
n�1X
k=0

(n� k)2
 

2n+ 2
k

!
:

For example, onF2 we haveN(2C) = 10; onF3 we haveN(2C) = 69; and on
F4 we haveN(2C) = 406 and so on.

We now show how to arrive at an expression ofN(2C) on Fn as a coefficient
of a simple generating function. We simply write out the sum involved, and then
telescope it using the standard binomial relations as before: that is, we write

N(2C) =

 
2n+ 2
n� 1

!
+ 4

 
2n+ 2
n� 2

!
+ 9

 
2n+ 2
n� 3

!
+ � � �+ n2

 
2n+ 2

0

!

and use the relations 
2n+ 2
n� 1

!
+

 
2n+ 2
n� 2

!
=

 
2n+ 3
n� 1

!
;

3

 
2n+ 2
n� 2

!
+ 3

 
2n+ 2
n� 3

!
= 3

 
2n+ 3
n� 2

!

and so on to rewrite this as

N(2C) =

 
2n+ 3
n� 1

!
+ 3

 
2n+ 3
n� 2

!
+ 6

 
2n+ 3
n� 3

!

+ � � � + n(n+ 1)
2

 
2n+ 3

0

!

=
n�1X
k=0

 
n� k + 1

2

! 
2n+ 3
k

!
:

We can also think of this as the coefficient oftn in the product of the power series

X 
2n+ 3
k

!
tk = (1+ t)2n+3

and

X 
`+ 2

2

!
t` =

1
(1� t)3

;
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so that we can writeN(2C) onFn as the coefficient

N(2C) =

"
(1+ t)2n+3

(1� t)3

#
tn

:

3.4. A FORMULA FORFn

We conclude our paper with a formula for the general ruled surfaceFn . Here
we define the function
i1;:::;it(Di1; : : : ;Dit) giving the contribution to the cross-
ratio corresponding to a given decompositionD = D1 +D2 + � � � +Dt + E or
D = D1 +D2, with Dj 2 Vij (Dj). Recall that the varietyVi(D) is the closure in
jDj of the locus of irreducible rational curves that have a point of contact of order
i with the exceptional curveE. We define


i1;:::;it(D1; : : : ;Dt) :=
Y
(ijNij (Dj))�

�
" 

r0(D)� 3

ri10 (D1)� 1; ri20 (D2)� 1; ri30 (D3); : : :

!

�

2
4X
j>3

(C �Dj)

ij

�
(C �D1)

i1
+
(C �D2)

i2

�
�
X
j>3

(C �Dj)
2

ij

3
5

�
 

r0(D)� 3

ri10 (D1)� 2; ri20 (D2); r
i3
0 (D3); : : :

!

�

2
4X
j>2

(C �Dj)
2

 
1
ij
+

1
i1

!
+

1
i1

X
26j<k6t

(C �Dj)(C �Dk)

3
5
3
5

In these terms, we can state

THEOREM 3.4.Let D be a divisor on the surfaceFn . LetN(D) be the num-
ber of irreducible rational curves injDj that pass throughr0(D) general points
of Fn . Then

nN(D) =
X

D1+D2=D

(D1 �D2)
1;1(D1;D2)

+
nX
t=2

X
D1+D2+���+Dt=D�E

�
X

i1;:::;it

Y
j:ij=1

(E �Dij )
i1;:::;it(D1; : : : ;Dt):
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