ON INTEGRAL EQUATIONS INVOLVING WHITTAKER'S FUNCTION

by K. N. SRIVASTAVA

(Received 16 November, 1964)

1. Recently some inversion integrals for integral equations involving Legendre, Chebyshev, Gegenbauer and Laguerre polynomials in the kernel have been obtained [1, 2, 3, 5, 6]. In this note, two inversion integrals for integral equations involving Whittaker's function in the kernel are obtained. We shall make use of the following known integral [4, p. 402]

$$\int_{0}^{1} x^{\mu - \frac{1}{2}} (1 - x)^{\nu - \frac{1}{2}} M_{k, \mu}(xy) M_{\lambda, \nu} \{ y(1 - x) \} dx = B(2\mu + 1, 2\nu + 1) M_{k + \lambda, \mu + \nu + \frac{1}{2}}(y)$$

$$(\mu > -\frac{1}{2}, \nu > -\frac{1}{2}). \quad (1)$$

The results of this note are based on the following two integrals, which are derived from (1) by writing u-t = (v-t)x.

$$\int_{t}^{v} (u-t)^{\frac{1}{2}(m-1)-v} (v-u)^{v-\frac{1}{2}} M_{n+\frac{1}{2}m-\lambda+1}(u-t) M_{\lambda,v}(v-u) du$$

= $B(m-2v+1, 2v+1)(v-t)^{m+1} e^{-\frac{1}{2}(v-t)}(n!) L_{n}^{m+1}(v-t)$
= $B(m-2v+1, 2v+1) e^{\frac{1}{2}(v+t)} \left\{ \frac{d}{dv} \right\}^{n} \{ (v-t)^{n+m+1} e^{-v} \},$ (2)

for m+1 > 2v > -1;

. .

$$\int_{t}^{v} (u-t)^{\frac{1}{2}(m-1)-v} (v-u)^{v-\frac{1}{2}} M_{-\frac{1}{2}m-\lambda-1,\frac{1}{2}m-v} (u-t) M_{\lambda,v} (v-u) \, du$$
$$= B(m-2v+1, 2v+1)(v-t)^{m+1} e^{\frac{1}{2}(v-t)}$$
(3)

for m + 1 > 2v > -1.

2. The operator \mathcal{F}_n and its properties. The operator \mathcal{F}_n occurring in this note is defined by the formula

$$\mathscr{F}_{n}\{F(v)\} = \frac{1}{\Gamma(n)} \int_{v}^{1} (y-v)^{n-1} F(y) \, dy, \tag{4}$$

where n is a positive integer. Since n is a positive integer, by explicit computation we have

$$\frac{d}{dv}\{\mathscr{F}_n\{F(v)\}\} = -\mathscr{F}_{n-1}\{F(v)\},\tag{5}$$

$$\left(\frac{d}{dv}\right)^n \{\mathscr{F}_n\{F(v)\}\} = (-)^n F(v), \tag{6}$$

and

L

$$\mathscr{F}_{n}\{F(v)\} = 0 \quad \text{for} \quad v = 1.$$
(7)

K. N. SRIVASTAVA

3. Integral equations and their solutions. Consider the integral equation

$$\int_{t}^{1} (u-t)^{\frac{1}{2}(m-1)-\nu} M_{n+\frac{1}{2}m-\lambda+1,\frac{1}{2}m-\nu}(u-t)y(u) \, du = f(t) \quad (t \in I),$$
(8)

where $I = \{t : c \le t \le 1\}$, c is a positive constant and f(t) is defined on *I*. The integral is taken in the Riemann sense. It is assumed that (a) m+1 > 2v > -1, where *m* is a nonnegative integer and *n* is a positive integer, (b) $f^{(k)}(1) = 0$ for $0 \le k \le n+m+1$, and (c) $(d/dt)^{n+m+2} \{e^{-\frac{1}{2}t}f(t)\}$ is piecewise continuous on *I*. If these conditions are satisfied, then the solution of (8) is

$$y(u) = -[B(m-2\nu+1, 2\nu+1)\Gamma(m+n+2)]^{-1} \int_{u}^{1} (v-u)^{\nu-\frac{1}{2}} M_{\lambda,\nu}(v-u) e^{-\frac{1}{2}v} \mathscr{F}_{n}\{F(v)\} dv, \quad (9)$$

where
$$F(v) = e^{v} \left\{ -\frac{d}{dv} \right\}^{n+m+2} \{e^{-\frac{1}{2}v} f(v)\}.$$

Next consider the integral equation

126

$$\int_{t}^{1} (u-t)^{\frac{1}{2}(m-1)-\nu} M_{-\frac{1}{2}m-\lambda-1,\frac{1}{2}m-\nu}(u-t) z(u) \, du = g(t) \quad (t \in I), \tag{10}$$

where g(t) is defined on *I*. The integral is taken in the Riemann sense. It is assumed that (a) m+1 > 2v > -1, where *m* is non-negative integer, (b) $g^{(k)}(1) = 0$ for $0 \le k \le m+1$, and (c) $\{d/dv\}^{m+2}\{e^{\frac{1}{2}v}g(v)\}$ is piecewise continuous on *I*. If these conditions are satisfied, then the solution of (10) is

$$z(u) = -\left[\Gamma(2v+1) \cdot \Gamma(m-2v+1)\right]^{-1} \int_{u}^{1} (v-u)^{v-\frac{1}{2}} M_{\lambda,v}(v-u) e^{-\frac{1}{2}v} \left\{-\frac{d}{dv}\right\}^{m+2} \left\{e^{\frac{1}{2}v}g(v)\right\} dv.$$
(11)

4. Proof of the dual relation (8) and (9). Substituting the value of y(u) from (9) into the left-hand side of (8) and proceeding exactly in the same way as in [5], after using (2), we obtain the expression

$$J = -\frac{e^{\frac{1}{2}t}}{\Gamma(n+m+2)} \int_{t}^{1} \frac{d^{n}}{dv^{n}} \{(v-t)^{n+m+1}e^{-v}\} \mathscr{F}_{n}\{F(v)\} dv.$$

Successive integrations by parts and the application of the operational relations (5), (6) and (7) then yield

$$J = -\frac{e^{\frac{1}{2}t}}{\Gamma(n+m+2)} \int_{t}^{1} (v-t)^{n+m+1} \left\{ -\frac{d}{dv} \right\}^{n+m+2} \{e^{-\frac{1}{2}v}f(v)\} dv.$$

Further successive integrations by parts and the application of the conditions $f^{(k)}(1) = 0$, $0 \le k \le n+m+1$ finally yield

$$J=f(t).$$

ON INTEGRAL EQUATIONS INVOLVING WHITTAKER'S FUNCTION 127

5. Proof of the dual relations (10) and (11). Substituting the value of z(u) from (11) into the left-hand side of (10) and proceeding as above, after using (3), we obtain the expression

$$J_{1} = -\frac{e^{-\frac{1}{2}t}}{\Gamma(m+2)} \int_{t}^{1} (v-t)^{m+1} \left\{-\frac{d}{dt}\right\}^{m+2} \{e^{\frac{1}{2}v}g(v)\} dv.$$

Successive integrations by parts and the application of the conditions $g^{(k)}(1) = 0, 0 \le k \le m+1$, yield

$$J_1 = g(t).$$

REFERENCES

1. R. G. Buschman, An inversion integral for a Legendre transformation, Amer. Math. Monthly 69 (1962), 288-289.

2. R. G. Buschman, An inversion integral, Proc. Amer. Math. Soc. 13 (1962), 675-677.

3. A. Erdélyi, An integral equation involving Legendre's polynomial, Amer. Math. Monthly 70 (1963), 651-652.

4. A. Erdélyi, Tables of integral transforms, Vol. II (New York, 1954).

5. Ta Li, A new class of integral transforms, Proc. Amer. Math. Soc. 11 (1960), 290-298.

6. D. V. Widder, The inversion of a convolution transform whose kernel is a Laguerre polynomial, Amer. Math. Monthly 70 (1963), 291-293.

M.A. College of Technology Bhopal (M.P.) India