independent variables, and, in fact, it was this combination that I first considered, in seeking to extend Legendre's mode of solving (27). I am convinced, however, that in practice it is simpler to use the methods successively, as exemplified in the two preceding examples, just as in the ordinary method of changing variables we usually arrive at the ultimate transformation through many intermediate steps.

It need hardly be added that instead of this complete reciprocation, Routh's method of partial reciprocation or moditication may be used in many cases with advantage.

The Plane Triangle ABC : Intimoscribed Circles, etc.
By R. E. Anderson, M.A.
§ I. On an infinite series of Triaul Circles derived from the inscribed circle. Determination of a direct relation between r and the three radii of the $\mathrm{n}^{\text {th }}$ triad.

Each of the first triad touches two sides of $A B C$ and the inscribed circle : generally, each circle of the $m^{t h}$ triad touches two sides of ABC and also touches one of the circles of the $(m-1)^{\text {th }}$ triad.

Fig. 27.
In the diagram only one member of each successive triad is in-dicated-viz., the circles forming a diminishing series between the in-circle and B.

Lat $\quad \mathrm{ON}=\mathrm{OY}=\boldsymbol{r}$
where in every case the suffix 2 has reference to $B, 3$ to C, and 1 to A-a rule which also holds for the subsequent sections.

Now

$$
\mathrm{ON}=\mathrm{O}^{\prime} \mathrm{N}^{\prime}+O O^{\prime} \sin \frac{1}{2} \mathrm{~B}
$$

\therefore

$$
\begin{aligned}
r= & r_{2}^{\prime}+\left(r+r_{2}^{\prime}\right) \sin \frac{1}{2} \mathrm{~B} \\
r_{2}^{\prime}= & r_{2}^{\prime \prime}+\left(r_{2}^{\prime}+r_{2}^{\prime \prime}\right) \sin \frac{1}{2} \mathrm{~B} \\
& \text { etc., for ever }
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{r_{2}^{\prime}}{r}=\frac{1-\sin \frac{1}{2} \mathrm{~B}}{1+\sin \frac{1}{2} \mathrm{~B}} & =\tan ^{2} \frac{1}{4}(\pi-\mathrm{B}) \\
& =t_{2}{ }^{2} \text { suppose. }
\end{aligned}
$$

Thus

$$
t_{2}=\sqrt{ } \frac{r_{2}^{\prime}}{r}=\sqrt{\frac{r_{2}^{\prime \prime}}{r_{2}^{\prime}}}=\sqrt{\frac{r_{2}^{\prime \prime \prime}}{r_{2}^{\prime \prime}}}=\text { etc. }
$$

or

$$
\begin{aligned}
& t_{2}=\sqrt[2]{ } / \frac{r_{2}^{\prime}}{r}=\sqrt[4]{ } \frac{r_{2}^{\prime \prime}}{r}=\sqrt[6]{\frac{r_{2}^{\prime \prime \prime}}{r}}=\text { etc. } \\
& t_{3}=\sqrt[2]{ } / \frac{r_{3}^{\prime}}{r}=\sqrt[4]{ } \frac{r_{3}^{\prime \prime}}{r}=\sqrt[6]{ } / \frac{r_{3}^{\prime \prime \prime}}{r}=\text { etc. } \\
& t_{1}=\sqrt[2]{ } \frac{r_{1}^{\prime}}{r}=\sqrt[4]{\frac{r_{1}^{\prime \prime}}{r}}=\sqrt[6]{\frac{r_{1}^{\prime \prime \prime}}{r}}=\text { etc. }\left\{\begin{array}{l}
\text { and } t_{1}=\tan \frac{1}{4}(\pi-A) \\
\tan \frac{1}{4}(\mathrm{~A}-\pi) .
\end{array}\right.
\end{aligned}
$$

But

$$
\frac{1}{4}(\pi-\mathrm{B})+\frac{1}{4}(\pi-\mathrm{C})+\frac{1}{4}(\pi-\mathrm{A})=\frac{\pi}{2}
$$

and $\therefore \quad t_{2} t_{3}+t_{3} t_{1}+t_{1} t_{2}=1$.
Thus the angular functions are easily eliminated between those three sets of equations so as to establish a direct relation between r and the radii of any triad whatever. Take, for example, the third triad.

$$
\begin{aligned}
& t_{2}=\sqrt[8]{\frac{r_{2}^{\prime \prime \prime}}{r}} \quad t_{3}=\sqrt[8]{\frac{r_{3}^{\prime \prime \prime}}{r}} \quad t_{1}=\sqrt[8]{ } \frac{/ r_{1}^{\prime \prime \prime}}{r} \\
& \therefore \quad t_{3} t_{3}+t_{3} t_{1}+t_{1} t_{2}=1=\sqrt[8]{\frac{r_{2}^{\prime \prime \prime} r_{3}{ }^{\prime \prime \prime}}{r^{2}}}+\sqrt[8]{\frac{1}{3} r_{3}^{\prime \prime \prime} r_{1}{ }^{\prime \prime \prime}} r^{2}+\frac{\mid r_{1}{ }^{\prime \prime \prime} r_{2}{ }^{\prime \prime \prime}}{r^{2}} \\
& \text { Otherwise } \\
& \sqrt[3]{r}=\sqrt[5]{r_{2}^{\prime \prime \prime} r_{3}^{\prime \prime \prime}}+\sqrt[8]{r_{3}^{\prime \prime \prime} r_{1}^{\prime \prime \prime}}+\sqrt[8]{r_{1}^{\prime \prime \prime} r^{\prime \prime \prime}}
\end{aligned}
$$

Hence these results :-
First triad, $\quad r=\sqrt[2]{r_{2}^{\prime} r_{3}^{\prime}}+\sqrt[2]{r_{3}^{\prime} r_{1}^{\prime}}+\sqrt[2]{r_{1}^{\prime} r_{1}^{\prime}}$
Second " $\sqrt[2]{r}=\sqrt[4]{r_{2}^{\prime \prime} r_{3}^{\prime \prime}}+\sqrt[4]{r_{3}^{\prime \prime} r_{1}^{\prime \prime}}+\sqrt[4]{r_{1}^{\prime \prime} r_{2}^{\prime \prime}}$
Third, $\quad, \quad \sqrt[3]{r}=\sqrt[6]{r_{2}^{\prime \prime \prime} r_{3}^{\prime \prime \prime}}+\sqrt[6]{r_{3}^{\prime \prime \prime} r_{1}^{\prime \prime \prime}}+\sqrt[6]{r_{1}^{\prime \prime \prime} r_{2}^{\prime \prime \prime}}$
etc.
etc.
$n^{\text {th }}$ triad, $\quad \sqrt[n]{r}=\sqrt[2 n]{\rho_{2} \rho_{3}}+\sqrt[2 n]{\rho_{3} \rho_{1}}+\sqrt[2 n]{\rho_{1} \rho_{2}}$
§ II. On the series of Triad Circles similarly derived from each of the exscribed circles. Determination of the equation between r_{1} (or $\mathrm{r}_{2 \mathrm{p}}$ etc.) and the three radii of the $\mathrm{n}^{\text {th }}$ triad.

Fig. 28.
Let O and Q_{1} in the diagram be centres of the inscribed and exscribed circles, then first triad will touch the ex-circle at X_{1}, X_{2}
and X_{3}. As before, one member only of the successive triads is shown, viz., the series between X_{2} and B.

Let $\mathbf{Q}_{1} \mathbf{M}=\mathbf{Q}_{\mathbf{1}} \mathbf{X}_{2}=r_{\mathbf{1}}$

$$
\left.\begin{array}{c}
\mathbf{Q}^{\prime} \mathbf{M}^{\prime}=a_{2}^{\prime} \\
\mathbf{Q}^{\prime \prime} \mathbf{M}^{\prime \prime}=a_{2}^{\prime \prime} \\
\mathbf{Q}^{\prime \prime \prime} \mathbf{M}^{\prime \prime \prime}=a_{2}^{\prime \prime \prime} \\
\text { etc. }
\end{array}\right\} \therefore\left\{\begin{array}{ccccl}
a_{1}^{\prime \prime} & a_{2}^{\prime} & a_{3}^{\prime} & \text { are radii of first triad } \\
a_{1}^{\prime \prime} & a_{2}^{\prime \prime} & a_{3}^{\prime \prime} & \ldots \ldots & \text { second } \\
a_{1}^{\prime \prime \prime} & a_{2}^{\prime \prime \prime} & a_{3}^{\prime \prime \prime} & \ldots \ldots & \text { third } \\
& \text { etc. } & & \text { etc. } \\
a_{1} & a_{2} & a_{3} & \ldots . . & n^{\prime 2} \text { triad. }
\end{array}\right.
$$

Now

$$
\mathbf{Q}_{1} \mathbf{M}=\mathbf{Q}^{\prime} \mathbf{M}^{\prime}+\left(\mathbf{Q}_{1} \mathbf{M}+\mathbf{Q}^{\prime} \mathbf{M}^{\prime}\right) \sin \frac{1}{2}(\pi-B)
$$

$$
\begin{array}{ll}
\therefore & r_{1}=a_{2}{ }^{\prime}+\left(r_{1}+a_{2}{ }^{\prime}\right) \cos ^{\frac{1}{2} \mathrm{~B}} \\
\therefore & \frac{a_{2}^{\prime}}{r_{1}}=\frac{1-\cos \frac{1}{2} \mathrm{~B}}{1+\sin ^{2} \frac{1}{4} \mathrm{~B}}=\tan ^{2} \frac{1}{4} \mathrm{~B}
\end{array}
$$

$$
=t_{2}{ }^{2} \text { suppose. }
$$

Thus $\quad t_{2}=\sqrt{\frac{a_{2}^{\prime}}{r_{1}}}=\sqrt{\frac{a_{2}^{\prime \prime}}{a_{2}^{\prime}}}=\sqrt{\frac{a_{2}^{\prime \prime \prime}}{a_{2}^{\prime \prime}}}=$ etc.
or $\quad t_{2}=\sqrt[2]{\frac{a_{2}^{\prime}}{r_{1}}}=\sqrt[4]{\frac{a_{2}^{\prime \prime}}{r_{1}}}=\sqrt[6]{ } \frac{a_{2}{ }^{\prime \prime \prime}}{r_{1}}=$ etc. $)$ where

But $\frac{1}{4} \mathrm{~B}+\frac{1}{4} \mathrm{C}+\frac{1}{4}(\mathrm{~A}-\pi)=0$, and the expedient applied in (I.) here fails. I therefore use the theorem that, when the sum of three angles vanishes, the sum of their tangents $=$ the product of their tangents ; i.e., $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$

$$
\therefore \quad \sqrt{ } \frac{/ a_{1}^{\prime}}{r_{1}}+\sqrt{ } \frac{a_{2}^{\prime}}{r_{1}}+\sqrt{ } \frac{a_{3}^{\prime}}{r_{1}}=\sqrt{ } \frac{a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime}}{r_{1}^{3}}=\frac{1}{r_{1}} \sqrt{ } \frac{a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime}}{r_{1}}
$$

Thus
First triad, $\frac{1}{r_{1}}=\frac{1}{\sqrt{a_{2}^{\prime} a_{3}^{\prime}}}+\frac{1}{\sqrt{a_{3}^{\prime} a_{1}^{\prime}}}+\frac{1}{\sqrt{a_{1} a_{2}^{\prime}}}=\frac{\sqrt{ } a_{1}{ }^{\prime}+\sqrt{ }{ }^{\prime}{ }_{2}^{\prime}+\sqrt{ } a_{3}^{\prime}}{\sqrt{a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime}}}$
Second triad, $\frac{1}{\sqrt[2]{r_{1}}}=\frac{1}{\sqrt[4]{a_{2}^{\prime \prime} a_{3}^{\prime \prime}}}+\frac{1}{\sqrt[4]{a_{3}^{\prime \prime} a_{1}^{\prime \prime}}}+\frac{1}{\sqrt[4]{a_{1}^{\prime a_{2}^{\prime \prime}}}}$
Third triad, $\frac{1}{\sqrt[3]{r_{1}}}=\frac{1}{\sqrt[6]{a_{2}^{\prime \prime \prime} a_{3}^{\prime \prime \prime}}}+\frac{1}{\sqrt[6]{a_{3}{ }^{\prime \prime \prime} a_{1}^{\prime \prime \prime}}}+\frac{1}{\sqrt[6]{a_{1}^{\prime \prime \prime} a_{2}^{\prime \prime \prime}}}$
etc.
etc.

$$
\begin{aligned}
& \therefore \quad t_{3}=\sqrt[2]{ } \frac{a_{3}^{\prime}}{r_{1}}=\sqrt[4]{ } \frac{a_{3}^{\prime \prime}}{r_{1}}=\sqrt[6]{a_{3}^{\prime \prime \prime}} r_{1}=\text { etc. }\left\{\begin{array}{l}
t_{2}=\tan \frac{1}{4} \mathrm{~B} \\
t_{3}=\tan \frac{4}{4} \mathrm{C}
\end{array}\right. \\
& t_{1}=\sqrt[2]{\frac{a_{1}^{\prime}}{r_{1}}}=\sqrt[4]{\frac{a_{1}^{\prime \prime}}{r_{1}}}=\sqrt[8]{/ a_{1}^{\prime \prime \prime}}{ }^{r_{1}}=\text { etc. }\left\{\begin{array}{l}
\text { and } t_{1}=\tan \frac{1}{4}(\pi-\mathrm{A}) \\
\text { or }
\end{array}\right.
\end{aligned}
$$

$n^{n^{n}}$ triad, $\quad \frac{1}{\sqrt[n]{r_{1}}}=\frac{1}{\sqrt[2 n]{a_{2} \alpha_{3}}}+\frac{1}{\sqrt[2 n]{a_{2} \alpha_{1}}}+\frac{1}{\sqrt[2 n-1]{a_{1} a_{2}}}$
For the other two exscribed circles we have of course

$$
\begin{aligned}
& \frac{1}{\sqrt[n]{r_{2}}}=\frac{1}{\sqrt[2 n]{\beta_{2} \beta_{3}}}+\frac{1}{\sqrt[2 n]{\beta_{3} \beta_{1}}}+\frac{1}{\sqrt[2 n]{\beta_{1} \beta_{2}}} \\
& \frac{1}{\sqrt[n]{r_{3}}}=\frac{1}{\sqrt[2 n]{\gamma_{2} \gamma_{3}}}+\frac{1}{\sqrt[2 n]{\gamma_{3} \gamma_{1}}}+\frac{1}{\sqrt[2]{\gamma_{1} \gamma_{2}}}
\end{aligned}
$$

$\beta_{1} \beta_{2} \beta_{3}$ being the radii of the $n^{\text {th }}$ triad derived from r_{2} and $\begin{array}{lllll}\gamma_{1} \gamma_{2} \gamma_{3} & \cdots & \cdots & \cdots & r_{3} .\end{array}$

Definition.-Each triad of the four infinite series now discussed is an instance of intimoscribed circles (v. infra, Section VI.)
§ III. On establishing a direct relation between the radii of the twelve circles which form the $\mathrm{n}^{\text {th }}$ triads of the preceding four intimoscribed series.

From $\quad r s=r_{1} s_{1}=r_{2} s_{2}=r_{s} s_{3}=\Delta$, we derive

$$
\begin{gathered}
\sqrt[n]{r\left(\frac{1}{\sqrt[n]{r_{1}}}+\frac{1}{\sqrt[n]{r_{2}}}+\frac{1}{\sqrt[n]{r_{3}}}\right)=\sqrt[n]{s}+\sqrt[n]{s}+\sqrt[n]{s} \frac{s_{3}}{s}, \text { or }} \begin{array}{c}
\frac{1}{\sqrt[n]{r_{1}}}+\frac{1}{\sqrt[n]{r_{2}}}+\frac{1}{\sqrt[n]{r_{3}}}=\frac{\sqrt[n]{\frac{s_{1}}{s}}+\sqrt[n]{s}+\sqrt[s_{2}]{s}+\frac{s_{3}}{s}}{\sqrt[n]{r}}
\end{array} .=\frac{1}{}
\end{gathered}
$$

whence substituting from the four general results obtained in (I. (II.) we obtain

$$
\begin{aligned}
& \left.+\frac{1}{\sqrt[2 n]{\gamma_{2} \gamma_{3}}}+\frac{1}{\sqrt[2 n]{\gamma_{3} \gamma_{1}}}+\frac{1}{\sqrt[2 n]{\gamma_{1} \gamma_{2}}}\right) \\
& \text { or } \\
& \frac{F(\alpha)+F(\beta)+F(\gamma)}{\sqrt[n]{s_{1}+\sqrt[n]{s_{2}}+\sqrt[n]{s_{3}}}}=\frac{s^{-\frac{1}{n}}}{\sqrt[2 n]{\rho_{2} \rho_{3}}+\sqrt[2 n]{\rho_{3} \rho_{1}}+\sqrt[2 n]{\sqrt[n]{\rho_{1} \rho}}}=\frac{1}{\sqrt[n]{r s}}
\end{aligned}
$$

where

$$
F(a)=\frac{1}{\sqrt[2 n]{a_{2} a_{3}}}+\frac{1}{\sqrt[2 n]{a_{3} a_{1}}}+\frac{1}{\sqrt[2 n]{a_{1} \alpha_{2}}}, \mathbf{F}(\beta)=\text { etc. }
$$

Three corollaries here occur:-
First, when the sum of the reciprocals of the $n^{t_{2}}$ roots of $r_{1} r_{2} r_{2}$ is multiplied by the $n^{\text {th }}$ root of r the result involves only a, b, c.

Second,

$$
\sqrt{s s_{1} s_{2} s_{3}}=\left(\frac{\sqrt[n]{s_{1}}+\sqrt[n]{s_{2}+\sqrt[n]{ } s_{3}}}{\overline{\mathrm{~F}(a)+\mathrm{F}(\beta)+\mathrm{F}(\gamma)}}\right)^{n}=\sqrt{r r_{1} r_{2} r_{3}}
$$

In other words, the area of any Δ is now expressed in terms of the nine radii of the $\boldsymbol{r}^{\text {th }}$ triads of intimoscribed circles derived from its three exscribed circles.
Third, if $\mathrm{B}^{\prime}=$ sum of all the circular areas between the in-circle and B,

$$
\begin{aligned}
& \mathrm{B}^{\prime}=\pi r^{2} \frac{t_{2}^{4}}{1-t_{2}^{4}} & =\pi r^{2} \frac{\sin ^{4} \frac{1}{4}(\pi-\mathrm{B})}{\cos \frac{1}{2}(\pi-\mathrm{B})}=\pi r^{2} \frac{\left(1-\sin \frac{1}{2} \mathrm{~B}\right)^{2}}{4 \sin \frac{1}{2} \mathrm{~B}} \\
\therefore & 4 \mathrm{~B}^{\prime} & =\pi r^{2}\left(\operatorname{cosec} \frac{\mathrm{~B}}{2}-2+\sin \frac{\mathrm{B}}{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \frac{4\left(\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)}{\pi r^{2}}=\frac{1}{2} \sqrt{\mathrm{R}}\left(\sqrt{\frac{a}{s_{1}}}+/ \frac{b}{s_{2}}+\sqrt{s_{3}}\right) \\
&+2 / \frac{\mathrm{R}}{r}\left(\sqrt{\frac{s_{1}}{a}}+\sqrt{\frac{s_{2}}{b}}+/ \frac{s_{3}}{c}\right)-6, \\
& \therefore \quad \frac{\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}}{\pi r^{2}}=\frac{1}{8 \mathrm{R}}\left(u_{1}+u_{2}+u_{3}\right)+\frac{\mathrm{R}}{2}\left(\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{3}}\right)-\frac{3}{2}
\end{aligned}
$$

where $A^{\prime}+\mathbf{B}^{\prime}+\mathbf{C}^{\prime} \equiv$ sum of areas of all the intimoscribed circles within ABC, and $u_{1} u_{2} u_{3}$ are the radii of the superscribed circles (v. Section VI.)

Similarly if $A_{1}{ }^{\prime}+B_{1}{ }^{\prime}+\mathrm{C}_{1}{ }^{\prime}, \mathrm{A}_{2}{ }^{\prime}+\mathrm{B}_{2}{ }^{\prime}+\mathrm{C}_{2}{ }^{\prime}, \mathrm{A}_{3}{ }^{\prime}+\mathrm{B}_{3}{ }^{\prime}+\mathrm{C}_{3}{ }^{\prime}$ are respectively the total areas of the intimoscribed triads depending on $r_{1} r_{2}$ and r_{3}, we find

$$
\begin{aligned}
& \frac{\mathrm{A}_{1}^{\prime}+\mathrm{B}_{1}{ }^{\prime}+\mathrm{C}_{1}^{\prime}}{\pi r_{1}^{2}}+\frac{\mathrm{A}_{2}^{\prime}+\mathrm{B}_{2}{ }^{\prime}+\mathrm{C}_{2}^{\prime}}{\pi r_{2}{ }^{2}}+\frac{\mathrm{A}_{3}{ }^{\prime}+\mathrm{B}_{3}^{\prime}+\mathrm{C}_{3}^{\prime}}{\pi r_{3}{ }^{2}}= \\
& \frac{\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}}{\pi r^{2}}+\frac{1}{4 \mathrm{R}}\left(u_{1}^{\prime}+u_{2}^{\prime}+u_{3}^{\prime}\right)+\mathrm{R}\left(\frac{1}{u_{1}^{\prime}}+\frac{1}{u_{2}^{\prime}}+\frac{1}{u_{3}^{\prime}}\right)-3
\end{aligned}
$$

where $u_{1}^{\prime} u_{9}^{\prime} u_{3}^{\prime}$ are the radii of the three outer superscribed circles (v. Section VI.)

[^0]between r and ($\rho_{1} \rho_{2} \rho_{\mathrm{a}} \rho_{\mathrm{t}} \ldots \rho_{\mathrm{m}}$) the radii of the $\mathrm{n}^{\text {th }}$ sel of intimoscribed circles.

Fig. 29.
$\begin{aligned} 0 \mathrm{M} & =r \\ \mathrm{O}^{\prime} \mathrm{M}^{\prime} & =r_{2}^{\prime}\end{aligned} \quad$ MBN represents an angle of any rectilineal $\left.\begin{array}{l}O^{\prime \prime} M^{\prime \prime}=r_{2}^{\prime \prime}\end{array}\right\} \quad m$-gon. If the figure be named ABCDE, etc., etc. then as already shown in (I.)

$$
\begin{aligned}
& t_{2}=\sqrt[2]{ } \frac{r_{2}^{\prime}}{r}=\sqrt[4]{ } \frac{r_{2}^{\prime \prime}}{r}=\sqrt[6]{\frac{r_{2}^{\prime \prime \prime}}{r}}=\text { etc. }=\sqrt[2 n]{ } \frac{\rho_{2}}{r} \\
& t_{3}=\sqrt[2]{\frac{r_{3}}{r}}=\sqrt[4]{\frac{r_{3}^{\prime}}{r}}=\sqrt[5]{\frac{r_{3}^{\prime \prime \prime}}{r}}=\text { etc. }=\sqrt[2 n]{ } \frac{/ \rho_{3}}{r} \\
& t_{4}=\sqrt[2]{\frac{r_{4}^{\prime}}{r}}=\sqrt[4]{\frac{r_{4}^{\prime \prime}}{r}}=\text { etc. etc. }
\end{aligned}
$$

where

$$
\begin{aligned}
& t_{2}=\tan \frac{1}{4}(\pi-\mathrm{B})=\tan \theta_{2} \\
& t_{4}=\tan \frac{1}{4}(\pi-\mathrm{D})=\tan \theta_{4} \\
& t_{5}=\tan \frac{1}{4}(\pi-\mathrm{E})=\tan \theta_{5}, \text { etc. etc. }
\end{aligned}
$$

Now

$$
\begin{aligned}
\theta_{1}+\theta_{2}+\theta_{3}+\ldots \theta_{m} & =\frac{1}{4} \text { sum of the "exterior" angles } \\
& =\frac{1}{2} \pi, \text { whatever } m \text { may be. }
\end{aligned}
$$

Let, for example, $m=12$, then

$$
\begin{aligned}
& \tan \left(\theta_{1}+\theta_{2}+\ldots \theta_{8}\right) & =\cot \left(\theta_{7}+\theta_{8}+\ldots \theta_{1 z}\right) \\
\therefore & \frac{s_{2}-s_{3}+s_{5}}{1-s_{2}+s_{4}-s_{6}} & =\frac{1-s_{2}^{\prime}+s_{4}^{\prime}-s_{6}^{\prime}}{s_{1}^{\prime}-s_{3}^{\prime}+v_{6}^{\prime}}
\end{aligned}
$$

where $s_{3}=$ sum of products of the tans of every three of the first six angles, and $s_{3}{ }^{\prime}=$ sum of products of tans of every three of the last six angles.

Multiplying up and compressing we get

$$
\sigma_{2}+\sigma_{6}+\sigma_{10}=1+\sigma_{4}+\sigma_{8}+\sigma_{12} ;
$$

where $\sigma_{3}=$ sum of products of tans of every three of the twelve angles. $\quad m=13$ gives the same result.

Generally whether $m=2 u$ or $2 u+1$
or

$$
\begin{gathered}
\sigma_{2}+\sigma_{6}+\sigma_{10}+\text { etc. }=1+\sigma_{4}+\sigma_{8}+\text { etc. } \\
1-\sigma_{2}+\sigma_{4}-\sigma_{8}+\sigma_{8}-\text { etc. }=0
\end{gathered}
$$

there being always $u+1$ terms on left side.
By substituting in that result the values of $t_{1} t_{2} t_{3} \ldots t_{m}$ already
found, we can at once reach an equation between r and the m radii of any proposed set of the intimoscribed circles.

Thus for the decagon or hendecagon, $n^{\text {th }}$ set,

$$
\begin{align*}
& \sigma_{2}+\sigma_{6}+\sigma_{10}=1+\sigma_{4}+\sigma_{8} \tag{k}\\
& \sigma_{2}=\sqrt[2 n]{ } / \frac{\rho_{1} \rho_{2}}{r^{2}}+\sqrt[2 n]{ } / \frac{\rho_{2} \rho_{3}}{r^{2}}+\ldots=\frac{\Sigma\left(\sqrt[2 n]{\rho_{1} \rho_{2}}\right)}{\sqrt[n]{r}}=\frac{\Sigma_{2}^{\prime}}{\sqrt[n]{r}} \\
& \sigma_{4}=\sqrt[2 n]{ } / \frac{\rho_{1} \rho_{2} \rho_{3} \rho_{4}}{r^{4}}+\sqrt[2 n]{ } / \frac{\rho_{1} \rho_{2} \rho_{3} \rho_{5}}{r^{4}}+\ldots=\frac{\Sigma\left(\sqrt[2 n]{\rho_{1} \rho_{2} \rho_{3} \rho_{4}}\right)}{\sqrt[n]{r^{2}}}=\frac{\Sigma_{4}^{\prime}}{\sqrt[n]{r^{2}}} \\
& \sigma_{6}=\frac{\Sigma_{6}{ }^{\prime}}{\sqrt[n]{r^{3}}} \quad \sigma_{8}=\frac{\Sigma_{8}^{\prime}}{\sqrt[n]{r^{4}}}, \text { and } \sigma_{10}=\frac{\Sigma_{10}^{\prime}}{\sqrt[n]{r^{5}}}
\end{align*}
$$

where

$$
\begin{aligned}
& \Sigma_{2}^{\prime}=\sqrt[2 n]{\rho_{1} \rho_{2}}+\sqrt[2 n]{\rho_{1} \rho_{2}}+\ldots \text { etc. } \\
& \Sigma_{4}^{\prime}=\sqrt[2 n]{\rho_{3} \rho_{2} \rho_{3} \rho_{4}}+\sqrt[2 n]{\rho_{1} \rho_{2} \rho_{3} \rho_{5}}+\ldots \text { etc. }
\end{aligned}
$$

Substituting in (k)

$$
\begin{array}{ll}
& \frac{\Sigma_{2}^{\prime}}{\sqrt[n]{r}}+\frac{\Sigma_{6}^{\prime}}{\sqrt[n]{r^{3}}}+\frac{\Sigma_{10}^{\prime}}{\sqrt[n]{r^{5}}}=1+\frac{\Sigma_{4}^{\prime}}{\sqrt[n]{r^{2}}}+\frac{\Sigma_{8}^{\prime}}{\sqrt[n]{r^{4}}} \\
\therefore & 1-\Sigma_{2}^{\prime} p+\Sigma_{4}^{\prime} p^{2}-\Sigma_{6}^{\prime} p^{3}+\Sigma_{8}^{\prime} p^{4}-\Sigma_{10}^{\prime} p^{5}=0
\end{array}
$$

if

$$
p=\frac{1}{\sqrt[n]{r}} \quad \text { or } r=\frac{1}{p^{n}} .
$$

The proof just given for the $n^{\text {th }}$ set when $m=10$ or 11 will evidently apply to the most general case, m being any positive integer.

Thus for any m-gon, whether $m=2 u$ or $2 u+1$ we obtain

$$
1-\Sigma_{2}^{\prime} p+\Sigma_{4}^{\prime} p^{2}-\Sigma_{6}^{\prime} p^{3}+\ldots+(-1)^{u} \Sigma_{\Sigma_{4}} p^{\prime} p^{u}=0
$$

an implicit function of r in terms of the n radii of the $n^{r n}$ set of intimoscribed circles.
§ V. On the intimoscribed triads which are derived from the interscribed* circles of any triangle. Determination of an independent equation between the radii of any triad.

[^1]Fig. 30.

$\mathrm{WZ}=n_{3} \quad \mathrm{KH}=n_{1}$.

In this system r does not enter but n_{2}^{\prime} is derived from $n_{2}, n_{2}{ }^{\prime \prime}$ from $n_{2}^{\prime}, n_{2}^{\prime \prime \prime}$ from $n_{2}^{\prime \prime}$, etc., according to the law noted in Section I.
\therefore

$$
\begin{aligned}
& t_{2}=\sqrt[2]{\frac{n_{2}^{\prime}}{n_{2}}}=\sqrt[4]{\frac{n_{2}^{\prime \prime}}{n_{2}}}=\sqrt[6]{\sqrt[n_{2}^{\prime \prime \prime}]{n_{2}}}=\text { etc. } \\
& t_{3}=\sqrt[2]{\frac{n_{3}^{\prime}}{n_{3}}}=\sqrt[4]{\frac{n^{\prime \prime}}{n_{3}}}=\text { etc. } \\
& t_{1}=\sqrt[2]{\frac{n_{1}^{\prime}}{n_{1}}}=\sqrt[4]{\frac{n_{1}^{\prime \prime}}{n_{1}}}=\text { etc. }
\end{aligned}
$$

where

$$
t_{2} t_{3}+t_{3} t_{1}+t_{1} t_{2}=1
$$

Now

$$
h_{1}^{2} n_{1}=h_{2}^{2} n_{2}=h_{3}{ }^{2} n_{3}=\frac{h_{1} h_{2} h_{3}}{2}, \text { a constant }
$$

where

$$
h_{1}=1+\tan \frac{1}{4} \mathrm{~A} \quad h_{2}=1+\tan \frac{1}{4} \mathrm{~B} \quad h_{3}=1+\tan \frac{\mathrm{C}}{4}
$$

and thus

$$
h_{1}=2 \sqrt{n_{2} n_{3}} \quad h_{2}=2 \sqrt{n_{3} n_{1}} \quad h_{3}=2 \sqrt{n_{1} n_{2}} .
$$

Substituting in (k^{\prime})
First triad, $1=\sqrt[2]{ } \frac{n_{2}^{\prime} n_{3}^{\prime}}{n_{2} n_{3}}+\sqrt[2]{ } \frac{/ n_{3}{ }^{\prime} n_{1}^{\prime}}{n_{3} n_{1}}+\sqrt[2]{\frac{n_{1}{ }^{\prime} n_{2}{ }^{\prime}}{n_{1} n_{2}}}$

$$
\text { or } \frac{\sqrt{n_{2}^{\prime} n_{3}^{\prime}}}{h_{1}}+\frac{\sqrt{n_{3}^{\prime} n_{1}^{\prime}}}{h_{2}}+\frac{\sqrt{n_{1}^{\prime} n_{2}^{\prime}}}{h_{3}}=\frac{1}{2}
$$

Second triad, $1=\sqrt[4]{ } \frac{n_{2}{ }^{\prime \prime} n_{3}{ }^{\prime \prime}}{n_{2} n_{3}}+\sqrt[4]{ } \frac{n_{3}^{\prime \prime} n_{1}^{\prime \prime}}{n_{3} n_{1}}+\sqrt[4]{ } \frac{n_{1}{ }^{\prime \prime} n_{2}^{\prime \prime}}{n_{1} n_{2}}$

$$
\text { or } \quad \frac{\sqrt[4]{n_{2}{ }^{\prime \prime} n_{3}^{\prime \prime}}}{\sqrt{h_{1}}}+\frac{\sqrt[4]{n_{3}^{\prime \prime} n_{1}^{\prime \prime}}}{\sqrt{h_{2}}}+\frac{\sqrt[4]{n_{1}^{\prime \prime} n_{2}^{\prime \prime}}}{\sqrt{h_{3}}}=\frac{1}{\sqrt{\overline{2}}}
$$

$$
\text { or } \quad \frac{\sqrt[6]{n_{2}{ }^{\prime \prime \prime} n_{3}^{\prime \prime \prime}}}{\sqrt[3]{h_{1}}}+\frac{\sqrt[6]{n_{3}^{\prime \prime \prime} n_{1}^{\prime \prime \prime}}}{\sqrt[3]{h_{2}}}+\frac{\sqrt[6]{n_{1}^{\prime \prime \prime} n_{2}^{\prime \prime \prime}}}{\sqrt[3]{h_{3}}}=\frac{1}{\sqrt[3]{2}}
$$

Generally for $m^{t h}$ triad radii $\nu_{1} v_{2} v_{u}$.

$$
\frac{\sqrt[2 m]{\nu_{2} v_{3}}}{\sqrt[m]{h_{1}}}+\frac{\sqrt[2 m]{ } \sqrt{\nu_{3} \nu_{1}}}{\sqrt[m]{h_{2}}}+\frac{\sqrt[2 m]{v_{1} v_{2}}}{\sqrt[m]{h_{3}}}=\frac{1}{\sqrt[m]{2}}
$$

[Wote.- $h_{1} h_{2} h_{3}$ can readily be expressed severally in terms of a, b, c.

Thus $\quad h_{1}{ }^{2}=\left(1+\tan \frac{1}{4} \mathrm{~A}\right)^{2}=\sec ^{2} \frac{1}{4} \mathrm{~A}+2 \tan \frac{1}{4} \mathrm{~A}$

$$
\left.=\frac{1+\sin \frac{1}{2} \mathrm{~A}}{\cos ^{2} \frac{1}{4} \mathrm{~A}}=\frac{2\left(1+\sin \frac{1}{} \mathrm{~A}\right)}{1+\cos \frac{1}{2} \mathrm{~A}}=\frac{2\left(\sqrt{b c}+\sqrt{8_{x_{3}} g_{3}}\right)}{\sqrt{b c}+\sqrt{88_{1}}} \cdot\right]
$$

§ VI. On a classification of the circles belonging to ABC, with notes of a few of their properties.

1. - three leading circles, the circumscribed, medioscribed and inscribed.
2. - three exscribed circles.
3. - three interscribed circles.
4. - six superscribed circles.
5. - twelve insuperscribed circles.
6. - twelve introscribed circles.
7. - fifteen intimoscribed circles.
8. - four tercentroscribed circles.
9. - fifteen supermedianscribed circles.
10. - fifteen intermedianscribed circles.
(3.) Interscribed Circles (radii $n_{1} n_{2} n_{3}$). Each touches two sides of ABC, and also touches the other interscribed circles.

$$
\begin{equation*}
h_{1}^{2} n_{1}=h_{2}{ }^{2} n_{2}=h_{3}{ }^{2} n_{3}=\frac{1}{2} h_{1} h_{2} h_{3}, \text { a constant, } \tag{i.}
\end{equation*}
$$

where

$$
\begin{gather*}
h_{2}^{2}=\frac{2\left(\sqrt{c a}+\sqrt{s_{3} s_{1}}\right)}{\sqrt{c a}+\sqrt{s s_{2}}} \quad \text { (See V.) } \\
2\left\{\sqrt{ } n_{1}+\sqrt{ } n_{2}+\sqrt{ } n_{3} \pm \sqrt{ }\left(n_{1}+n_{2}+n_{3}\right)\right\}^{2}=h_{1} h_{2} h_{3} \tag{ii.}
\end{gather*}
$$

(4.) Superscribed Circles. These have for their diameters the lines joining the four centres $O \mathbf{Q}_{1}, Q_{2} \mathbf{Q}_{3}$. Taking the inner three (radii $u_{1} u_{2} u_{3}$) we have

$$
\begin{equation*}
u_{1} u_{2} u_{3}=2 r \mathrm{R}^{2}=\frac{1}{2 r}\left(\frac{a b c}{a+b+c}\right)^{2} \tag{iii.}
\end{equation*}
$$

$$
\begin{align*}
& u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=\frac{\mathrm{R}}{s}\left(a r_{1}+b r_{2}+c r_{3}\right) \tag{iv.}\\
& \frac{a}{u_{1}^{2}}+\frac{b}{u_{2}^{2}}+\frac{c}{u_{3}^{2}}=\frac{(a+b+c)^{2}}{a b c} \\
& \frac{u_{2}^{2} u_{3}^{2}}{b c}+\frac{u_{3}^{2} u_{1}^{2}}{c a}+\frac{u_{1}^{2} u_{2}^{2}}{u b}=\mathrm{R}^{2}
\end{align*}
$$

(5.) Insuperscribed Circles. These have for their diameters the lines joining the angular points of $A B C$ with the four centres. Taking the two inner groups, diameters $\mathrm{AO}, \mathrm{BO}, \mathrm{CO}$ (radii $v_{1}^{\prime} v_{2}^{\prime} v_{3}{ }^{\prime}$) and $\mathrm{AQ}_{1} \mathrm{BQ}_{2} \mathrm{CQ}_{3}$ (radii $\mathrm{V}_{1}{ }^{\prime} \mathrm{V}_{2}{ }^{\prime} \mathrm{V}_{3}{ }^{\prime}$) we have
or

$$
\left.\begin{array}{c}
\frac{4 v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}}{r}=\frac{a b c}{a+b+c}=\frac{u_{1} u_{2} u_{3}}{\mathrm{R}} \\
4\left(a v_{1}^{\prime 2}+b v_{2}^{\prime 2}+c v_{3}^{\prime 2}\right)=a b c \\
\frac{v_{1}^{\prime 2}}{b c}+\frac{v_{2}^{\prime 2}}{c a}+\frac{v_{3}}{a b}=\frac{1}{4}
\end{array}\right\}
$$

viii.

$$
\frac{a \mathrm{~V}_{1}^{\prime 2}+b \mathrm{~V}_{2}^{\prime 2}+c \mathrm{~V}_{3}^{\prime 2}}{\mathrm{R}}=\frac{3 a b c-a^{3}-b^{3}-c^{3}}{8 r} \quad \mathrm{ix}
$$

or

$$
\begin{gathered}
\frac{b c}{{\overline{V_{1}^{\prime 2}}}^{2}}+\frac{c a}{\mathrm{~V}_{2}^{\prime 2}}+\frac{a b}{\mathrm{~V}_{3}^{\prime 2}}=4 \\
\frac{1}{a \mathrm{~V}_{1}^{\prime 2}}+\frac{1}{b \mathrm{~V}_{2}^{\prime 2}}+\frac{1}{c \mathrm{~V}_{3}^{\prime 2}}=\frac{4}{a b c}
\end{gathered}
$$

x.
(6.) Intruscribed Circles. These twelve are respectively inscribed to the quadrilaterals which the circles of (5.) circumscribe. Taking the groups (radii $v_{1} v_{2} v_{3}$ and $\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}$) corresponding to those selected in the preceding paragraph, we have

$$
\begin{aligned}
& \frac{v_{1}}{r-v_{1}}+\frac{v_{2}}{r-v_{2}}+\frac{v_{3}}{r-v_{3}}=\frac{s}{r} \\
& \frac{1}{\mathrm{~V}_{1}}+\frac{1}{\mathrm{~V}_{2}}+\frac{1}{\mathrm{~V}_{3}}=\frac{3}{s}+\frac{1}{r}
\end{aligned}
$$

xi.
xii.
(7.) Intimoscribed Circles. Five groups, each circle touching two sides of ABC and also touching either the inscribed circle or one of the exscribed circles or one of the interscribed circles. Each group is the first triad of an infinite series, all the circles of
which may be termed "intimoscribed." See Sections I., II., III., and V. for their properties.
(8.) Tercentroscribed Circles. Each passes through three of the four centres $O Q_{1} Q_{2} Q_{3}$; and has radius $R^{\prime}=2 R$; the triangle $A B C$ being orthic to $\mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3}\left(=\Delta^{\prime}\right)$. Let $a^{\prime}, b^{\prime}, c^{\prime}$, be the sides of Δ^{\prime}.

$$
\begin{array}{cc}
\Delta^{\prime}=\frac{a b c}{2 r}=\mathrm{R}^{\prime} s=\frac{2 \mathrm{R}}{r} \Delta & \text { xiii. } \\
\left(a^{\prime 2} b c+b^{\prime \prime} c a+c^{\prime 2} a b\right)^{\frac{3}{2}}=\frac{a b c}{r}=\mathrm{R}^{\prime}(a+b+c) & \text { xiv. } \\
\frac{a^{\prime 2}+b^{\prime 2}+c^{\prime 2}}{b c+c a+a b}=\frac{2 \mathrm{R}^{\prime}}{r} & \mathrm{xv} . \\
a^{\prime 2}+b^{\prime 2}+c^{\prime 2}+4\left(u_{1}{ }^{2}+u_{2}^{2}+u_{3}^{2}\right)=12 \mathrm{R}^{\prime 2} & \text { xvi. }
\end{array}
$$

$(9,10$.$) These two groups are the circles circumscribed about and$ inscribed in the 15 triangles formed by the medians ($m_{1} m_{2} m_{3}$). Let the in-radii of the smaller triangles round G be as marked; those of GBC, GCA, GAB be $r_{4} r_{5} r_{6}$ respectively ; and those of $\mathrm{AM}_{1} \mathrm{~B}, \mathrm{AM}_{4} \mathrm{C}$, $\mathrm{BM}_{2} \mathrm{C}, \mathrm{BM}_{2} \mathrm{~A}, \mathrm{CM}_{3} \mathrm{~A}, \mathrm{CM}_{3} \mathrm{~B}$ be $r_{4}^{\prime}, r_{4}{ }^{\prime \prime}, r_{5}^{\prime}, r_{5}^{\prime \prime}, r_{6}^{\prime}, r_{8}^{\prime \prime}$ respectivelythe circum-radius in each case being known by changing r to R.

Fig. 31.

$$
\begin{array}{rr}
\frac{1}{r_{1}^{\prime}}+\frac{1}{r_{2}^{\prime}}+\frac{1}{r_{3}^{\prime}}=\frac{1}{r_{1}^{\prime \prime}}+\frac{1}{r_{2}^{\prime \prime}}+\frac{1}{r_{3}^{\prime \prime}}=\frac{3}{2}\left(\frac{1}{r_{4}}+\frac{1}{r_{5}}+\frac{1}{r_{6}}-\frac{1}{r}\right) & \\
=\frac{3}{r}+\frac{3\left(m_{1}+m_{2}+m_{3}\right)}{\Delta} & \text { xvii. } \\
\mathrm{R}_{1}^{\prime} \mathrm{R}_{2}{ }^{\prime} \mathrm{R}_{3}^{\prime}=\mathrm{R}_{1}{ }^{\prime \prime} \mathrm{R}_{2}{ }^{\prime \prime} \mathrm{R}_{3}^{\prime \prime}= & \frac{\mathbf{R}_{4} \mathrm{R}_{5} \mathrm{R}_{6}}{128}\left(\frac{a b c}{\mathrm{R}}\right)^{2}=\frac{\mathrm{R}}{54} m_{1}{ }^{2} m_{2}{ }^{2} m_{3}{ }^{2} \\
\frac{1}{r_{4}}+\frac{1}{r_{5}}+\frac{1}{r_{6}}=\frac{3}{r}+\frac{2\left(m_{1}+m_{2}+m_{3}\right)}{\Delta} & \text { xviii. } \\
\mathrm{R}_{4} \mathrm{R}_{5} \mathrm{R}_{6}=64\left(\frac{\mathrm{R}}{3}\right)^{3}\left(\frac{m_{1} m_{2} m_{3}}{a b c}\right)^{2} & \text { xix. } \\
\frac{1}{r_{4}^{\prime}}+\frac{1}{r_{5}^{\prime}}+\frac{1}{r_{6}^{\prime}}=\frac{1}{r_{4}^{\prime \prime}}+\frac{1}{r_{5}^{\prime \prime \prime}}+\frac{1}{r_{6}^{\prime \prime \prime}} \\
=\frac{3}{r}+\frac{m_{1}+m_{2}+m_{3}}{\Delta}=\frac{1}{2}\left(\frac{3}{r}+\frac{1}{r_{4}}+\frac{1}{r_{5}}+\frac{1}{r_{6}}\right) & \text { xx. }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{R}_{4}{ }^{\prime} \mathrm{R}_{5}{ }^{\prime} \mathrm{R}_{6}{ }^{\prime}=\mathrm{R}_{4}{ }^{\prime \prime} \mathrm{R}_{5}{ }^{\prime \prime} \mathrm{R}_{6}{ }^{\prime \prime}=\left(\frac{\mathrm{R}}{2}\right)^{2} \frac{m_{1} m_{2} m_{3}}{\Delta} \quad \text { xxii. } \\
& \frac{\mathbf{R}_{4}^{\prime} \mathrm{R}_{5}^{\prime} \mathrm{R}_{6}^{\prime}}{\mathbf{R}_{1}^{\prime} \mathbf{R}_{2}^{\prime} \mathrm{R}_{3}^{\prime}}=\frac{54 \mathrm{R}^{5}}{a^{2} b^{2} c^{2}} \\
& \frac{\mathbf{R}_{4}{ }^{\prime} \mathbf{R}_{4}^{\prime \prime}}{\mathbf{R}_{4}} \cdot \frac{\mathbf{R}_{5}{ }^{\prime} \mathbf{R}_{5}^{\prime \prime}}{\mathbf{R}_{5}} \cdot \frac{\mathbf{R}_{6}{ }^{\prime} \mathrm{R}_{6}{ }^{\prime \prime}}{\mathbf{R}_{6}}=\left(\frac{3 \mathbf{R}}{4}\right)^{3}, \\
& \text { or } \\
& \frac{\mathbf{R R}_{4}}{\mathbf{R}_{4}^{\prime} \mathbf{R}_{4}^{\prime \prime}} \cdot \frac{\mathrm{RR}_{5}}{\mathbf{R}_{6}^{\prime} \mathrm{R}_{5}^{\prime \prime}} \cdot \frac{\mathrm{RR}_{6}}{\mathbf{R}_{6}^{\prime} \mathbf{R}_{6}^{\prime \prime}}=\frac{64}{27} \\
& \text { xxiv. }
\end{aligned}
$$

§ VII. On some algebraic results which symmetrically involve a, b, c and $1_{1}, 1_{2}, 1_{3}$ (the bisectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ drawn to the opposite sides).
(1),

$$
\frac{l_{1}^{2}}{s x_{1}}=\frac{4 b c}{(b+c)^{2}} \therefore \frac{l_{1}^{2}}{b c}=\frac{(b+c+a)(b+c-a)}{(b+c)^{2}}=1-\frac{a^{2}}{(b+c)^{2}}
$$

Thus

$$
1=\frac{l_{1}^{2}}{b c}+\frac{a^{2}}{(b+c)^{2}}=\frac{l_{2}^{2}}{c a}+\frac{b^{2}}{(c+a)^{2}}=\frac{l_{3}^{2}}{a b}+\frac{c^{2}}{(a+b)^{2}} . *
$$

$$
\begin{equation*}
\left(\frac{1}{b}+\frac{1}{c}\right) \frac{b^{2}-c^{2}}{l_{2}^{2} l_{3}^{2}}+\left(\frac{1}{c}+\frac{1}{a} \frac{c^{2}-a^{2}}{l_{3}^{2} l_{1}^{2}}+\left(\frac{1}{a}+\frac{1}{b}\right) \frac{a^{2}-b^{2}}{l_{1}^{2} l_{2}^{2}}=0 .\right. \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\frac{1}{b^{2}}-\frac{1}{c^{2}}}{(s-b)(s-c)}\left(\frac{b+c}{l_{2}^{2} l_{3}^{2}}\right)+\frac{\frac{1}{c^{2}}-\frac{1}{a^{2}}}{(s-c)(s-a)}\left(\frac{c+a}{l_{3}^{2} l_{1}^{2}}\right)+\frac{\frac{1}{a^{2}}-\frac{1}{b^{2}}}{(s-a)(s-b)}\left(\frac{a+b}{h_{1}^{2} l_{2}^{2}}\right)=0 . \tag{3}
\end{equation*}
$$

If $2 \sigma^{2}=a^{2}+b^{2}+c^{2}$,

$$
\begin{align*}
a^{2}\left(\sigma^{2}-a^{2}\right)^{2} & +b^{2}\left(\sigma^{2}-b^{2}\right)^{2}+c^{2}\left(\sigma^{2}-c^{2}\right)^{2} \tag{4}\\
& +2\left(\sigma^{2}-a^{2}\right)\left(\sigma^{2}-b^{2}\right)\left(\sigma^{2}-c^{2}\right)=a^{2} b^{2} c^{2}, \text { and }
\end{align*}
$$

- These values of l_{2} and l_{3} give a short direct proof that the Δ is isosceles when $l_{2}=l_{3}$. Thus $c a\left(1-\frac{b^{2}}{(c+a)^{2}}\right)=a b\left(1-\frac{c^{2}}{(a+b)^{2}}\right)$

$$
\begin{array}{lc}
\therefore & c(a+b)^{2}(s-b)=b(c+a)^{2}(s-c) \\
\therefore & (b-c)\left(a b c+b c s+a^{2}\right)=0 \\
\therefore & b-c=0, \text { or } b=c .
\end{array}
$$

(5), $\frac{\mathrm{R}}{4 \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}}=\frac{1}{\sigma^{2}-a^{2}}+\frac{1}{\sigma^{2}-b^{2}}+\frac{1}{\sigma^{2}-c^{2}}-\frac{4 \Delta^{2}}{\left(\sigma^{2}-a^{2}\right)\left(\sigma^{2}-\overline{b^{2}}\right)\left(\sigma^{2}-c^{2}\right)}$
and

$$
\left(\frac{\sigma^{2}}{a^{2}}-1\right)\left(\frac{\sigma^{2}}{b^{2}}-1\right)\left(\frac{\sigma^{2}}{c^{2}}-1\right)=\frac{\mathrm{P}_{u}}{\mathrm{R}} \cdot \frac{\mathrm{P}_{2}}{\mathrm{R}} \cdot \frac{\mathrm{P}_{3}}{\mathrm{R}}
$$

$P_{1} P_{2} P_{3}$ being the perpendiculars from the circum-centre.
(6),

$$
\begin{aligned}
& 1=\frac{1}{\left(1-\frac{a}{b}\right)\left(1-\frac{a}{c}\right)}+\frac{1}{\left(1-\frac{b}{c}\right)\left(1-\frac{b}{a}\right)}+\frac{1}{\left(1-\frac{c}{a}\right)\left(1-\frac{c}{b}\right)} \\
& \quad=\frac{1}{\left(\frac{b}{a}-1\right)\left(\frac{c}{a}-1\right)}+\frac{1}{\left(\frac{c}{b}-1\right)\left(\frac{a}{b}-1\right)}+\frac{1}{\left(\frac{a}{c}-1\right)\left(\frac{b}{c}-1\right)}
\end{aligned}
$$

$$
\begin{equation*}
(f+g+h)^{n+1} r^{n}=f^{n+1} r_{1}^{n}=g^{n+1} r_{2}^{n}+h^{n+1} r_{3}^{n} \tag{7}
\end{equation*}
$$

if only

$$
\frac{t}{s_{1}}=\frac{g}{s_{2}}=\frac{h}{s_{3}}
$$

$$
\begin{equation*}
\frac{a+x}{a(a-b)(a-c)}+\frac{b+x}{b(b-c)(b-a)}+\frac{c+x}{c(c-a)(c-b)}=\frac{x}{a b c}, \tag{8}
\end{equation*}
$$

x being a line of any length; when also

$$
\begin{gather*}
\frac{(a-x)^{2}}{(a-b)(a-c)}+\frac{(b-x)^{2}}{(b-c)(b-a)}+\frac{(c-x)^{2}}{(c-a)(c-b)}=1 . \tag{9}\\
 \tag{10}\\
\frac{b c+c a+a b}{2(a+b+c)}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\operatorname{Rr}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \\
\text { or } \quad(b c+c a+a b)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=u b c\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)+4 s .
\end{gather*}
$$

$$
\begin{align*}
& \frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=3, \quad \text { when } \tag{11}\\
& \quad \frac{a+b m}{b+c n}=\frac{b+c m}{c+a n}=\frac{c+a m}{a+b n}
\end{align*}
$$

(12), For any scalene Δ

$$
\frac{\frac{1}{a}-\frac{1}{b}}{\frac{a^{2}+b^{2}}{}}+\frac{\frac{1}{b}-\frac{1}{c}}{b^{2}+c^{2}}+\frac{\frac{1}{c}-\frac{1}{a}}{c^{2}+a^{2}}=0,
$$

if

$$
a^{3}(b-c)+a^{2}\left(b^{2}-c^{2}\right)+a\left(b^{3}-c^{3}\right)+\left(b^{4}-c^{4}\right)=0 .
$$

(13), When s has a vanishing value, not otherwise,

$$
\frac{a^{2}}{(b+2 c)(c+2 b)}+\frac{b^{2}}{(c+2 a)(a+2 c)}+\frac{}{(a+2 b)(b+2 a)}=1 .
$$

[^0]: § IV. Extension of the principle to any convex m-gon which has an inscribed circle (radius \mathbf{r}). Determination of the direct relation

[^1]: * v. definition infra, Section VI.

