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Abstract

Genetic studies of complex traits often show disparities in estimated heritability depending on the method used, whether by genomic asso-
ciations or twin and family studies. We present a simulation of individual genomes with dynamic environmental conditions to consider how
linear and nonlinear effects, gene-by-environment interactions, and gene-by-environment correlationsmay work together to govern the long-
term development of complex traits and affect estimates of heritability from common methods. Our simulation studies demonstrate that the
genetic effects estimated by genome wide association studies in unrelated individuals are inadequate to characterize gene-by-environment
interaction, while including related individuals in genome-wide complex trait analysis (GCTA) allows gene-by-environment interactions to be
recovered in the heritability. These theoretical findings provide an explanation for the “missing heritability” problem and bridge the con-
ceptual gap between the most common findings of GCTA and twin studies. Future studies may use the simulation model to test hypotheses
about phenotypic complexity either in an exploratory way or by replicating well-established observations of specific phenotypes.
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Introduction

Although it has been clear for one hundred years that differences in
genotype are correlated with differences in complex human behav-
ior (e.g., Galton, 1869; Fisher, 1918), the biological mechanisms
underlying such correlations have proven to be very difficult to
specify. Generally, the proportion of phenotypic variability attrib-
utable to genetic sources is known as heritability. The heritability of
behavior was originally detected well-before the discovery of DNA,
on the basis of quantitative genetic analysis of variation in genetic
relatedness among family members, especially identical and frater-
nal twins. Under the classical twin model, similarities of identical
and fraternal twins can be used to partition the variance in a phe-
notype into three components: the additive effects of genes (A), the
environmental effects of families that make siblings raised together
more similar (C, the common or shared environment), and envi-
ronmental effects that make children raised in the same family
more different (E, usually called the nonshared environment).
Other variance components are possible as well, such as the total
additional genetic effect due to allelic dominance (D). The A com-
ponent captures the additive effects of alleles at each genetic locus,
known as the narrow-sense heritability, whereas the total effects of
all genes compose the broad sense heritability. Often, the sum of
the A and D components approximates the broad sense heritabil-
ity, even though it does not capture all possible nonlinear gene
effects. Both of these heritabilities can, in turn, be modified by

environmental activation and suppression of genetic effects.
This paper focuses on the distinction between true, underlying
genetic effects as they involve environmental interactions and
the narrow sense heritability estimated by various procedures.

A second theme of this paper is the role that nonlinearity and
nonadditivity play in estimates of heritability. In the presence of
gene–gene interactions and gene-by-environment interactions,
the conventional notion of heritability loses its focus. Plomin
et al., (1977, p. 311, Equation 1) explained gene-by-environment
interactions as akin to regression interaction coefficients: the effect
of the genes depends on the level of the environment. Just as with
conventional regression models, it is possible to have a significant
interaction effect in the absence of a main effect. Such a result
implies that the effect of one factor is entirely dependent on the
presence of the other. For example, the heritability of addiction
to a substance requires that use of the substance was at some point
initiated, an environmental exposure. However, the notion of her-
itability can be preserved by allowing the heritability to be a non-
linear function of the environment (e.g., Turkheimer et al., 2003,
p. 626, Equation 3). The same argument applies to gene–gene inter-
action. Lykken and colleagues (Lykken, 1982; Lykken, et al., 1992)
described a set of phenotypes that appeared to be genetically deter-
mined and yet did not run in families. Lykken argued that these
traits were driven by interactions between large numbers of genes
(e.g., 15-way gene-gene interactions). Using the regression anal-
ogy, the gene–gene interactions were obfuscating the linear gene
“main effects” such that identical twins matched on traits whereas
fraternal twins were no more similar than unrelated individuals.

Broadly, pairs of identical twins are more similar than pairs of
fraternal twins for almost every behavioral phenotype that has ever
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been studied (Polderman et al., 2015). More generally, phenotypic
similarity increases as amonotonic function of genotypic similarity
for nearly all phenotypes, ranging from genetically unrelated
adopted children to genetically identical monozygotic twins.
Moreover, twin and family analyses have generally suggested that
the common environmental component of families (C) has little or
no effect. The remarkable regularity of results of twin and family
studies has been summarized under the “Three Laws of Behavior
Genetics” (Turkheimer, 2000). However, in spite of this regularity,
an important complication arises related to the role of common
and unique environments. Studies of some behavioral phenotypes
have estimated the phenotypic correlation among monozygotic
(MZ) twins to be more than twice that for dizygotic (DZ) twins.
In the ACEmodel, this can result in a negative value of C, and thus
suggests that an additive, linear common environment is not an
adequate explanation. In fact, Giangrande and Turkheimer
(2019) reported that 56%s of their 1,300 reviewed studies implied
negative values of C. So, there is reason to suppose that the envi-
ronment and gene-environment interactions may not be well-cap-
tured by standard methods in behavior genetics such as the ACE
model under the classical twin design.

The causal role of the environment in the development of
behavior is, if anything, evenmore intractable than that of genetics.
Some behavior geneticists have expressed doubt about the very
existence of systematic environmental effects that apply equally
to all people (e.g., Plomin, 2019). In twin and adoption studies,
simple models yield replicable findings of additive genetic variance
without specifying biological mechanisms of the genes, yet similar
models of the shared environment often find no shared environ-
mental effects at all (i.e., the C component is estimated near zero).
In a classic paper, Plomin and Daniels (1987) suggested that the
absence of C variance, in contrast to large nonshared environmen-
tal (E) components, meant that environmental causes of pheno-
typic differences operated mostly within families, as opposed to
the familiar sociological candidates for environmental effects, like
socioeconomic status, which vary almost entirely between fami-
lies.1 However, even though twin studies estimate substantial non-
shared environmental variance components, these latent
components cannot generally be decomposed into detectable
causal effects of the actual environmental events they comprise.
When Turkheimer and Waldron (2000) performed a meta-analy-
sis of measured within-family environmental differences among
siblings, they found that even though the nonshared environmen-
tal variance component was substantial, the individual effects of
measured within-family environmental variables were negligible.

As a means of understanding the disconnect between reliable
variance components and inscrutable causal processes,
Turkheimer and Gottesman (1996) and Turkheimer (2004) devel-
oped a simulation of a simple genotype–environment system that
had equally strong, causal effects from genes and environmental
factors, but only the gene effects could be recovered from pheno-
typic observations. The simulation was based on gravitational
planetary models. A set of fixed “genes” was randomly arranged
in a two dimensional space. Also located in the space were an
“environment” and a “phenotype.” In order to circumvent

empirical debates about the relative strength of genetic versus envi-
ronmental factors, the total influence of genes and environment
was set to be equal. The simulated system proceeded to move
according to the following rules:

1. The phenotype is attracted to the genes (additive genetic
effects).

2. The phenotype is attracted to the environment (additive envi-
ronmental effects).

3. The environment is attracted to the phenotype (gene-by-envi-
ronment correlation).

4. The relative strength of each gene depends on the location of the
environment (gene-by-environment interaction).

The final position of the phenotype converged on a location,
which was recorded and analyzed in terms of the genotype and
the original position of the environment. This simple system repro-
duced many of the findings of classical twin studies. Twin simula-
tions with identical genotypes produced highly similar outcomes.
“DZ” twins – who shared half of their gene locations in the two-
dimensional space – showed some similarity but much less than
their “MZ” twin counterparts. In general, outcomes were much
more predictable from the static genotype than from the dynamic
environment. In fact, much of the variability in the simulation was
not predictable by either the genes or the environment; the out-
come was chaotic and fractal in nature.

In the years since the publication of those simulations, sequenc-
ing of the human genome has been completed, and genetic tech-
nology based on measured DNA has risen to prominence, to some
extent supplanting methods based on genetic relatedness among
family members. These technological advances led to an expecta-
tion that relatively straightforward biological pathways linking
genes to behavior would eventually be discovered (e.g., Plomin
& Crabbe, 2000), but such advances have proven much more dif-
ficult than anyone expected. Early attempts at gene finding using
linkage analysis quickly showed that there were no genes of large
effect for behavioral phenotypes (Crow, 2007). Attempts to iden-
tify genes of smaller effect via candidate gene association analysis
were inconclusive and difficult to replicate (Border et al., 2019).
Genome wide association studies (GWAS) have identified sin-
gle-nucleotide polymorphisms (SNPs) with statistically significant
associations with behavioral phenotypes, but at a biological level
still face many of the same obstacles as twin and family studies.
Although GWAS identifies SNPs that are open to annotation
and further analysis, knowledge of statistical associations with
SNPs has not yet led to clear cut understanding of biological
gene–environment pathways. Moreover, the effects of measured
DNA in GWAS do not add up to the heritability that is calculated
from twin and family studies, a phenomenon known as missing
heritability (Young, 2019).

The most recent DNA-based analyses of the genetics of com-
plex phenotypes, of which human behavior is the ultimate exam-
ple, have demonstrated that the complexity of developmental
processes underlying genetic effects exceeds what might be
expected from a straightforward interpretation of the term “poly-
genic.” That is, nearly all genes might be causally related to a com-
plex developmental process and their effects might not be simple,
independent, and additive. Chabris et al., (2015) added a “Fourth
Law of Behavior Genetics” to the three that had been proposed for
twin genetics (Turkheimer, 2000): “A typical human behavioral
trait is associated with very many (i.e., more than can be counted)
genetic variants, each of which accounts for a very small percentage

1Arguably, socioeconomic status and many other “environmental” variables also have
genetic origins (e.g., Plomin & Bergeman, 1991). For instance, parental genes might impact
parental general intelligence which in turn has effects on children’s educational attainment,
income, and family socioeconomic status. However, children’s genes do not impact their
own socioeconomic status when they are young, although the same genes in the parents can
affect family socioeconomic status, a phenomenon called genetic nurture (Kong et al.,
2018).
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of the behavioral variability.” Boyle, et al., (2017) introduced the
concept of “omnigenics,” suggesting that cell regulatory networks
have the effect of spreading out the effects of causal DNA to the
extent that empirical gene-association studies would find that all
DNA variants may plausibly be associated with complex outcomes.
Moreover, causal pathways between genetic variants and pheno-
typic outcomes are highly complex, largely unknown, and have
been shown to be mediated by environmental processes. Genetic
associations within sibling pairs (Selzam et al., 2019) or in adoptive
families (Cheesman et al., 2020) are reduced compared to estimates
between biological families, suggesting that shared environmental
characteristics of the family mediate genetic associations. Work by
Kong and colleagues (Kong et al., 2018; Young, et al., 2019) has
shown that alleles that are not inherited from parents account
for a significant portion of the overall correlation between geno-
type and behavioral phenotypes, a phenomenon they call genetic
nurture. Controlling for these processes reduces estimates of SNP
heritability and the associated performance of polygenic scores
used for genetic prediction (Young et al., 2018; Morris, et al., 2020).

In this paper, we will create a dynamical systems model of the
combined phenotype–gene–environment system that extends the
previous gravitational planetary model to modern molecular
genetic concepts and methods. We next provide greater math-
ematical detail on the model developed. Subsequently, we use this
model to conduct four studies aimed at replicating common find-
ings in modern molecular research on complex phenotypes, and
conclude that nonlinear phenotype–gene–environment dynamics
can account for our observations. In study 1, we demonstrate the
impact of nonlinear gene-by-environment interactions on gene
finding with GWAS methods. In study 2, we demonstrate the
impact of nonlinear gene-by-environment interactions on the
use of polygenic risk scores. In study 3, we demonstrate the impact
of nonlinear gene-by-environment interactions on SNP-based
estimates of heritability, particularly missing heritability. Finally,
in study 4, we show how the degree of relatedness impacts
SNP-based estimates of heritability. We conclude by suggesting
further questions that can be answered by our dynamical model.

Model

We model a dynamical system composed of genes, environmental
influences, and a phenotype. We simulate genomic vectors, envi-
ronmental factors, and phenotypic initial conditions, then describe
the interdependence between them with a system of ordinary dif-
ferential equations (e.g., Arnold, 1973; Hirsch, et al., 2003). Genes
are static, but have time-varying effects by interacting with the
environment. The environment has both static and time-varying
components. The phenotype is a result of the genes, their activa-
tions, the environment, and its own intrinsic properties.

Core concepts from behavior genetics can be represented in a
Newtonian gravitational approach, wherein the mutual influences
among genes, environmental factors, and the phenotype are rep-
resented by differential equations. These mutual influences are
modeled as forces of attraction between the genes, the environ-
mental factors, and the phenotype in the space of possible pheno-
typic scores. For example, each SNP is represented by a possible
phenotypic value toward which the expressed phenotype will
move, but the SNP itself does not move: thus, representing the
fixed genome and its influence on the phenotype. Similarly, static
environmental factors attract the phenotype while remaining fixed
in phenotypic space, whereas time-varying environmental factors
both pull the phenotype and are pulled by the phenotype. The

genes do not have any direct influence on the environmental fac-
tors, but rather act upon them indirectly through the phenotype
and are activated by the time-varying environmental factors.
The magnitudes of the SNP and environmental effects determine
the speed at which the phenotype moves toward it and changes
over time. The goal of such a model is to quantitatively instantiate
the qualitative intuitions gained from empirical research on how
genes, environmental factors, and phenotypes interact.

In the model equations to follow, user-controlled simulation
parameters are represented by Greek symbols. Table 1 gives the
complete list of these parameters with their functions, along with
the four dynamic elements of the phenotypic system to be
modeled.

The model begins by generating genomes as vectors of
allelic values gi ∈ {0, 1, 2} for each SNP i under the standard
assumptions of population genetics (i.e., Hardy–Weinberg
equilibrium). Thus, Pðgi ¼ 0Þ ¼ �2, Pðgi ¼ 1Þ ¼ 2�ð1� �Þ, and
Pðgi ¼ 2Þ ¼ ð1� �Þ2. For simplicity, the minor allele frequency
�was the same for all loci. Generating allelic values as independent
draws from a categorical distribution has some correspondence to
the true underlying biological processes, but lacks other known
aspects of the biology. In particular, there is no linkage, linkage dis-
equilibrium, or population structure in the simulated genome.

Next, we use an exponential function tomap each SNPby its index
i to its attractor strength Λi. Although Λi is not itself the effect found
by regressing the phenotype on SNPi, it ultimately produces that effect
by defining how strongly SNPi attracts the phenotype toward a par-
ticular point in the phenotype space, as will be defined later.

Λi ¼ exp � i
Ng

 !
; i 2 1; 2; . . . ;Ng . (1)

The parameter  determines the shape of the distribution of SNP
effect sizes, with larger values of  concentrating the total effect
over fewer SNPs. At  ¼ 0, all SNPs have the same effect size.
Dividing byNg ensures that the SNP attractor strength distribution
defined by Λi is invariant with respect to the number of SNPs. We
chose the exponential function for the distribution of SNP effect
sizes because it instantiates key characteristics of the current think-
ing about polygenicity and SNP effects (e.g., Park et al., 2011; Boyle
et al., 2017; Holland et al., 2020). In particular, the exponential dis-
tribution (1) allows for every SNP to have some effect, (2) can con-
centrate most of the SNP effects among a small number of SNPs,
and (3) lets the amount of SNP effect concentration be a tunable
parameter with ¼ 0 reducing to uniform SNP effects and ¼ 1
reducing to a single SNP effect.

Each SNP i, in addition to additive effects, has probability � of
including a G×E effect Γh,iðtÞ that changes over time t depending
on the SNP’s proximity to dynamic environment h.

Γh,iðtÞ ¼
si,h

jgi � dhðtÞj�
, si,h 2 f0,1g; Pðsi,h ¼ 1Þ ¼ �, (2)

The numerator of Γh,iðtÞ is 1 for SNPs with G×E effects. The
denominator of Γh,iðtÞ is a function of the “distance” between
the SNP and the dynamic environment. The exponent � defines
the G×E activation curve, or how quickly G×E effects increase
as dynamic environment h approaches an interacting SNP i. Set-
ting � ¼ 2 yields an inverse square law of attraction similar to
gravitational attraction proportional to the inverse of the squared
distance between the SNP and the dynamic environment. The

664 Michael D. Hunter et al.

https://doi.org/10.1017/S0954579421001796 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579421001796


notion of proximity or distance used here is abstract and represents
the degree to which an environmental factor is in any sense present
to the individual, rather than any literal, physical distance. For
example, certain individuals may have a heightened genetic liabil-
ity toward alcohol addiction that does not actively affect their alco-
holism or drinking behavior phenotypes until alcohol is initially
consumed. The moment at which alcohol is consumed may be
regarded in our simulation as a point of close proximity between
the dynamic environment representing alcohol and the SNP effect
representing the liability.

The G×E that occurs in our model differs from G×E that occurs
in some other settings (e.g., Neale&Maes, 2004, Ch. 9). In particular,
Equation 2 specifies the moderation (i.e., the suppression or activa-
tion) of SNP effects nonlinearly in relation to the distance between
the SNP and the dynamic environmental factors. By contrast, G×E
often refers to a gene effect that differs as a linear function of the
environment (Purcell, 2002). In this latter case, the G×E is nonlinear,
but reduces to a a linear gene effect that changes as a linear function
of the environment. In our model, the G×E is nonlinear and cannot
be reduced to a linear gene effect that changes as a linear function
of the environment. Rather, the G×E nonlinearly activates and
suppresses gene effects proportional to an inverse power � of
the distance between the SNP and the dynamic environmental
factors.

The phenotype-gene-environment system is modeled as as a
system of second-order, nonlinear differential equations. The
trajectories of the expressed phenotype pðtÞ and the dynamic
environmental factors dhðtÞ are solutions of these differential
equations. In Equation 3, there are five additive terms that give
the acceleration p̈ðtÞ of the phenotype. These terms instantiate
the rules about the phenotype-gene-environment system pro-
posed by Turkheimer & Gottesman (1996) and Turkheimer
(2004). The first term gives the additive genetic effects and is pro-
portional to the distance between the genes and the phenotype,
gi � pðtÞ. This term instantiates the first rule that the phenotype
is attracted to the genes. The second term gives the G×E and has
time-varying effects modified by the gene–environment distance
related to Γh,iðtÞ. This term instantiates the fourth rule that the
relative strength of each gene depends on the location of the envi-
ronment. The third and fourth terms are proportional to the dis-
tance between the phenotype and the dynamic and static
environmental factors, respectively. This term instantiates the
second rule that the phenotype is attracted to the environment.
Finally, the fifth term gives viscous friction for the phenotype that
resists all movement. This term does not instantiate any rule
listed previously, and its role will be discussed later. The third
rule is not instantiated in Equation 3, but rather in Equation 7
which states that the environment is attracted to the phenotype.

Table 1. Model variables and user-input simulation parameters

Parameter Function Default value

� Minor allele frequency (MAF) 0.5

 Uniformity of SNP effect sizes 50

� Total additive genetic effect (produces A) 0.05

� Attraction of phenotype to static, additive environmental factors 0.05

� Attraction of phenotype to dynamic environmental factors 0.05

� Total GxE effect 0.05

#xi; GxE effect activation curve 10

� Probability per SNP of GxE 0.1

	 Attraction of dynamic environmental factors to phenotype U (0.0175, 0.0325)


p Rate of aging as damping of environment and phenotype �2
ffiffi
�

p


d Rate of aging as damping of environment and phenotype �0.2
ffiffiffi
	

p

Ng Number of gene SNPs 1000

Nd Number of dynamic environmental factors 1

Ne Number of static, additive environmental factors 1000

Variable Description

gi SNP effect i out of Ng total SNPs

pðtÞ Phenotypic value at time t

dhðtÞ Dynamic environment effect h out of Nd total at time t

lhi Random nonlinear allelic effect

ej Static, additive environment effect j out of Ne environmental factors

Index Description

h Dynamic Environment

i SNP

j Static, linear Environment

t Time
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p̈ðtÞ ¼
XNg

i

�

A
Λi gi � pðtÞ½ � þ �

BðtÞ
XNd

h

Γh,iðtÞ lh,i � pðtÞ� �" #

þ δ

Nd

XNd

h

½dhðtÞ � pðtÞ� þ �

Ne

XNe

j

½ej � pðtÞ� þ 
pṗðtÞ, (3)

lh,i � Uðf0,1,2gÞ. (4)

Thus, movement of the expressed phenotype pðtÞ around its
space of possible values is modeled in terms of acceleration
p̈ðtÞwith respect to its current value pðtÞ, its velocity ṗðtÞ, the cur-
rent location of dynamic environmental factors dhðtÞ, the static
SNPs gi, and the static environmental factors ej. The total additive
genetic effect is given by �, and the total G×E effects is given by �.
δ and � give the effect size of the dynamic and static environmen-
tal factors, respectively.

The locus of each SNP effect gi in the phenotypic space is simply
the number of minor alleles (i.e., 0, 1, or 2). The linear component of
the attraction strength to that locus is then given by Λi, whereas the
G×E component is given by Γh,iðtÞ. The gene-by-environment
interaction, with strength given by Γh,t , is defined by attraction to a
randomly chosen locus in the phenotypic space, lh,i 2 f0,1,2g.
Choosing a random point of attraction, rather than the allelic value
of the locus activating the G×E effect, ensures that G×E does not sim-
ply bifurcate the phenotypic distribution. The normalizing values A
and BðtÞ in Equation 3 are the sums of the additive genetic and
G×E effects over all indices of SNPs i and dynamic environmental
factors h:

A ¼
XNg

i

Λi (5)

BðtÞ ¼
XNg

i

XNd

h

Γh,iðtÞ (6)

Normalizing each set of effect sizes is required to parameterize the
model in terms of the total additive genetic effects and G×E on the
phenotype, � and �, respectively.

Each dynamic environment dhðtÞ, in turn, is attracted toward
the phenotype with strength βh:

d̈hðtÞ ¼ βh½pðtÞ � dhðtÞ� þ 
dḋhðtÞ (7)

Equations 3 and 7 together form the system of coupled, nonlinear
differential equations that govern the time-evolving dynamics of
the phenotype–gene–environment system.

The damping coefficients, 
p and 
d , in both the phenotypic and
environment equations above are included to induce long-term
convergence of the phenotype and dynamic environment to fixed
values. In physics, damping terms are used tomodel the dissipation
of energy due to friction, and we use this as an analogy for the
effects of aging on developmental processes. For example, most
of the intraindividual changes in measures of personality occur
before age 30 (Costa, et al., 2019). Similarly, it has been reported
that older adults aged 70–90 years show significantly lower
short-term variability in affect than young adults aged 20–30 years
(Röcke, et al., 2009). Neurocognitive functioning has also been
found to improve and stabilize into middle adulthood with brain
development (Roalf et al., 2014). Our use of damping can also

characterize age-related decline in behavioral variation related to
cognitive flexibility and learning (Gopnik et al., 2017).

For simplicity, common environment main effects (i.e., ej
values shared across people) were not included in the model. Sub-
stantively, this is justified by the infrequency of common environ-
ment main effects in most phenotypes, but also allowed us to
simplify our examination to just the effects of gene-by-environ-
ment interaction. Hence, no main effects of C were simulated.

In the data generation, each person has a series of individual-
level components, all of which are perfectly known. The person has
a gene sequence of 0s, 1s, and 2s which represent allelic values for
each gene location. The person has a time-varying gene activation,
environment, and phenotype. Importantly, the gene sequence for
each person is constant, but its activation is time varying. In many
cases, the phenotype stabilizes to a single steady state value.
Therefore, the last time point of the phenotype is considered
“the phenotype” unless otherwise stated. Phenotypes that do not
converge to a single value might be chaotic or periodic, and con-
sequently might be far less predictable. These phenotypes contrib-
ute additional noise to estimates of the heritability. However, the
vast majority of systems in our simulation conditions stabilized. A
measure of the stabilization is the reduction of variance between
the early time points and the later time points. In our simulation
study 1, for example, taking the ratio of the variance from the last
50 time points to the variance of the first 50 time points for each
phenotypic time series yielded a median value of 0.04 and a 75th
percentile of 0.08. This means that the variance at the end of each
time series was typically less than 10% of the initial variance.

Step-wise illustrations of the simulation are shown in Figure 1,
starting from the simplest single-gene model with no G×E or other
environmental aspects (Figure 1a), and culminating in a system with
elements of rGE and G×E (Figure 1e). The path of the phenotype
oscillates as it overshoots and corrects around the asymptotic value
driven by the SNP effect. The tension between multiple SNP effects
results in an asymptotic value at their weighted mean. Static, additive
environmental effects behave similarly. In Figure 1d, the presence of a
dynamic environment pulls the phenotype in different directions over
time. In Figure 1e, the dynamic environment interactswith the genetic
effects at 0 and 2, causing a larger downward then upward pull toward
those SNP effects when the environment approaches them.

In general, the model developed here can replicate the findings
of Turkheimer and Gottesman (1996) and Turkheimer (2004).
However, rather than a simple replication of previous findings,
we seek to extend the previous findings to modern molecular
genetics methods and designs. To assist researchers in their own
explorations of these concepts, we provide an online graphical
interface for the model at klmckee.shinyapps.io/gxesim (McKee
&Hunter, 2021). The graphical app allows setting of all the param-
eters given in Table 1 and downloading of simulated data.2

Nonlinear phenomena

When nonlinear mechanisms such as gene-by-environment inter-
action are introduced into our simulations, many interesting phe-
nomena emerge that resemble observed patterns of development.
To demonstrate such variation exclusively as a function of G×E, we
simulated monozygotic twin pairs in which all factors were held
equivalent except for randomly generated attraction strengths of
the dynamic environmental factors and the randomly chosen
subset of genes with which they interact. Three dynamic

2Parallel generation of large data sets may not be supported by shinyapps.io. For local
model code for data generation, contact the authors.
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environmental factors were generated per simulation to represent
the real complexity and potentially chaotic results of environmen-
tal factors. Figure 2 depicts differences in developmental trajecto-
ries within a single twin pair and outcomes possible entirely as a
result of varied, nonshared gene-by-environment interactions.

Although both twins show their greatest unpredictability early
on, the most obvious difference is that variation in Twin 2’s phe-
notype dropped as it approached its asymptote, whereas Twin 1’s
phenotype does not converge at all. Rather, it gradually locks into a
perpetual limit cycle. Phase portraits of the same trajectories (i.e.,
bivariate plots of the phenotypes against their instantaneous veloc-
ity) are given in Figure 3. Twin 2’s phenotype spirals into a single
point value, whereas Twin 1’s phenotype eventually follows a fixed
path. The same relationship can be seen between the phenotype
and environment, where all three environmental factors gradually
change their frequency and phase until they are locked into a
mutual orbit with the phenotype.

Figure 3 shows how the synchronization of environmental and
phenotypic variation is a consequence of the gradual selection of envi-
ronmental factors to best accommodate the phenotype over the
course of a lifespan. Conversely, the phenotype continues to change
to accommodate the environmental influence as well. The resulting
selection of environments according to genotype is known as
gene–environment correlation, or rGE. Jaffee & Price (2007) compre-
hensively reviewed rGE and provided numerous examples related to
mental illness. For instance, rGE is associated with substance use in
which individuals possess both a genetic liability to continue using a
drug, and consequently choose peer groups that reinforce that liability
(see also, Harden, et al., 2008; Hicks et al., 2013).

Simulation studies

To gain insights from the proposed model, we conduct four sim-
ulation studies. Many simulation studies in behavior genetics begin
with assuming the true, data-generating model is closely related to
the model used to analyze data, usually variance component mod-
els and regression models. We diverge from this path. We begin
with the dynamical system model discussed in the previous sec-
tions rather than a statistical model. We intend the dynamical sys-
tem model to have some basic plausibility and correspondence to
an abstract description of the true mechanisms which generate
gene-environment-phenotype data. We then explore the output
from the dynamical system model for its implications on the con-
ventional data-analytic statistical models. The approach is similar
to that recently outlined by Borsboom et al. (2021), but has existed
elsewhere for decades (see e.g., Atkinson, 1969; Epstein, 1999;
Trucano et al., 2006). In studies 1 and 2, we generate data under
varying amounts of G×E and apply conventional methods for
genome-wide association studies and polygenic risk scores, respec-
tively. In studies 3 and 4, we examine how G×E and relatedness,
respectively, impact estimates of heritability from genome-wide
complex trait analysis.

Study 1: Gene finding

Our first study explores under what conditions our model allows
individual gene effects to be discovered. In overview, we generate
data from ourmodel under three conditions and analyze these data
using standard methodology developed for genome-wide associa-
tion studies (GWAS). The goal is to correctly recover the linear
genetic effects in the presence of varying amounts of G×E.

(a)

(b)

(c)

(d)

(e)

Figure 1. Components of the dynamical gene-by-environment simulation, adding
complexity from top to bottom.
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Figure 2. Example simulatedmonozygotic twin pair phenotypes (red) with identical genomes, identical initial conditions, but different dynamic environmental factors (blue). The
Twin 2 phenotype (bottom) converges to the additive genetic expectation. The Twin 1 phenotype (top) does not converge to the additive genetic expectation, but cycles instead.
Gene-by-environment interactions result in (1) divergent phenotypic outcomes, (2) different developmental dynamics, with Twin 1 (top) showing periodic change, and (3)
deviation from the expected phenotypic outcome under an additive genetic model (dashed line).
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Figure 3. Phase portraits of simulated monozy-
gotic twin pair from Figure 2. Twin 1 converges to
a limit cycle, as shown by the trajectory re-trac-
ing nearly the same, looping path repeatedly.
Twin 2 converges to a fixed point, as shown by
the trajectory settling to a single value.
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We generate data on 10,000 individuals each with 1,000 genes.
All individuals are generated independently, with identity-by-state
(IBS) relatedness occurring by chance. The true, linear gene effect
sizes follow an exponential distribution as in Equation 1 with ψ as
in Table 1: a small number of genes have relatively strong effects
and the vast majority of genes have small but nonzero effect; all
genes are at least somewhat associated with the phenotype. We
vary the strength of the G×E effect size γ from Equation 3 across
conditions. In condition (a), the G×E effect strength is equal to the
additive genetic effect strength: γ= α= 0.05. In condition (b), the
G×E effect strength is slightly larger than the additive genetic effect
strength: γ= 0.20, α= 0.05. In condition (c), the G×E effect
strength is much larger than the linear effect strength: γ=
0.35, α= 0.05. These three conditions create models that are (a)
almost linear, (b) moderately nonlinear, or (c) highly nonlinear.

We analyze the data with standard GWASmethods. In particu-
lar, we predict the phenotype at the last time point from the gene at
index location i for all possible locations using ordinary least
squares regression. From the regressions, we obtain the slopes,
squared correlations (R2), and p-values for each of the 1,000 genes.
Each of these three outcomes is shown for each of the three con-
ditions in Figure 4.

In the first row of Figure 4, the number of leading zeros in the
p-value (i.e., minus logarithm base 10) is graphed against the gene
index to create a pseudoManhattan plot.We call the first row of 4 a
pseudo Manhattan plot because there is no true sense of gene loca-
tion in our simulated genome. Genes that are statistically signifi-
cant after a Bonferroni correction are highlighted as being above
the dashed line. In the “almost linear” condition, 26 genes have
Bonferroni-corrected significant effects, and the genes with the
largest true effects are the ones that are observed empirically to
have the largest effects. In the “moderately nonlinear” condition,
only 4 genes have Bonferroni-corrected significant effects. In the
“highly nonlinear” condition, no genes have Bonferroni-corrected
significant effects. So, in the almost linear condition, the linear part
of the true gene effects can be recovered, but nonlinearity destroys
the ability to discover the linear gene effects.3 As the strength of the
nonlinear effect increases, the ability to find statistically significant
effects for genes decreases.

In the second row of Figure 4, the cumulative variance
explained by the genes (R2) is plotted against the gene index.
The cumulative R2 is computed by summing the R2 from each
of the separate simple linear regressions. Therefore, it is theoreti-
cally possible for the cumulative variance to exceed the total phe-
notypic variance due to correlated predictors being entered as
predictors in separate regressions with a common outcome varia-
ble.4 However, even in the almost linear condition, the cumulative
R2 never exceeds 0.40 in these simulated data because the true gene
effects are independent. Across all conditions, the first few genes

have the largest effects and thus increase the cumulative R2 at a
steep rate, whereas the later genes have smaller effects and thus
increase the cumulative R2 at a shallow rate. As the condition
changes from almost linear to highly nonlinear, the cumulative
R2 decreases. The same linear gene effects have different R2 values
depending on the strength of the nonlinearity. Hence, the nonlin-
earity destroys the ability of the linear gene effects to explain phe-
notypic variance.Whereas the first row of Figure 4 shows the effect
of nonlinearity on statistical significance, the second row of
Figure 4 shows the effect of nonlinearity on effect size.

In the third row of Figure 4, the estimated gene slope effects are
compared to a Gaussian distribution in a QQ plot. Gene slope
effects that are purely Gaussian follow the line added to each panel
and suggest the effects are not real gene effects, but merely capital-
ize on chance relationships due to sampling variability. Again, in
the almost linear case, there is clear evidence of real, linear gene
effects as indicated by the strong deviation from a Gaussian distri-
bution. However, as the nonlinearity increases, the linear gene
effects become indistinguishable from Gaussian noise.
Therefore, nonlinearity destroys the ability to separate true, linear
gene effects from random noise gene effects.

Taken together, study 1 finds that when the true situation is pri-
marily governed by linear gene effects, then the typical gene-find-
ing methods in GWAS do indeed find the correct, linear gene
effects. However, as nonlinearity increases, the true, linear gene
effects that are present are no longer discoverable. These findings
hold regardless of the metric used for gene finding: Manhattan
plot, cumulative variance explained by genes, or QQ plot of the
SNP effects. Given the results of study 1 for GWAS, we expect sim-
ilar findings for risk prediction using polygenic risk scores and for
heritability estimation using genome-wide complex trait analysis.
However, to eliminate the possibility of some unexpected results,
we still conduct their analyses.

Study 2: Risk prediction

In study 2 we use the same data generated in study 1, but for a new
purpose. Instead of attempting to find the genes that have the larg-
est influences on the phenotype, we are now attempting to explain
as much variability in the phenotype as possible while using only
the SNPs. The method creates a linear regression model with the
phenotype as the outcome and some – but usually not all – of the
SNPs as predictors. The regressionmodel outputs a “risk” score for
the phenotype (i.e., the predicted value of the phenotype for con-
tinuous phenotypes, or the forecasted probability of a binary phe-
notype) based on many, linear gene effects. Thus, the predicted
phenotype is called a polygenic risk score (PRS).

The PRS differs from the GWAS in several important ways.
First, GWAS is often a preliminary step to PRS regression that
determines which and how many SNPs are used to create the
PRS. Second, multiple SNP effects are used simultaneously to pre-
dict the phenotype in PRS regression, whereas GWAS exclusively
considers one SNP at a time. Third, the evaluation of a PRS often
uses a hold-out sample: that is, the PRS model is trained on one
part of a data set, but is then evaluated on a separate part of the
data set that was not used to fit the model. This cross-validation
is critical to PRS evaluation. In study 2, we evaluate the utility
of PRS under the same nonlinearity conditions as study 1 using
the same data, but now with the addition of multiple regression
and cross-validation.

Figure 5 shows the cross-validated R2 for a PRS created by add-
ing SNP predictors cumulatively in order from most statistically

3Arguably, the extent to which nonlinearity obfuscates the linear relations may depend
on power, particularly the sample size. However, the general pattern that increasing non-
linearity diminishes the ability to find linear relations obtains regardless of power. For
example, we repeated the analyses of study 1 with 100,000 people instead of 10,000 people.
The results are qualitatively the same: as the nonlinearity increases, the ability to find linear
effects is diminished. Instead of finding 26, 4, and 0 Bonferroni-corrected significant SNP
effects as reported in the 10,000-person simulation, the 100,000-person simulation finds
62, 40, and 18 SNP effects for the almost linear, moderately nonlinear, and highly nonlinear
conditions, respectively. Higher sample sizes find more SNP effects, but higher nonline-
arity still impedes finding the effects. The problems introduced by nonlinearity are not
solved by increasing the sample size.

4Because our predictors are simulated SNPs that are in linkage equilibrium and are thus
minimally correlated, the R2 is unlikely to exceed 1. Linkage disequilibrium would imply
more strongly correlated SNP predictors and would present a higher chance that R2 would
exceed 1.
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significant to least statistically significant. Thus, the first PRS uses
the single SNP with the smallest p-value; the second PRS uses the
two SNPs with smallest p-values; and so on until the final PRS uses
all available SNPs. The gray points indicate the R2 for the in-sample
data that trained the model, thus being vulnerable to capitalization
on chance. The red points are Bonferroni-corrected statistically
significant. The black line indicates the out-of-sample data, thus
being ameasure of predictive quality that is less susceptible to capi-
talization on chance.

In the almost linear condition, there is clear predictive util-
ity to the PRS for the first several SNPs. However, after the first
50 SNPs, the out-of-sample R2 decreases. The peak R2 in the
almost linear condition is slightly more than 0.20 which
matches the findings observed in many studies. In the

moderately nonlinear and highly nonlinear conditions, the
in-sample R2 follows a similar pattern to the almost linear con-
dition: rapid initial increase, followed by an asymptote.
However, the out-of-sample R2 never shows any appreciable
predictive utility. Note that the shared vertical scale across
conditions obscures some of the nuances for the moderately
nonlinear and highly nonlinear conditions.

The findings for study 2 replicate those of study 1. In the almost
linear condition, a useful PRS is possible to construct. The predic-
tive utility is limited by the small amount of nonlinearity that is
present, but a high-quality PRS can explain around 20 percent
of the variance in the phenotype using only a linear combination
of the SNPs. However, as the nonlinear effect strength γ increases,
all predictive quality of the PRS is eliminated.

Figure 4. Manhattan, cumulative variance explained by genes, and QQ plots for Study 1. Rows have different kinds of outcome measures. Columns have different conditions.

670 Michael D. Hunter et al.

https://doi.org/10.1017/S0954579421001796 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579421001796


Study 3: Heritability and nonlinearity

In study 3, we simulated data to determine the impact of G×E on
the ability to recover the heritability of a phenotype from a sample
of people with measured genomes. In assessing heritability, we
want to know howmuch variability can be explained by all the gene
effects together. We report narrow sense heritability as a value
between 0 and 1, the proportion of phenotypic variance accounted
for by the linear, additive effect of genes. Methods for estimating
heritability from samples of known relatives have been well-known
for one hundred years (e.g., Wright, 1920), but these have only
recently been updated to use nominally unrelated people withmea-
sured genomes. Yang, et al., Visscher (2011) developed the primary
method for estimating heritability from measured genomic data,
genome-wide complex trait analysis (GCTA). GCTA uses the
observed pairwise similarity of all the individuals’ genomes in a
sample to explain respective pairwise similarities among pheno-
typic scores. Mathematically, GCTA is a multilevel model (e.g.,
Laird & Ware, 1982; Pinheiro & Bates, 2000; Snijders & Bosker,
2011) with one large “family” acting as a single level 2 unit and
all the distantly-related people acting as level 1 units nested within
the “family” (cf. Laird &Ware, 1982, Equation 2.1 with Yang et al.,
2011, Equation 1). Furthermore, whereas the subjects of family
studies are related according to identity-by-descent (IBD), the cor-
relations used in GCTA represent identity-by-state (IBS) related-
ness, or the chance coincidence of alleles among unrelated subjects.
In a standard GCTA, heritabiity is the proportion of the total phe-
notypic variance attributed to additive genetic random effects. The
correlation structure of the genetic random effects is set to the cor-
relations of genomes computed a priori between pairs of unrelated
individuals, which are usually between plus and minus 0.025. This
correlation structure gives the IBS genetic relatedness between
people.

GCTA differs from GWAS and PRS in several important ways.
Unlike GWAS and PRS, GCTA does not seek particular genes that
influence the phenotype. Rather, GCTA estimates the proportion of
variability “explained” by genes without any effort to determine the
loci or magnitude of particular effects. Moreover, GCTA does not
predict particular phenotypes or evaluate the “risk” of developing
a phenotypic outcome. Instead, GCTA addresses the question of
the total, additive genetic contribution to phenotypic variation.

In the simulation for study 3, the goal was to vary the strength of
G×E and observe its impact on estimates of heritability obtained by

GCTA. We simulated 2000 independent and nominally unrelated
genomes and corresponding phenotypic trajectories for each con-
dition. The resulting SNP correlations had similar properties to
those commonly found with real SNP correlations (e.g., mean of
zero, approximately Gaussian distribution, and most SNP correla-
tions between −0.025 and 0.025). Environmental dynamics (δ, d0)
were randomly generated and unique to each individual. The G×E
effect size (γ) was gradually increased from 0, in which case genetic
effects were entirely additive and the GCTA model was correctly
specified, to 0.2, simulating strong, unmodeled G×E. The total
additive genetic attractor strength (α) was fixed at 0.05, and the
additive, static environmental effect ϵ was set to 0.01 for one ran-
dom static environmental attractor. In this simulation, static
genetic and environmental effects were present and expected to
be accurately represented by GCTA estimates under the first simu-
lated condition in which G×E effects γ= 0. Estimates from sub-
sequent conditions with non-zero G×E thus used estimates
from the first condition as the point of comparison.

Figure 6a shows the estimates of heritability for each simulated
value of γ. As the data incorporate larger G×E effects, the estimated
heritability decreases even though the total strength of the static,
additive genetic effects is unchanged. Within each condition, the
effect of genes varies as a function of the environment; however,
across conditions, the additive genetic effects are constant. In such
a situation, it would be desirable for GCTA to recover the same
additive genetic effect across conditions. To the contrary, the esti-
mated heritability in the reference condition (i.e., with no G×E) is
about 80 percent, but as G×E increases, the estimated heritability
approaches its lower limit of zero. The change in heritability can-
not be explained by the addition of environmental variance alone.
That is, the proportion of the additive genetic variance cannot be
explained by simply increasing the total variance (e.g., by increas-
ing the environmental variance). As Figure 6a shows, the raw esti-
mates of additive genetic variance on the phenotypic scale reduce
with the G×E effect, not merely as a proportion of total variance.
We interpret this trend as the presence of G×E in the data obscur-
ing the static, additive genetic effects in the estimated heritability.
The situation is akin to fitting a regression model with an interac-
tion term, and finding that the size of the main effect estimate
changed when the size of the interaction coefficient changed: theo-
retically, the main effect and interaction coefficients should not
influence each other. Thus, Figure 6a does not show a decrease
in the true genetic effect, but rather a decrease in the estimated
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Figure 5. Cross-validated R2 for polygenic risk scores created by adding SNPs in order of statistical significance. A point is highlighted in red if the corresponding SNP effect is
statistically significant at the Bonferroni corrected level. Note that R2 is theoretically between 0 and 1, but the vertical axis range is restricted.
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contribution of genetics due to G×E. Sufficient nonlinearity pre-
cludes the ability to recover heritability, even when we know it
is present.

Study 4: Heritability and relatedness

In our fourth and final study, we simulated data to explore how
the degree of genetic relatedness among pairs of participants in
a sample impacts the estimates of heritability when an interac-
tion between genes and the shared environment is present. A
well-established finding is that the heritability estimates from
twin and family designs are often larger than those found using
GCTA with nominally unrelated people. The deficit in the esti-
mated heritability among unrelated people is called missing
heritability, and holds regardless of the phenotype. We use
the same GCTA method in study 4 as study 3, but instead of
varying the G×E effect strength, we vary the degree of related-
ness among pairs of simulated people. The GCTA then uses
both within-family and between-family genetic correlations.
The within-family correlation, or relatedness, varies by condi-
tion across typical familial values (i.e., 0.125 for cousins, and
0.5 for full siblings). The between-family relatedness is for
unrelated individuals and is always near zero (i.e., usually plus
or minus 0.025).

Twin and family designs of closely related people (usually
parent–child pairs, sibling pairs, or twin pairs) can be seen as a spe-
cial case of the modern measured genome designs of nominally
unrelated people (Hunter, 2021; Hunter, et al., 2021). The
differences are (1) use of a priori relatedness given by the zygosity
of the relatives, such as a genetic correlation of 1.0 in monozygotic
twins and 0.5 in dizygotic twins, versus empirical genetic correla-
tions in unrelated individuals, (2) the size of the family, which is
usually two in twin and family designs, but thousands in the
modern measured genome designs, and (3) how relatedness is
measured, which is usually average amount of segregating genes
shared in twin and family designs (identity by descent, IBD),
but the measured correlation between SNPs in modern molecular
designs (identity by state, IBS). Hence, missing heritability could

arise as a function of pair relatedness in the sample or as a function
of differences between IBD and IBS relatedness (see Young, 2019,
for a detailed discussion of bothmechanisms). In study 4, we inves-
tigate the role pair relatedness could play in missing heritability.

We propose that one source of missing heritability specifically
occurs because shared genes interact with shared environmental
factors (i.e, A–C interaction). If an A–C interaction was present
but was omitted from the fitted model, the effect of the genes could
be systematically incorrect (i.e., the variance of A could be biased;
Eaves, et al., 1977; Eaves, et al., 1978; Keller & Coventry, 2005). The
size of this interaction is captured by the G×E effect strength (γ) in
our model. By simulating samples for GCTA in which phenotypic
scores are subject to gene-by-shared-environment (G×C) interac-
tion and varying degrees of relatedness between pairs of partici-
pants, we can examine the emergence of missing heritability on
a continuum relating the typical results of GCTA to those of twin
models.

In the study 4 simulation, the sample consisted of 1000 simu-
lated pairs of relatives, with related individuals sharing both the
initial values and dynamics of their environmental influences, rep-
resenting familial environment. Related genomes were generated
by first producing two random, independent genomes, then ran-
domly replacing the specified proportion (i.e., the relatedness coef-
ficient) of alleles in one person’s genome with the relative’s values
at the same loci. No environmental attributes (dynamics or start
values) or genes were shared between pairs. The GCTA estimates
of heritability used empirical, IBS estimates of both the correlations
within and between pairs, rather than including the relatedness a
priori via IBD as in a twin or familymodel. Thus, the nominal relat-
edness within families (e.g., 0.125 for cousins) slightly differed
across families (i.e., varied due to sampling variability by amounts
typically found with IBS estimates of close relatives).

The gene-by-environment effect size was fixed at the highest
value from the study 3 simulation, γ= 0.2. All other parameters
remained the same as those in study 3, with the exception that
dynamic environmental factors were constrained to have the same
dynamic properties and gene pairings among related twins. The
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Figure 6. GCTA Simulations with gene-by-environment interaction. Ninety-five percent confidence intervals are shown as dotted lines.
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degree of relatedness among the pairs varied across conditions: 0
(unrelated), 0.125 (first cousins), 0.25 (half siblings), 0.5 (DZ twins
or full siblings), and 1.0 (MZ twins). In each condition, the sample
consisted entirely of people with only one type of relatedness. Thus,
the first condition has only first cousins; the second condition has
only half siblings; and so on. The goal was to see the effect of the
degree of relatedness on estimated heritability in the presence of
gene-by-environment interaction when related individuals also
shared the environmental component of the interaction. The
model contained no specific sources of linear shared environmen-
tal effects (C), as is typically the case for GCTA studies of unrelated
individuals.

Figure 6b shows GCTA-estimated heritability across related-
ness conditions. In samples of more closely related pairs (e.g.
MZ twins), GCTA-estimated heritability is higher than in samples
of more distantly related pairs (e.g., first cousins). Even though the
true genetic and environmental effect strengths were the same
across conditions, GCTA-estimated heritability was about 0.93
among the MZ twin pairs, but less than half of that (0.19) for sib-
ling pairs (relatedness of 0.5). The phenotypic correlation is also
shown, with little difference from the estimated heritability as only
a small amount of unique environmental variance (E) was simu-
lated. Thus, estimates of heritability differ purely as a function
of degree of relatedness. Therefore, the missing heritability of
GCTAmethods may be due purely to the samples that GCTA typ-
ically uses which have lower degrees of relatedness. Ourmodel sug-
gests that missing heritability could be a consequence of the
combination of (1) lower degrees of relatedness in GCTA analyses
than twin analyses and (2) the existence of nonlinear gene-by-envi-
ronment interaction effects. That is, our model replicates an
observed pattern of missing heritability similar to what we find
in real data, and the causal factors in our simulation are the degree
of relatedness and the nonlinear interaction effects.Whether or not
these causes operate in real data remains an open question, but we
suggest these mechanisms for further investigation.

Discussion

Twenty years ago, the senior author demonstrated that a simple
dynamic simulation of genes and environment could reproduce
some of the more perplexing findings of twin studies. Here, we
have shown that a more sophisticated version of the same basic
principles can reproduce many of the findings that have occurred
in complex genetics since that time, especially as regards analysis of
measured DNA in place of indirect inferences from twins.We have
proposed an abstract dynamical systems model of phenotypic
development involving gene-by-environment interaction and
gene-by-environment correlation. Model simulations were used
to produce phenotypic distributions under various conditions,
which could then be used to test theoretical and methodological
questions about nonlinear development.

In the first and second set of simulations, we considered recov-
ery of SNP effects in GWAS and the utility of corresponding poly-
genic risk scores in the presence of gene-by-environment
interaction. In a linear model with unrelated individuals and thus
no shared environmental effects, G×E contributes uniquely to each
individual due to the dependence on environmental factors.
Adding G×E to the simulation not only introduced effects that
could not be subsequently recovered, but also demonstrated mask-
ing of otherwise recoverable linear SNP effects.

In the third and fourth set of simulations, we considered recov-
ery of total heritability estimated with GCTA in the presence of

gene-by-environment interaction and varying degrees of related-
ness in the sample. G×E decreased GCTA-based estimates of her-
itability to near zero even when the simulated genetic effects
accounted for 80% of the total variance. However, some portion
of the genetic effect can still be recovered in GCTA when the sam-
ple includes many pairs or groups of related individuals that share
not only genes but environmental factors. This result gives one
possible explanation for why twin studies produce larger estimates
of heritability overall than GCTA or polygenic risk scores
from GWAS.

Implications

Classical twin models
In terms of latent variance components, notated A for additive
genetic, C for common or shared environmental, and E for unique
environmental variance, an interaction of genes with shared envi-
ronment would be an A–C interaction, whereas the more common
concept of individual-specific G×E is better described as an A–E
interaction. The presence of a true, underlying A–C interaction
inflates estimates of A in the classical twinmodel, but not inmodels
where participants are unrelated, because it depends on the exist-
ence of shared environmental factors. However, A–C interaction
does not necessitate a main effect from C. An A–C interaction with
no main effects may be understood as a shared environmental fac-
tor of which the effect is conditional entirely upon particular
alleles. In our simulations, no static C-component was simulated,
but A–C interaction took the form of a dynamic environmental
attractor shared between twins. The effects of particular genes were
enhanced by proximity to the dynamic environment, and MZ
twins were more likely to share genes that interacted with the
dynamic environment. In this way, unmodeled A–C interaction
with no main C effect is one possible cause of the disparity in her-
itability estimates between twin studies, GCTA, and via PRS.

The A–C interaction term can, in principle, be included in a
twin and family modeling framework and is statistically identified
in several designs, including the commonplace twins reared
together and apart design. Hunter et al., (2021) showed both a gen-
eral method for determining model identification in variance com-
ponent models and specifically discussed the A–C interaction term
in the twins reared apart and together design. The variation in
genetic relatedness across zygosity that is separate from the varia-
tion in environmental relatedness across twins reared together or
apart identifies the A–C interaction. From an A–C interaction in a
heritable trait, we expect the phenotypic correlation betweenmem-
bers of a twin pair to differ by zygosity, shared rearing environ-
ment, and the combination of zygosity and rearing
environment. The model can be specified such that the common
environmental relatedness coefficient is fixed to zero for all twin
pairs reared apart. The A–C interaction term is then given as an
additional variance component acting to reduce the predicted phe-
notypic correlation betweenMZ twins reared apart and – to a lesser
extent – reduce the predicted phenotypic correlation between DZ
twins reared apart (see Hunter et al., 2021, p. 430, Equation 21).

A variance-components representation of gene-by-environ-
ment interactions dispenses with the chaotic details of exactly
how the phenotype is nonlinearly governed by combined genes
and environment and refers only the expected distribution of
the phenotype taken at some developmental terminus or as a
time-invariant abstraction. Other, more specific nonlinear compo-
nents could be considered possible: for example, an interaction
between A and logit−1(C), in which case the additive genetic
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contribution is scaled between 0 and 100% by the common envi-
ronmental factor, or A2C, in which case the effects of the common
environmental factor are largest when one falls close to either tail of
the additive genetic liability distribution. For most purposes the A–
C product adequately represents the property that additional
effects on the phenotype arise only as a joint function of both
factors.

Genes and environmental factors: inherently infinitesimal?
Boyle et al., (2017) observed that Fisher’s infinitesimal model
matches observations more than many researchers expected,
and hypothesized that large regulatory gene networks could
explain why the infinitesimal model so closely corresponds to
the observed data. To elaborate, some researchers expected to find
a small number of genes (e.g., less than 15) with biologically plau-
sible causal pathways to a phenotype. Moreover, these researchers
thought that this small number of genes would explain most of the
genetic variability in the phenotype. However, we often find a large
number of genes related to a given phenotype, many of which have
no biologically plausible connection. Moreover, each of the genes
that do have a biologically plausible connection explain only a
small portion of phenotypic variability. Our nonlinear gene-envi-
ronment-phenotypemodel is a complementary explanation for the
same phenomena. By introducing a dynamic gene-by-environ-
ment interaction in individual development, a nonlinear gene-
environment-phenotype dynamical system can account for some
of the same difficulties in uncovering causal alleles as the omnigen-
ics model of Boyle et al., (2017). These two sources of complexity –
regulatory networks at a cellular level and dynamic interactions at
the level of the organism – are not mutually exclusive, and both are
probably at work in the development of complex phenotypes.

The consequence of these considerations is that the original
hope of DNA-based complex genetics, that of finding individual
genes or SNPs with statistical main effects of sufficient magnitude
to form the basis of biological processes leading from the genome
to high-level phenotypes, will under a reasonable set of parameters
be mostly impossible. It is important to note that the simulations
we have performed, while complex in comparison to simple linear
models, almost certainly underestimate the complexity of actual
human development by many orders of magnitude. If one imagi-
nes the kinds of “regulatory networks” that might underlie a trait
like human personality, and multiply them by individual-level
G×E interactions in the course of behavioral development, one
can quickly reach a level of complexity that will not be rescued
by ever-larger sample sizes or more sophisticated sequencing.

Missing heritability: a call to re-think linearity
In all of our simulation studies, genes had a strong causal influence
on the phenotype. However, modern molecular behavioral genet-
ics techniques only found the gene effects when the dynamics were
mostly linear (i.e., in the absence of gene-by-environment interac-
tion). We could not find the gene effects using GWAS, PRS, or
GCTA even though we knew the effects were present. In classical
twin and family designs it is well-known that some nonlinear
genetic effects (e.g., dominance) attenuate linear genetic effect sizes
(Neale & Maes, 2004). These same attenuation effects hold for
modern molecular designs, yet the techniques of the modern
genomics era typically ignore all nonlinearity or adjust for only
the simplest forms of nonlinearity (e.g., dominance) while ignoring
others (e.g., higher-order gene interactions and gene-by-environ-
ment interactions). Thus, there are certainly causal genetic mech-
anisms that are not found because they are nonlinear. The same

holds true for environmental causal mechanisms. Although the
present work has emphasized discovery of genetic causal mecha-
nisms, the original work along this avenue showed that environ-
mental factors could have causal influences that could not be
found outside of genetic clones (Turkheimer & Gottesman,
1996; Turkheimer, 2004). Our simulations suggest that similar
non-discoverable causes might exist for genetic mechanisms.

Our study 4 produced one possible explanation for the phe-
nomena of missing heritability: estimates of heritability were
higher in samples of more closely related people than in samples
of less related people. This simulation study suggests that missing
heritability can result from unmodeled A–C interaction.
Specifically, people who are closely related may also share many
of the same environmental influences, and consequently, may both
experience the same gene-by-environment interactions. The kind
of heritability detected due to A–C interaction in our simulation is
not, however, the same additive source of variation expected by a
GWAS or GCTA, and may be regarded as a separate kind of her-
itability altogether.

It may be argued that GCTA and other linear methods do per-
form their intended task correctly by only estimating the additive,
linear contributions of genes, whereas the missing heritability
found in twin models reflects violations of their core assumptions.
At its root, the missing heritability issue invokes the question of
how heritability is best characterized. For certain purposes, it
may not be satisfactory or relevant to define heritability such that
it conditions on transient, unpredictable, and mutable environ-
mental factors. If heritability is specifically posed in the context
of fixed, immutable sources of variation in the population, then
additive linear effects, though potentially very small, are still of cen-
tral interest. Where additive effects are consistently very small, the
utility of such a definition becomes less clear. We argue that when
the goal of research is to understand the specific relations between
genes and phenotypic outcomes, overly general concepts like her-
itability are far less useful than specific theories about gene-by-
environment complexity.

Development is a complex system
It is an historical irony that the field of complex trait genetics has
seen little input from the science of complexity. Human develop-
ment is certainly a complex system in the colloquial sense of a sys-
tem that is complicated. However, Molenaar, et al., (1993) have
argued that human development is necessarily a complex system
in the technical sense of a system that is composed of many inter-
acting parts where the interactions are critical in determining the
total system’s behavior. Such complex systems have several defin-
ing features. In particular, complex systems are nonlinear, self-
organizing, and are often governed by a small number critical non-
linearities. For example, complex flocking behavior seen in several
species of birds and fish can be explained by a small set of nonlinear
rules (Cucker & Smale, 2007). Similarly, atmospheric circulation
(i.e., Bénard convection) can be modeled by a simple, nonlinear
three-dimensional system (Lorenz, 1963). Our studies suggest that
a similarly small set of nonlinear rules can account for several
common findings of behavior genetics. Our model proposed one
set of rules based on theoretical considerations.

Developmental studies of behaviorally complex traits com-
monly find that the relative influence of genes is greatest later in
life (Haworth et al., 2010; Plomin, et al., 1994), due in part to
delayed genetic expression, and in part because most environmen-
tal influences are transient. After creating a simple, linear genetic
developmental model, Eaves, et al., (1986) also found that even
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small genetic effects “may have cumulative effects on individual
phenotypes that far outweigh the substantial but unsystematic
effects of the environment.” (p. 153). Our nonlinear model formal-
izes long-term mechanisms and outcomes of development as a
dynamical system in terms of equilibrium and convergence
dynamics. Such a nonlinear modeling perspective enriches our
understanding of development by framing it in the context of
dynamical systems.

Limitations

Biological fidelity of the model
We developed the mathematical model from several basic princi-
ples in biology and behavior genetics. However, the model lacks
full fidelity to some known aspects of biology. In particular, the
model lacks any representation of chromosomes, inheritance,
and consequently linkage and linkage disequilibrium (see Bulik-
Sullivan et al., 2015, for how linkage disequilibrium itself can be
used to estimate heritability). Furthermore, the model has no
way of distinguishing protein-encoding genes from the majority
of genes which do not encode proteins but rather are thought to
regulate gene expression. Finally, the model also lacks epigenetic
mechanisms that can represent a type of G×E: gene expression that
is enabled or inhibited by DNA methylation or histone modifica-
tions. Although the model lacks these aspects of known biology, we
believe the fundamental insights stand regardless. Moreover, the
biology could be incorporated into the model with some difficulty
but without requiring core changes. For instance, epigenetic mech-
anisms could be posed exactly as we have specified gene-by-envi-
ronment interactions, as they generally imply activation and
suppression of genetic expression over time conditional on
changes in the environment.

Phenotypic asymptotes and definitions
For our simulations, we defined “the phenotype” as the value of the
time-varying phenotype upon convergence after a sufficient
amount of time has passed. This results in relatively simple analysis
of the outputs in terms of phenotypic variance components, as all
periodic or chaotic variability leading up to that point can be dis-
regarded. However, other questions may be considered or framed
using different phenotypic definitions. If the phenotype is defined
to be a particular value in the trajectory before long-term conver-
gence, then such periodic or chaotic movement of the dynamic
environment behaves as a source of unique environmental vari-
ance. Other definitions are possible, such as frequency bands from
a spectral analysis of the phenotype or descriptive statistics such as
the mean and standard deviation of the total distribution of each
person’s time series. For example, the parameters of genetic and
environmental complexity in our model may be adjusted to repro-
duce observed episodic fluctuations observed in bipolar disorder,
binging behavior associated with eating disorders, alcohol, or sub-
stance abuse. In each of these, the phenotypic variable (pðtÞ) may
be momentary affect, eating behavior, number of drinks or ciga-
rettes, respectively, while the frequency and amplitude of their fluc-
tuations represent clinically meaningful complex traits, subject to
the underlying genetic and environmental architecture.

Design choices
It is a common limitation of complex simulations such as this that
there are many degrees of freedom that allow the production of
nearly any desired result. This simulation involved both many
parameters and many possible interpretations of the parameters

and the resulting data. For this reason, we chose phenotypic def-
initions and model parameterizations that (1) did not rely on ran-
dom noise, (2) represented only key, well-known concepts in
behavioral genetics, and (3) represented such concepts with min-
imal unnecessary complexity.

Other representations of the same concepts would be possible
with stochastic simulations. Such simulations would have involved
stochastic differential equations (SDEs) instead of the ordinary dif-
ferential equations (ODEs) used in ourmodel. Some benefit of sim-
ulating with SDEs include known analytic derivations of the total
series variance and prevention of identical outcomes due to iden-
tical starting conditions. However, our simulations demonstrate
that the key concepts of behavioral genetics can be represented
without random noise, although the complex, deterministic varia-
tions in time series here are necessarily subsumed in noise compo-
nents of corresponding cross-sectional variance-components
models.

Resemblance to empirical findings
Our simulation serves mainly as a proof of concept and was not
intended to replicate any specific phenotypic findings. Our
dynamic environmental factors, for example, are particularly sim-
ple, taking the form of smooth sinusoidal functions. Many real
complex traits exhibit much greater environmental and develop-
mental complexity, and much smaller estimated heritabilities.
By keeping the model relatively simple, we found that even a small
set of nonlinear factors can create dramatic problems for finding
causal effects. Using unrealistic genetic effects allowed us to dem-
onstrate a general principle with minimal unnecessary computa-
tion that nonetheless can be scaled to more realistic effects.

Future Directions

The simulation model can be configured to replicate empirical
findings in specific phenotypes, including additive genetic and
environmental variance components, nonlinearities, and temporal
or developmental patterns at various timescales. If some or all of
this information has been determined previously, then the simu-
lation may be used to infer other aspects of the phenotypic model
that are difficult or impossible to estimate empirically, either due to
a lack of data, determination of covariates or endophenotypes, or
because models with necessary components like A–C interaction
are difficult or impossible to statistically identify (i.e., solve math-
ematically to obtain optimal parameter estimates). We have pro-
duced an online graphical interface for the model and invite
phenotypic domain experts to explore configurations of the model
that best represent known phenotypic etiology (McKee &
Hunter, 2021).

As this modeling approach is primarily theoretical and differs
from conventional data-driven fitting and estimation procedures,
we did not design the model for parameter identification. Hence,
fitting the simulated trajectories to data would be difficult. If
appropriate, momentary phenotypic data were available in abun-
dance over the full developmental timeline, then some parameters
of the model could be estimated approximately using continuous-
time state-space model techniques. Two such parameters include
the attraction between the phenotype and environment (ϵ, δ) and
the damping parameters of each (
p, 
d), as these are represented in
models of continuous-time vector autoregression. Hunter (2018)
and McKee (2021) have published guides to state-space modeling
in a variety of software, including OpenMx (Boker et al., 2021;
Neale et al., 2016) and Stan (Carpenter et al., 2017). At present,
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however, it is infeasible to collect phenotypic and environmental
scores at sufficient resolution over the lifespan to fully fit the given
equations, which were intended as abstract guides to developmen-
tal theory.

Conclusions

Genetic studies of complex traits often show disparities in esti-
mated heritability depending on the method used, whether by
modeling twins, GWAS and associated PRS, or by GCTA. We
developed a simulation of individual genomes and dynamic envi-
ronmental conditions to consider how linear effects, gene-by-envi-
ronment interactions, and gene-by-environment correlations may
work together to govern the long-term development of complex
traits. Our simulation studies demonstrate ways complexity
obscures linear, narrow sense heritability in conventional model-
ing strategies and produces a more nuanced, nonlinear under-
standing of genetic effects. The genetic effects estimated by
GWAS and GCTA in unrelated individuals were inadequate to
characterize the true, data-generating gene-by-environment
model.

Inclusion of related individuals in GCTA resulted in high her-
itability estimates when highly related individuals shared a
common dynamic environment and the genes with which it inter-
acts. The resulting estimated heritability represents genetic sources
of phenotypic covariance that are distinct from, and can actually
mask, additive genetic variance. Researchers are thus likely to
underestimate the roles of both genetic and common environmen-
tal factors in phenotypic variation when only modeling unrelated
individuals from independent environments.

Future studies may use the simulation model to test hypotheses
about phenotypic complexity either in a general way or by repli-
cating well-established observations of specific phenotypes.
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