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Abstract

Hazard rates play an important role in various areas, e.g. reliability theory, survival
analysis, biostatistics, queueing theory, and actuarial studies. Mixtures of distributions
are also of great preeminence in such areas as most populations of components are indeed
heterogeneous. In this study we present a sufficient condition for mixtures of two elements
of the same natural exponential family (NEF) to have an increasing hazard rate. We then
apply this condition to some classical NEFs having either quadratic or cubic variance
functions (VFs) and others as well. Particular attention is paid to the hyperbolic cosine
NEF having a quadratic VF, the Ressel NEF having a cubic VF, and the NEF generated
by Kummer distributions of type 2. The application of such a sufficient condition is quite
intricate and cumbersome, in particular when applied to the latter three NEFs. Various
lemmas and propositions are needed to verify this condition for such NEFs. It should be
pointed out, however, that our results are mainly applied to a mixture of two populations.

Keywords: Natural exponential family (NEF); mixture; variance function; quadratic
variance function; cubic variance function; hyperbolic cosine NEF; Ressel NEF; Kummer
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1. Introduction

Hazard rates (also called failure rates) play an important role in various areas, e.g. reliability
theory, queueing models, survival analysis, and actuarial studies. Mixtures of distributions
are also of a great preeminence in such areas as most populations of components are indeed
heterogeneous. A comprehensive list of references on the behavior of hazard rates for mixtures
of distributions can be found in the monograph of Shaked and Shanthikumar (2007) and the
references cited therein, Block et al. (2003), Navarro and Hernandez (2004), and Navarro et
al. (2009). In the latter two works the authors studied in detail how to design mixtures of two
distributions such that the hazard rate h of the mixture has various monotonicity properties,
such as being bathtub shaped (that is, h decreases on (0, t1), is constant on (t1, t2), and increases
on (t2,∞)). The authors kept some flexibility on the choices of the possible two distributions
that they mixed in order to achieve the desired shape of h.

In the present paper we deal with the case where the two distributions that we mix belong to
the same natural exponential family (NEF) (the definition of an NEF on the real line generated
by a density s is introduced in (2)). We give (Proposition 2) a sufficient condition for mixtures
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of two elements of this NEF to have an increasing hazard rate. We then apply this condition to
some classical absolutely continuous NEFs having either quadratic or cubic variance functions
(VFs) (cf. Morris (1982) and Letac and Mora (1990)) and other NEFs as well. The VF of
an NEF is defined as follows. If m is the mean of a particular member of the NEF on the
real line and if V (m) is its variance, the correspondence m �→ V (m) is called the VF of the
NEF. Particular attention is devoted to the hyperbolic cosine NEF having a quadratic VF, the
Ressel NEF having a cubic VF, and the NEF generated by Kummer distributions of type 2.
The application of such a sufficient condition can be intricate, in particular when applied to
the latter three NEFs. Various lemmas and propositions are needed to verify this condition for
such NEFs. Accordingly, we respectively dedicate Sections 4, 5, and 6 to these three NEFs.
In Section 3 we consider the rather easy application of the sufficient condition to three NEFs
having either quadratic or cubic VFs, namely, the normal, gamma, and the inverse Gaussian
NEFs. Our sufficient condition stems from the following seminal result of Glaser (1980).

Proposition 1. Suppose that the probability density s(x), concentrated on the interval (a,∞)

(with −∞ ≤ a < ∞), is positive such that −b(x) = log s(x) is concave. Then the mapping
x �→ log

∫ ∞
x
s(t) dt is concave on (a,∞) and the hazard function h(x) = s(x)/

∫ ∞
x
s(t) dt is

increasing.

Glaser (1980) observed (with a one-line proof) that, since b′(x) is nondecreasing, (1/h)′(x)=∫ ∞
x

eb(x)−b(t)(b′(x)− b′(t)) dt ≤ 0. Note also that, for a probability density s = e−b, the fact
that b is convex is, by Proposition 1, a sufficient condition, but not necessary, for h to be
increasing (see Section 2.1, in which we introduce the Glaser, Jorgensen, and Karlin sets, or
consider the density s2 = e−b2 in Section 5 for which h is increasing and b2 is not convex).

Our sufficient condition for a mixture of two members in the same NEF to have an increasing
hazard rate is as follows. Suppose that the NEF can be written as

{e−λx−k(λ)−b(x)1(a,∞)(x) dx, λ ∈ �}, −∞ ≤ a,

where � is a nonempty interval and k(λ) is the natural logarithm of the probability density
s(x) = eb(x) (the exact definitions of� and k(λ) are introduced at the beginning of Section 2).
Suppose also that b′′(x) ≥ 0 for all x > a and define T (x) = 1/

√
b′′(x). We show in

Proposition 2 that if there exists c > 0 and d ∈ R such that the inequality cT (x) ≤ cosh(cx+d)
holds for all x > a, we can then find pairs λ1 and λ2 = λ1 + 2c in � and a mixing coefficient
p ∈ (0, 1) such that the mixture density

(pe−λ1x−k(λ1) + (1 − p)e−λ2x−k(λ2))e−b(x)

has an increasing hazard rate. This simple condition relies on the fact that the mixture consists
of two elements of the same NEF. However, when we scrutinize the proof of Proposition 2,
this two-element mixture result does not apparently extend to a more multi-element mixture
situation.

2. A sufficient condition for a mixture of two members of the same NEF to have an
increasing hazard rate

Consider an absolutely continuous NEF concentrated on (a,∞) with −∞ ≤ a < ∞, and
generated by a locally integrable function s on (a,∞). Let

L(λ) = ek(λ)
.=

∫ ∞

a

e−λxs(x) dx (1)
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be the Laplace transform (LT) of s(x). Let � = {λ ∈ R : L(λ) < ∞} be the effective domain
of L, and assume that int� 
= φ, implying that � is a nonempty interval. The corresponding
NEF is then given by the set of probability densities on (a,∞) of the form

{e−λx−k(λ)s(x) dx, λ ∈ �}. (2)

The general principle of mixing in the present context leads to the choice of a probability ν(dλ)
on � such that the function on (a,∞) defined by

R(x) =
∫
�

e−λx ν(dλ)
L(λ)

(3)

exists. Thus, s(x)R(x) dx is a probability density on (a,∞) and it is a mixture of the elements
of the NEF. This probability density has the hazard rate

hν(x) = s(x)R(x)∫ ∞
x
s(t)R(t) dt

. (4)

Proposition 1 shows that hν(x) is increasing if x �→ log(s(x)R(x)) is concave, or, equivalently,
if s(x) > 0 for all x > a, if s′′(x) exists, and if on (a,∞) we have

s′′(x)s(x)− (s′(x))2

s2(x)
+ R′′(x)R(x)− (R′(x))2

R2(x)
≤ 0. (5)

We now specialize to the case where ν has only two point masses.

Proposition 2. Consider the special case of the hazard rate hν in (4) with

ν = pδλ1 + (1 − p)δλ2 , (6)

where δλ is the Dirac mass on λ ∈ �, p ∈ (0, 1), and λ1, λ2 ∈ � with λ1 < λ2. Assume that,
on (a,∞), s(x) > 0, −b(x) = log s(x) is concave, and that s′′(x) exists, and define

T (x) = 1√
b′′(x)

, (7)

p1 = pe−k(λ1), p2 = (1 − p)e−k(λ2), c = λ2 − λ1

2
, and d = log

√
p1

p2
. (8)

Then the hazard rate (4) with ν as in (6) is increasing if, for all x > a,

cT (x) ≤ cosh(cx + d). (9)

Proof. The proof is a straightforward application of (5). Indeed, for ν in (6) and R defined
by (3),

R(x) = pe−k(λ1)e−λ1x + (1 − p)e−k(λ2)e−λ2x = p1e−λ1x + p2e−λ2x,

implying that R′′(x)R(x)− (R′(x))2 = p1p2(λ2 − λ1)
2e−(λ1+λ2)x . Accordingly, inequality

(5) for this particular case becomes

p1p2(λ2 − λ1)
2e−(λ1+λ2)x ≤ (p1e−λ1x + p2e−λ2x)2

(
− s

′(x)
s(x)

)′
, x > a. (10)
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Since log s(x) is concave, (−s′(x)/s(x))′ ≥ 0 on (a,∞), so T (x) in (7) is well defined. Thus,
with the notation given in (8), inequality (10) is equivalent to

2cT (x) = T (x)(λ2 − λ1) ≤
√
p1

p2
e−(λ1−λ2)x/2 +

√
p2

p1
e−(λ2−λ1)x/2 = 2 cosh(cx + d),

which is (9).

In the next sections we consider a number of absolutely continuous NEFs on the real line,
generated by a density s. For each, we will check whether T exists or not, that is, whether s is
log-concave or not. When T exists, we will discover which (c, d) with c > 0 are such that (9)
holds for all x. As we will see, for some NEFs such that s is log-concave, (9) does not hold for
any (c, d).

The system of equalities in (8) links the three parameters (λ1, λ2, p)with the two parameters
(c, d). Suppose that we are given a pair (c, d) satisfying (9). Then we can therefore arbitrarily
choose the mean λ = (λ1 + λ2)/2 in� such that λ1 = λ− c and λ2 = λ+ c are in�. Having
made this choice of λ, the value of the mixing coefficient p in (8) can be determined exactly as

p = edL(λ− c)

edL(λ− c)+ e−dL(λ+ c)
, (11)

where L is the LT of the generating density s (recall that s is not necessarily a probability). We
note, however, that the LT is not always expressible in terms of simple functions but rather in
terms of transcendental or implicit functions, in which case a numerical search is then needed to
find the (c, d) interval on which the appropriate mixture density possesses an increasing hazard
rate. As this paper is rather theoretical, we do not intend to pursue such a numerical search.

2.1. Remarks on the Jorgensen, Karlin, and Glaser sets

Given a density s on (a,∞)with LT (1) such that� is nonempty, the setJ (s)of allα ≥ 0 such
that Lα is still an LT of some positive measure µα is called the Jorgensen set of s (cf. Letac and
Mora (1990) and the references therein), in which case we clearly have s = µ1. The Jorgensen
set is nonempty, as, owing to convolution, it contains N. By its definition, J (s) is a closed
additive semigroup. Note that s generates an NEF of infinitely divisible distributions if and
only if J (s) = [0,∞). If not, J (s) turns out to be complicated. For instance, a consequence
of the short and elegant paper by Ben Salah and Masmoudi (2010) is that J (s) = [1,∞) if

s(x) = 1
4 e−x1(0,∞)(x)+ 3

4 e−x+11(1,∞)(x).

In general, note that, though s = µ1 has been assumed to have a density µα, α 
= 1, this is not
however necessarily so as it might contain continuous singular parts for some small α ∈ J (s)
(although appropriate examples are rather complicated). If J ∗(s) ⊂ J (s) is the set of α such
that µα has a density, say, sα , we trivially have J ∗(s) + J (s) ⊂ J ∗(s), since the convolution
of a measure with a density with any measure has a density.

We now consider a nontrivial result due to Karlin and Proschan (1960) (see also Karlin
(1968, p. 152) and Barlow and Proschan (1965, p. 100)) which says that if s and � are probability
densities with increasing hazard rate, then the convolution s∗� has the same property. Therefore,
let us introduce the Karlin set K(s) of α ∈ J ∗(s) such that sα has an increasing hazard rate.
The above property shows that K(s) is a closed additive subsemigroup of J ∗(s). For instance,
if s(x) = e−x1(0,∞)(x), it is a simple exercise to see that K(s) = [1,∞).
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Finally, consider the Glaser set G(s) of s which is the set of α in the Karlin set K(s) for
which the conditions of Proposition 1 are met, that is, such that if sα = e−bα then bα is convex.
Although in many cases G(s) coincides with K(s), the Glaser set G(s) is not a semigroup.
Indeed, we show this in Section 4 with an example relating to the Ressel distribution s1 where
G(s) is a bounded interval, and is thus distinct from the semigroup K(s). Usually, the Karlin
set is more difficult to find than the Glaser set.

3. Applications related to NEFs with quadratic or cubic VFs (normal, gamma, and
inverse Gaussian NEFs)

As already noted in the introduction, quadratic VFs include six NEFs of which only three
have densities: normal, gamma, and hyperbolic cosine (cf. Morris (1982)). Cubic VFs also
include six NEFs of which only two have densities: inverse Gaussian and Ressel (cf. Letac and
Mora (1990)). Our examples will include all of the five absolutely continuous NEFs having
either quadratic or cubic VFs, as well as the NEF generated by the Kummer distribution of
type 2. In the present section we deal with the normal, gamma, and inverse Gaussian NEFs,
and in Sections 4, 5, and 6 we consider the three other NEFs. In what follows, and whenever
feasible, we provide, for each of the examples, their respective VF (V ,�), where V is the VF
corresponding to (2) and � is the domain of means.

Example 1. (The normal NEF.) The normal NEF has a constant VF, i.e. (V ,�) = (σ 2,R).
For a fixed standard deviation σ , the generating density is

s(x) = 1√
2πσ

e−x2/2σ 2
, a = −∞.

Trivially, here the Glaser set G(s) is (0,∞). This leads to T (x) = σ and k(λ) = σ 2λ2/2.
Inequality (9) is fulfilled for any x ∈ R if and only if cσ ≤ 1, or, equivalently, if |λ1−λ2| ≤ 2/σ ,
a result that has already been obtained in Block et al. (2005).

Example 2. (The gamma NEF.) The gamma NEF, concentrated on (0,∞), has a VF V (µ) =
α−1µ2 and � = R

+, where α and µ are respectively the shape and mean parameters. For a
fixed shape parameter α > 0, the generating measure is

sα(x) dx = xα−1

�(α)
1(0,∞)(x) dx.

We now consider three exhaustive cases relating to the values of the parameter α: α = 1 (the
exponential case), α < 1, and α > 1. These observations imply that the Glaser set G(s1) is
[1,∞).

Case 1: α = 1. Here s(x) ≡ 1, so, for any ν, the function logR is convex and inequality (9)
(as well as (5)) cannot be fulfilled unless ν is concentrated on one point.

Case 2: α < 1. Since for this case both logR and log s are convex, the inequality in (5) or (9)
cannot be fulfilled.

Case 3: α > 1. Here T (x) = x/
√
α − 1 and we have the following proposition.

Proposition 3. For α > 1, the probability density

f (x) = 1

�(α)
xα−1(pλα1 e−λ1x + (1 − p)λα2 e−λ2x), x > 0,
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where λ1 < λ2, has an increasing hazard rate h(x) = f (x)/
∫ ∞
x
f (t) dt if

λ2

λ1
≤

(
p

1 − p

)1/α

e−2d0/α,

where

d0 = log
1 + √

α√
α − 1

− √
α.

Example 3. For α = 2, the result specializes to the following. Since d0 is equal to log(1 +√
2)− √

2 and since e−d0 = 1.745 . . ., we can claim that the mixture of two gamma densities

f (x) = pλ2
1xe−λ1x + (1 − p)λ2

2xe−λ2x,

where λ1 < λ2, has an increasing hazard rate if(
λ2

λ1

)2

≤ p

1 − p
1.745 . . . .

For instance, choosing λ2 = 2λ1 imposes a heavy weight p on λ1, namely, 0.695 < p.

Proof of Proposition 3. Since c > 0, for studying inequality (9), we write t = cx+d. Thus,
(9) becomes, for all t > −d ,

t − d√
α − 1

≤ cosh t. (12)

For a fixed α > 1, we determine the set of d values for which (12) holds. Since t �→ cosh t is a
convex function, we look for the point (t0, cosh t0) such that the tangent to the curve cosh has
slope 1/

√
α − 1. Thus,

sinh t0 = 1√
α − 1

, t0 = log
1 + √

α√
α − 1

, and cosh t0 =
√

α

α − 1
.

The equation of this tangent is y = (t − d0)/
√
α − 1, where d0 is such that this line goes

through the point (t0, cosh t0). This implies that

d0 = t0 − (cosh t0)
√
α − 1 = log

1 + √
α√

α − 1
− √

α.

Such results show that t/
√
α − 1 ≤ cosh(t + d) for all t > 0 if and only if d ≥ d0. It follows

from this that (10) holds for all x > 0 if and only if
√
p1/p2 ≥ ed0 , or, equivalently, if

λ1

λ2
≥

(
1 − p

p

)1/α

e2d0/α.

Example 4. (The inverse Gaussian NEF.) The inverse Gaussian NEF has a VF V (µ) = α−2µ3

with � = R
+, where α > 0 and µ is the mean parameter. Here a = 0 and, for a fixed α > 0,

the corresponding NEF is generated by

s(x) = α√
2π

x−3/2e−α2/2x.

This implies that (−s′(x)/s(x))′ = (3x − 2α2)/2x3, which is not a positive function. Thus,
Proposition 2 is not applicable.
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4. The hyperbolic cosine NEF

The hyperbolic cosine NEF Fα has a VF V (µ) = µ2/α + α with � = R, where α > 0.
The convex support of Fα is R (i.e. a = −∞). The generating measure of Fα is

µα(dx) = 2α−2

π

∣∣∣∣�
(
α + ix

2

)∣∣∣∣
2 dx

�(α)
.

(See Morris (1982) for details.) Moreover, its LT is defined on� = (−π/2, π/2) by Lα(λ) =
(cos λ)−α (since it is 1 for λ = 0, this leads to the unobvious fact that µα is a probability). The
hyperbolic cosine µ1 distribution is more commonly known as the hyperbolic secant (hereafter
referred to as the HS distribution or HS NEF). Various probabilistic properties of the HS
distribution have been derived, though it is rarely used in applied statistics, probably owing to its
intricate structure. Although this distribution is not used much in applications, it does, however,
have two curious features: like the normal distribution, the density of µ1 is proportional to
its characteristic function; the sample mean and median are, asymptotically, equally efficient.
A probabilistic interpretation ofµ1 is available. Consider a standard complex Brownian motion
Z = X + iY with Z(0) = 0 and the hitting time T of the set {x + iy; |y| ≥ π/2}. Then
X(T ) ∼ µ1: to see this, consider the process M(t) = exp sZ(t). Since z �→ esz is analytic,
it is harmonic, M is a martingale, and E(M(T )) = 1 gives the desired result. Noteworthy
statistical analysis and data fitness can be found in Smyth (1994) and recently in Sibuya (2006)
(an English translation of the latter paper is available from the author).

Denote by sα = e−bα the density of µα . The fact that the function bα is convex if and only
if α ≥ 1 has been proved in Shanbhag (1979). We give a different proof in the following
proposition.

Proposition 4. The function bα is convex if and only if α ≥ 1 (in other terms the Glaser set
G(s1) is [1,∞)). More specifically, for α > 1, we have

1

sα(x)
= (α − 1)

∫ π/2

−π/2
exu(cos u)α−2 du, (13)

and, for α < 1, the function b′′
α is negative in the interval(

α

√
2 + α

2 − α
,

2 + α√
3

)
.

Proof. Equation (13) is the particular case ν = α − 1 > 0 and a = ix of the classical
formula ∫ π/2

0
(cos u)ν−1 cos au du = π

2ννB((ν + 1 + a)/2, (ν + 1 − a)/2)
, (14)

which can be found in Gradshteyn and Ryzhik (1980, Formula 3.631.9, p. 372). Now (13)
shows that 1/sα is the Laplace transform of the positive measure

(α − 1)(cos u)α−21(−π/2,π/2)(u) du, (15)

which implies that the function bα = − log sα is strictly convex for α > 1. For α = 1, we
see that b1 = − log s1 is convex by the same trick since 1/s1 = 2 cosh(πx/2) is the Laplace
transform of the positive measure δ−π/2 + δπ/2. Note that this is the weak limit of (15) when
α → 1.
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Suppose now that 0 < α < 1. We use the digamma function ψ = �′/� and its derivative.
If z is a complex number with positive real part,

ψ ′(z) =
∞∑
n=0

1

(n+ z)2
. (16)

An easy calculation leads to

b′′
α(x) = 1

4
ψ ′

(
α + ix

2

)
+ 1

4
ψ ′

(
α − ix

2

)
= 1

4
ϕα/2

(
x2

4

)
,

where, for t > 0, we define

ϕc(t) = c2 − t

(c2 + t)2
+

∞∑
n=1

(n+ c)2 − t

((n+ c)2 + t)2
.

To show that the function t �→ ϕc(t) for c < 1
2 is negative on some interval, observe that, for

fixed t > 0, the function on (0,∞) defined by u �→ (u − t)/(u + t)2 is decreasing when
u > 3t . Consequently, if (1 + c)2 > 3t , we can write the majorization of the sum of a series
as an integral:

ϕc(t) <
c2 − t

(c2 + t)2
+

∫ ∞

0

(v + c)2 − t

((v + c)2 + t)2
dv = c2 − t

(c2 + t)2
+ c

c2 + t
.

(Here we have used the fact that (v2 − t)/(v2 + t)2 = −(d/dv)v/(v2 + t).) This shows that
ϕc(t) < 0 when c2(1 + c)/(1 − c) ≤ t ≤ (1 + c)2/3. Since c < 1

2 , we have (1 + c)2/3 −
c2(1 + c)/(1 − c) = (1 + c)(1 − 4c2)/3(1 − c) > 0 and this interval is not empty. Replacing
c by α/2 and t by x2/4, we find that b′′

α is negative in the interval indicated in the statement of
the proposition.

For 0 < α < 1, our proof of Proposition 4 was elementary. For α ≥ 1, our proof was
based on (14) and Laplace transforms. However, the compact and ingenious proof in Shanbhag
(1979) relied on Fourier transforms through the formula b′′

α(x) = ∫ ∞
−∞ eitx/2dα(t) dt , where

dα(t) = t

2 sin h(t/2)
e|t |(1−α)/2.

This formula was derived from an integral formula for bα which can be found in Zolotarev
(1967) and which is obtained from the Lévy measure of the infinitely divisible distribution of
logX when X is γα/2 distributed. If α ≥ 1, the function dα is an integrable characteristic
function (corresponding to a Cauchy distribution with parameter (α − 1)/2 convoluted with
the density π/2(cosh πx)2). The Fourier inversion formula shows that b′′

α(x) ≥ 0 for all x. If
0 < α < 1, dα(x) > 1 around 0 and dα cannot be a characteristic function. Thus, b′′

α cannot
be positive by a careful but standard reasoning that again uses the Fourier inversion. This
concludes Shanbhag’s proof.

Since the functions bα and T = 1/
√
b′′
α are not simple when α is not an integer, we therefore

emphasize the analysis of the respective mixtures for the two cases α = 1 and α = 2. In
principle, an analysis similar to the α = 2 case below could also be performed for α = 3, 4, . . . ,
but the α = 2 case is complex enough to let us think that higher cases are difficult.
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The hyperbolic case, α = 1. The most popular member of the Fαs is related to this case.
As mentioned in the proof of Proposition 4, the corresponding density for α = 1 is

s1(x) = 1

2 cosh(πx/2)
.

Thus, the above results are applicable to this F1. More specifically,

b′′
1(x) =

(
− s

′
1(x)

s1(x)

)′
=

(
π

2

)2 1

cosh2(πx/2)
> 0,

and, thus, T (x) = (2/π) cosh(πx/2). In order to study inequality (9) for this particular case,
we use the following lemma.

Lemma 1. Let a and u be positive numbers, and let v be a real number. Then, the inequality

a cosh x ≤ cosh(ux + v)

holds for all real x if and only if a ∈ (0, 1], u ≥ 1, and |v| ≤ v0 = v0(a, u), where

v0 = u log

(
A

a
+ uB

a

)
− log(A+ B),

with A = √
(u2 − a2)/(u2 − 1) and B = √

(1 − a2)/(u2 − 1).

Proof. We first prove the ‘if’ part. Letting x → ∞, we have a cosh x ∼ aex and cosh(ux+
v) ∼ eux , implying that u ≥ 1. Letting x = −v/u shows that a cosh(−u/v) ≤ 1 and, thus,
a ≤ 1. In the sequel we assume that u > 1 and treat the u = 1 case separately after. Now,
we introduce the two positive numbers x0 and v0 such that the two curves x �→ a cosh x and
x �→ cosh(ux − v0) are tangent on a point of the abscissa v0. Thus, they satisfy the two
equations

a cosh x = cosh(ux0 − v0) and a sinh x = u sinh(ux0 − v0).

Squaring these two equations and using the fact that cosh2 t − sinh2 t = 1, we obtain a linear
system in cosh2 x0 and cosh2(ux0 − v0), whose solution is

cosh2 x0 = A2

a2 and cosh2(ux0 − v0) = A2.

Since t ≥ 0 and y = cosh t , it follows that t = log(y + √
y2 − 1). Thus, x0 = log(A/a +

uB/a) and v0 = u log(A/a + uB/a) − log(A + B) (note that ux0 − v0 ≥ 0). To complete
the proof of the ‘if’ part, we show that a cosh x ≤ cosh(ux + v) for all real x would imply
that |v| ≤ v0. Since the function v �→ cosh(ux0 − v) − a cosh x0 is decreasing on the
interval (−∞, ux0) and is 0 on v0 (which belongs to this interval), we obtain v < v0 when
cosh(ux0−v)−a cosh x0 ≥ 0. Similarly, because of the symmetry of cosh t , we have −v0 ≤ v.

We now prove the ‘only if’ part. Assume that a ≤ 1 < u and |v| ≤ v0. Define f (x) =
cosh(ux − v)− a cosh x. Then, since f (x0) = f ′(x0) = 0, the Taylor formula gives

f (x) =
∫ x

x0

(x − t)f ′′(t) dt. (17)

We use the latter formula to show that f (x) > 0 for x > x0. Note that, since f ′′(x) > f (x),
f ′′(x0) > 0 and (17) implies that f (x) > 0 on some interval (x0, x1). Now suppose that there
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exists x2 > x0 such that f (x2) = 0. Without loss of generality, we assume that f (x) > 0 on
(x0, x2). Thus, f ′′(x) > 0 on (x0, x2). Since, by (17), f (x2) = 0 is impossible, we obtain
f (x) > 0 for all x > x0. The proof of f (x) > 0 for all x < x0 is similar.

We now consider the particular case u = 1. The inequality a cosh x ≤ cosh(x + v) is
equivalent to e2x(ev − a) ≥ a − e−v . By letting x → ±∞, it can be easily seen that the latter
inequality holds for all x if and only if |v| ≤ − log a.

We do not apply the full strength of this lemma for our problem, but instead study when the
inequality

2c

π
cosh

πx

2
≤ cosh(cx + d)

holds for all x.
To be consistent with the notation of Lemma 1, define t = πx/2, which leads to

2c

π
cosh t ≤ cosh

(
2c

π
x + d

)
.

Now, Lemma 1 implies that if this inequality holds for all t then a = 2c/π ≤ 1 ≤ u = 2c/π .
Thus, 2c/π = 1, but, since c = 1

2 (λ2 − λ1), we must have λ2 = λ1 + π . However, this
is impossible since the corresponding LT L1(λ) = (cos λ)−1 is not defined outside of the
interval (−π/2, π/2). In conclusion, no mixing can give an increasing hazard rate for the NEF
generated by the density s1(x) = 1/2 cosh(πx/2).

The hyperbolic case, α = 2. As we are going to see here, the situation is more favorable
when dealing with the following direct consequence of (13):

s2(x) = x

2 sinh(πx/2)
.

From Proposition 4 we know that b2 = − log s2 is a convex function, so we are in a position to
use Proposition 1. We have the explicit calculation

b′′
2(x) = 1

x2 −
(
π

2

)2 1

sinh2(πx/2)
.

Since |t | ≤ | sinh t |, clearly, b′′
2(x) > 0 and we have a direct proof of the log-concavity of s2.

Thus, we have to study the set of (c, d) pairs such that the inequality

cT (x) = c
x sinh(πx/2)√

sinh2(πx/2)− (πx/2)2
≤ cosh(cx + d)

holds for all real x. For this, we use the following lemma.

Lemma 2. For all real t , we have

t sinh t√
sinh2 t − t2

≤
√

3 + t2,

where the equality holds when t = 0.

Proof. The proof follows from the inequality sinh2 t − t2 − t4/3 ≥ 0, which is obtained by
an expansion:

sinh2 t − t2 − t4

3
= 1

2
cosh 2t − 1

2
− t2 − t4

3
=

∞∑
n=3

22nt2n

(2n)! ≥ 0.
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In terms of the function T , the lemma is equivalent to stating that, for all x, we have

T (x) ≤ 2

π

√
3 +

(
πx

2

)2

.

Since it is difficult to find all (c, d) pairs such that (9) holds, we will restrict ourselves to the
study of the set of (c, d) pairs such that

c
2

π

√
3 +

(
πx

2

)2

≤ cosh(cx + d)

holds for all x, or, equivalently, of letting k = 2c/π and u = kπx/2 + d, to the study of the
set of (k, d) pairs such that √

3k2 + (u− d)2 ≤ cosh u

holds for all u.

Lemma 3. For k > 0 and d real,
√

3k2 + (u− d)2 ≤ cosh u holds for all u if and only if
|d| ≤ d0 = √

2 − log(1 + √
2) = 0.532 . . . and

3k2 ≤ (2 − cosh2 ud) cosh2 ud,

where ud is the solution of the equation sinh 2u = 2(u − d). In particular, the inequality√
3k2 + u2 ≤ cosh u holds for all u if and only if k ≤ √

2/3.

Proof. The inequality
√

3k2 + (u− d)2 ≤ cosh u implies that |u − d| ≤ cosh u for all u.
Now the minimum d0 of cosh u − u is attained at log(1 + √

2), which is the solution of the
equation sinh u−1 = 0, and, thus, d0 = √

2−log(1+√
2). Similarly, the minimum of cosh u+u

is attained at − log(1+√
2) and is d0. Since − cosh u−u ≤ −d0 ≤ d0 ≤ cosh u−u, we obtain

|u−d| ≤ cosh u for all u if and only if |d| ≤ d0. Now, fix d ∈ [−d0, d0]. Then, to find all k such
that 3k2 + (u−d)2 ≤ cosh2 u, we look for the (positive) minimum of u �→ cosh2 u− (u−d)2,
which is attained at the point ud . Letting d = 0 gives ud = 0, completing the proof.

Practical conclusion for α = 2. The Laplace transform of s2 is 1/ cos2 λ for λ ∈ (−π/2,
π/2). According to Lemma 3, we fix any d such that |d| ≤ 0.532 . . . and c > 0 such that
c ≤ (π/2)

√
2/3 = 1.282 . . . . We now choose an arbitrary number λ such that

−π
2
< λ1 = λ− c < λ+ c = λ2 <

π

2

and we use (11) to define the mixing coefficient p which depends on d, λ1, and λ2. With this
choice, the density

x

2 sinh(πx/2)
[pe−λ1x cos2 λ1 + (1 − p)e−λ2x cos2 λ2]

has an increasing hazard rate.

5. The Ressel NEF

Consider the density sα on the positive real line defined by

sα(x) = e−bα(x) = αxx+α−1e−x

�(x + α + 1)
, x > 0, α > 0. (18)
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Then sα is called the Ressel or the Kendall–Ressel density with parameter α. It is infinitely
divisible (in other words the Jorgensen set J (s1) is [0,∞)) and

sα ∗ sα′ = sα+α′ .

This density appears in various areas. For an M/G/1 queueing system with arrival rate λ, it is
the limiting distribution, as λ → ∞, of the length of the busy period T (α) − α initiated by
the virtual time quantity α > 0 (cf. Prabhu (1965, pp. 73 and 237)). In the characterization
of the regression of the sample variance on the sample mean, Fosam and Shanbhag (1997)
showed that such a regression is cubic on the sample mean for only six distributions, of which
one is the Kendall–Ressel distribution. Kokonendji (2001) also revealed this distribution in his
investigation of first passage times on 0 and 1 of some Lévy processes for NEFs. For further
information regarding the Kendall–Ressel distribution, see Pakes (1996, Equation (4.1)), or the
more detailed work of Letac and Mora (1990), who characterized all NEFs having cubic VFs,
of which, of course, the Ressel NEF is one.

The Ressel NEF generated by (18) has a VF (V ,�) = ((µ2/α)(1 + µ/α), (0,∞)). We
are interested in the values of α such that b′′

α(x) ≥ 0 for all x > 0. We refer the reader to
Proposition 5.5 of Letac and Mora (1990) for checking the puzzling formula

∫ ∞
0 sα(x) dx = 1

and to page 36 of this reference for learning why this density can also be called the Kendall–
Ressel density.

Proposition 5. Let

g(x) = α − 1

x2 + (2 − α)x − α2 + α

x(x + α)
and h(x) = (α2 − 1)+ (α − α2)x + (2 − α)x2

x2(x + α + 1)
.

Then, for all x > 0, we have h(x) ≤ b′′
α(x) ≤ g(x). Furthermore, there exists a number

a ∈ (1.77, 1.91) such that b′′
α(x) ≥ 0 for all x > 0 if and only if α ∈ [1, a]. In other words the

Glaser set G(s1) is [1, a].
Proof. For x > 0, we use the digamma function ψ = �′/� and (16). Using this notation,

we have
f (x) = b′′

α(x)

= −α − 1

x
+ α − 1

x2 + ψ ′(x + α + 1)

= −α − 1

x
+ α − 1

x2 +
∞∑
n=2

1

(n+ x + α − 1)2
.

Now observe that
1

1 + x + α
=

∫ ∞

2

dt

(t + x + α − 1)2

<

∞∑
n=2

1

(n+ x + α − 1)2

<
1

x + α

=
∫ ∞

1

dt

(t + x + α − 1)2
.

https://doi.org/10.1239/aap/1339878716 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878716


Mixtures in exponential families 385

This gives the desired inequalities h ≤ f ≤ g. Clearly, the function f is positive if α = 1.
If α < 1, the function f is equivalent in a neighborhood of x = 0 to (α − 1)/x2, which
tends to −∞. It is obvious that, for α ≥ 2, g(x) becomes negative ultimately (if α = 2 then
g(x) = (2 − x)/x2(2 + x)). Hence, assume that α < 2 and let us study the sign of g. Since
g(x) = 0 if

(α2 − α)+ (−1 + 2α − α2)x + (2 − α)x2 = 0,

then this equation has at least one solution if

D(α) = (−1 + 2α + α2)2 − 4(2 − α)(α2 − α) = 1 + 4α − 6α2 + α4

is nonnegative, which is the case for α > α∗ = 1.903 21. One of the two possible solutions to
g(x) = 0 is

x1 = 1 − 2α + α2 + √
D(α)

4 − 2α
>
(α∗)2 − 3

4 − 2α
> 0, α∗ < α < 2.

So g(x1) = 0 and, hence, g(x) < 0 for some x > 0. On the other hand, we use the inequality
h ≤ f and study the sign of h. Let 1 < α < 2. Then, if D(α) = (α − 1)(−8 − 4α + 3α2 +
α3) < 0, h(x) has no zeros at all and, hence, h(x) > 0 for all x > 0. Now, D(α) = 0 if
α ∈ {−3.489 29,−1.289 17, 1.0, 1.778 46} and D(α) → ∞ as α → ∞; hence, D(α) < 0
(i.e. f is positive for all x > 0) if 1 < α < 1.778 46.

Remarks. (i) To study the log-concavity of the density sα of the Ressel distribution, it is
tempting to imitate Proposition 4 and to wonder if, for α > 1, the function

1

sα(x)
= 1

α

1

xα−1 ex�(x + α + 1)x−x

defined on (0,∞) is the LT of a positive measure. However, from Proposition 5 we know that
this is impossible if α > a. This can be explained by the fact that the factor x �→ x−x is the only
factor in 1/sα which is not an LT (this observation follows from the fact that x �→ xx is the LT of
a stable law with parameter 1, and the reciprocal of the LT of a non-Dirac measure cannot be an
LT). In terms of the Glaser and Karlin sets, the density s1 is quite interesting. Proposition 5 has
shown that G(s1) = [1, a] ⊂ K(s1), and a striking consequence is that while the density s1 is
log-concave the density s2 = s1 ∗s1 is not. This demonstrates the difference between the Glaser
and the Karlin sets. The additive semigroup generated by [1, a] is [1, a] ∪ [2,∞) ⊂ K(s1).
We can reasonably conjecture that K(s1) = [1,∞).

(ii) From Proposition 5, it follows that, if α ∈ [1, a], we are led to consider T (x) = 1/
√
b′′
α(x)

and study the set of (c, d) pairs such that cT (x) ≤ cosh(cx + d). Since h(x) ≤ b′′
α(x) =

−(s′α/sα)′(x), a sufficient condition for these (c, d) pairs is that c/
√
h(x) ≤ cosh(cx + d).

Even this simplified inequality is still too complicated; therefore, we will consider only the
α = 1 case. For this case, we search for the set of (c, d) pairs such that, for all x > 0, we have
c
√
x + 2 ≤ cosh(cx + d). Therefore, the next proposition is devoted to the case of the NEF

generated by the probability density

s1(x) = xxe−x

�(x + 2)
1(0,∞)(x) dx. (19)
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Proposition 6. For c > 0 and d real, consider the function

ϕ(x) = 1

c2 cosh2(cx + d)− x − 2

and define x0 = (1/c)( 1
2 log(c + √

c2 + 1)− d). Then ϕ(x) > 0 for all x > 0 if and only if

1. x0 ≤ 0 and cosh d ≥ √
2c; or

2. x0 ≥ 0, c ≤ √
8/7, and x0 ≤ (1/2c2)(1 + √

c2 + 1)− 7
4 .

Proof. Since ϕ′(x) = (1/c) sinh 2(cx + d)− 1, ϕ′(x0) ≤ 0 for x ≤ x0, and ϕ′(x0) ≥ 0 for
x ≥ x0, it follows that, for x0 ≤ 0, ϕ(x) ≥ 0 for x ≥ 0 if and only if ϕ(0) ≥ 0 or if and only if
cosh d ≥ √

2c (recall that x0 ≤ 0 implies that d > 0). Similarly, for x0 ≥ 0, we have ϕ(x) ≥ 0
for x ≥ 0 if and only if ϕ(x0) ≥ 0. Since (1/c2) cosh2(cx0 + d) = (1/2c2)(1 + √

c2 + 1), the
inequality ϕ(x0) ≥ 0 is equivalent to x0 ≤ (1/2c2)(1 + √

c2 + 1)− 7
4 , which can be realized

only if the right-hand side is nonnegative, that is, if c ≤ √
8/7.

Now, having the pairs (c, d) at our disposal, we need to compute p as given by (11) and for
this we require the values of the Laplace transform at the points λ1 = λ − c and λ2 = λ + c.
For the Ressel distribution s1, its LT

L1(λ) =
∫ ∞

0
e−λxs1(x) dx (20)

cannot be expressed explicitly. However, a numerical or graphical calculation of L1(λ) for a
given positive value of λ is easily done by means of the following proposition. Its statement
is equivalent to Equation (11) of Fosam and Shanbhag (1997), which relied on Prabhu (1965,
pp. 73 and 237). We give an independent proof here for sake of completeness.

Proposition 7. Consider the bijection f from [1,∞) to itself defined by f (x) = x − log x.
Then, for a given λ > 0, the number 1/L1(λ) defined in (20) satisfies f (1/L1(λ)) = 1 + λ.

Proof. Let (Y (t))t≥0 be the Lévy process such that, for t, λ ≥ 0, we have E(e−λY (t)) = (1+
λ)−t (such a process is usually called the gamma process). Define T = min{t : t − Y (t) = 1}.
The random variable T −1 has the Ressel distribution (19) (see Letac and Mora (1990, p. 27) for
this observation). Furthermore, Theorem 5.3 of Letac and Mora (1990) states that if E(eθT ) =
e−q(θ) and E(eθ(1−Y (1)) = e−r(θ) then r(q(θ)) = θ . Thus, since L1(λ) = E(e−λ(T−1)) =
eλ−q(−λ) and since e−r(θ) = eθ /(1 + θ), we can write r(q(θ)) = log(1 + q(θ)) − q(θ) = θ .
This leads to

log(1 + q(−λ)) = q(−λ)− λ = − logL1(λ).

The elimination of q(−λ) between these two equalities gives 1/L1(λ) + logL1(λ) = 1 + λ.
Since, for λ ≥ 0, we have L1(λ) ≤ 1, we obtain f (1/L1(λ)) = 1 + λ.

Practical conclusion forα = 1. We fix a pair (c, d) such that either condition 1 or condition 2
of Proposition 6 holds. We choose a number λ such that 0 < λ1 = λ − c < λ + c = λ2.
We numerically compute L1(λ1) and L1(λ2) using Proposition 7. The mixing coefficient p is
therefore determined by (11). The density on (0,∞),

xxe−x

�(x + 2)

[
p

e−λ1x

L1(λ1)
+ (1 − p)

e−λ2x

L1(λ2)

]
,

has an increasing hazard rate.
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6. The Kummer type-2 NEF

Let a, λ > 0 and b be real, and consider the number

C(a, b, λ) =
∫ ∞

0

xa−1

(1 + x)a+b
e−λx dx.

As a function of λ, C is proportional to what is sometimes called in the literature the confluent
hypergeometric function of the second kind or the Whittaker function. If

s(x) = 1

C(a, b, λ)

xa−1

(1 + x)a+b
e−λx1(0,∞)(x) (21)

then the probability s(x) dx = K(2)(a, b, λ)(dx) is called the Kummer distribution of type 2
with parameters (a, b, λ). Needless to say, if (a, b) are fixed, the model {s(x) dx, λ > 0} is a
NEF. If b > 0, this model is generated by the beta distribution of type 2, i.e. by

β(2)(a, b)(dx) = 1

B(a, b)

xa−1

(1 + x)a+b
1(0,∞)(x) dx.

Kummer distributions have been studied in Ng and Kotz (1995). Statistical aspects of Kummer
distributions for waiting times and exceedance statistics have been considered in Fitzgerald
(2002). The Kummer distributions of type 1 belong to NEFs generated by the ordinary beta
distributions. Since they are concentrated on the bounded set (0, 1), they are not relevant for
our study. Accordingly, we study the NEF generated by the Kummer distribution of type 2. Its
VF cannot be expressed explicitly. However, the important fact about such a NEF is (22) below
which gives the LT of β(2)(a, b) in terms of the confluent hypergeometric function defined for
real a and b such that b is not in the set −N. This LT is then given in terms of the entire function

1F 1(a; b; λ) =
∞∑
n=0

(a)nλ
n

n! (b)n .

Here, (a)0 = 1 and (a)n+1 = (a + n)(a)n. This formula states that if a > 0 and b is not in the
set Z of relative integers, we have

C(a, b, λ) = �(b)�(a)

�(a + b)
1F 1(a; 1 − b; λ)+ �(−b)λb1F 1(a + b; 1 + b; λ). (22)

In (22), the mapping z �→ 1/�(z) is an entire function which coincides with the ordinary
1/�(z), z > 0, and (22) can be extended to the case where b ∈ Z by a limiting process.
Identity (22) is by no means elementary and its proof using the Barnes formula can be found,
for instance, in Slater (1960, Equation 3.1.19). A probabilistic proof is desirable.

To exemplify the use of (22), observe that if a, b, λ > 0 andX ∼ γ (b, λ), Y ∼ K(2)(a, b, λ),
and Z ∼ γ (a + b, λ) are independent, then X + Y and Z/(1 + Y ) have the same distribution
K(2)(a + b,−b, λ). In order to prove this, for suitable ts, just consider the LT E(e−t (X+Y ))
and the Mellin transform E(Zt/(1 + Y )t ), and then use (22).

Proposition 8. If s is defined by (21) then −(s′/s)′ > 0 for all x > 0 if and only if 1 ≤ a and
b ≤ −1 with a − b − 2 
= 0.
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Proof. If A = a − 1 and B = −b − 1, we obtain

−
(
s′

s

)′
(x) = A+ 2Ax + Bx2

x2(1 + x)2
. (23)

Trivially, −(s′/s)′ > 0 ifA ≥ 0 andB ≥ 0 withA+B 
= 0. Conversely, ifA+2Ax+Bx2 > 0
for all x > 0, then letting x → ∞ shows that B ≥ 0. Also, letting x → 0 shows that A ≥ 0,
whileA = B = 0 would imply that −(s′/s)′ = 0. Therefore, ifA = a−1 ≥ 0 andB = −b−1
with AB 
= 0, we consider, using (23),

T (x) = 1√−(s′/s)′(x) = x + x2

√
A+ 2Ax + Bx2

for x > 0.

We then have to investigate which numbers c > 0 and d real are such that, for all x > 0, we
have

c
x + x2

√
A+ 2Ax + Bx2

≤ cosh(cx + d).

For simplicity, we treat only the particular case A = 0, and therefore study the NEF

1

C(1,−B − 1, λ)
(1 + x)Be−λx,

where B is a fixed positive constant. For this particular case, we look for the values of (c, d)
with c > 0 such that, for all x > 0, we have (

√
B/c) cosh(cx + d)− x − 1 ≥ 0.

Proposition 9. For B, c > 0 and d real, consider the function defined on R by

ϕ(x) =
√
B

c
cosh(cx + d)− x − 1

and define

x0 = 1

c

(
log

1 + √
B + 1√
B

− d

)
.

Then ϕ(x) ≥ 0 for all x ≥ 0 if and only if

1. x0 ≤ 0,
√
B ≤ c, and cosh d ≥ c/

√
B; or

2. x0 ≥ 0, c ≤ √
B + 1, and x0 ≤ 1 − √

B + 1/c.

Proof. We study the function ϕ in an elementary way. Since ϕ′(x) = √
B sinh(cx+d)− 1,

ϕ′(x) ≤ 0 for x ≤ x0 and ϕ′(x) ≥ 0 for x ≥ x0. If x0 ≤ 0 then ϕ(x) ≥ 0 for all x ≥ 0 if and
only ϕ(0) = (

√
B/c) cosh d − 1 ≥ 0 and this proves part 1. If x0 ≥ 0 then ϕ(x) ≥ 0 for all

x ≥ 0 if and only

ϕ(x0) =
√
B + 1

c
− 1 − x0 ≥ 0,

which proves part 2.

Here, again, in order to apply the results of this section to (11), we have to compute the
values of the LT C(1,−B − 1, λ), which can also be seen as a truncated gamma function. If B
is an integer, C is easily computed via the binomial formula

C(1,−B − 1, λ) =
∫ ∞

0
(1 + x)Be−λx dx = B!

λB+1

B∑
n=0

λn

n! .
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If B > 0 is not an integer, (22) gives

C(1,−B − 1, λ) = eλ
∫ ∞

1
xBe−λx dx

= �(B + 1)

λB+1 eλ − 1

B + 1
1F 1(1; 2 + B; λ)

= �(B + 1)

λB+1

(
eλ −

∞∑
n=0

λB+n+1

�(B + n+ 2)

)
,

but then we have to rely on numerical analysis to compute the corresponding values of the
confluent hypergeometric function

1F 1(1;B + 2; λ) = 1 +
∞∑
n=1

λn

(B + 2) · · · (B + n+ 1)

and use (22). A good reference for such numerical consideration aspects can be found in Abad
and Sesma (1995).

Practical conclusion for a = 1 and b = −1 − B. We fix a pair (c, d) such that either
condition 1 or condition 2 of Proposition 9 holds. We choose a number λ such that 0 < λ1 =
λ− c < λ+ c = λ2. We numerically compute C(1; −1 − B, λ1) and C(1; −1 − B, λ2). The
mixing coefficient p is therefore determined by (11). The density on (0,∞),

(1 + x)B
[
p

e−λ1x

C(1; −1 − B, λ1)
+ (1 − p)

e−λ2x

C(1; −1 − B, λ2)

]
,

has an increasing hazard rate.
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