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Many microorganisms use cilia to propel themselves in low Reynolds number (Re)
environments. In this work, we study the dynamics of a composite cilium consisting of an
elastic filament and a spherical particle attached at the filament tip driven by an external
time-periodic force acting on the particle. The elastic filament is modelled numerically
using a slender body theory with hydrodynamic interactions. When tilted at a large angle
from the normal direction of the wall, the filament buckles, and the induced velocity field
by the cilium shows a large net flux. By varying the tilt angle or the force amplitude,
the particle trajectory and the net flux display abrupt changes along with a reversal of
the buckling direction. We further demonstrate through a segmental model that the abrupt
changes arise from the deviation of the cilium orientation at the start of the recovery stroke
from the natural orientation. Our results suggest a simple approach to engineering particle
motions and designing artificial cilia for fluid pumping in low Re environments.
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1. Introduction

Cilia are thin hair-like cellular protrusions that serve a variety of fundamental roles
in many eukaryotes. The internal structure has a characteristic ‘9+2’ arrangement of
microtubules. Driven by the distributed sliding forces acting on neighbouring microtubules
by molecular motors, cilia beat asymmetrically with a distinct power and recovery stroke
to break the time-reversal symmetry and generate net propulsion at low Reynolds number
(Re) (Blake & Sleigh 1974; Purcell 1977). One hypothesis for the spontaneous beating
is based on dynamic instabilities developed when the motor activity exceeds a threshold
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(Camalet, Julicher & Prost 1999; Bayly & Dutcher 2016; Oriola, Gadêlha & Casademunt
2017; Ling, Guo & Kanso 2018). Cilia can also beat collectively in dense arrays to
form metachronal waves via hydrodynamic interactions (Meng et al. 2021; Chakrabarti,
Fürthauer & Shelley 2022; Kanale et al. 2022), and such collective motions play crucial
roles in the locomotion and material transport of many microorganisms and tissues (Lauga
& Powers 2009; Faubel et al. 2016; Juan et al. 2020).

Inspired by natural cilia, the design and fabrication of artificial cilia have attracted
growing interest and are important for a wide range of applications, such as propelling
microrobotics (Ye, Régnier & Sitti 2013; Lum et al. 2016; Liu et al. 2020; Hu, Zhang
& Shelley 2022), and pumping and mixing fluid in fluidics. In artificial systems at
microscales, the beating mechanism of natural cilia seems impractical to realize. To mimic
the ciliary beating patterns and generate non-reciprocal motions, various external actuation
mechanisms have been explored, including light (Van Oosten, Bastiaansen & Broer 2009),
pneumatic (Milana et al. 2019), electric fields (den Toonder et al. 2008) and especially
magnetic fields (Khaderi et al. 2009; Shields et al. 2010; Khaderi et al. 2011; Lum et al.
2016; Hanasoge et al. 2017; Meng et al. 2019; Dong et al. 2020; Gu et al. 2020).

Instead of applying distributed motor forces, De Canio, Lauga & Goldstein (2017)
showed that a single tangential follower force acting on the tip of a clamped elastic
filament in a viscous fluid can also induce buckling and spontaneous oscillations through
a Hopf bifurcation. Using the same phenomenological model, Man & Kanso (2020)
demonstrated that multiple active filaments can display different synchronization states
through hydrodynamic interactions. Although this driving mechanism does not require an
external time periodicity, it is considered theoretically and not as a practical fluid pumping
mechanism since the follower force is required to always remain tangential to the filament
tip. To efficiently pump fluid at low Re, non-reciprocal trajectories with large swept areas
are needed (Osterman & Vilfan 2011), which may be achieved through the buckling of an
elastic filament under compression.

In this work, we propose a fluid pumping mechanism that can both exploit the buckling
instability and is also more practical experimentally. We consider a composite cilium
consisting of an elastic filament and a spherical particle attached at the filament tip, moving
in a three-dimensional Stokesian fluid. The filament base is clamped to a no-slip wall and
tilted from the normal direction of the wall. An external time-periodic force always parallel
to the wall acts on the particle. Similar to the follower force model, the component of the
driving force tangential to the filament tip in our model can induce filament buckling. The
oscillation of the cilium is sustained by the component normal to the filament tip.

The benefit of introducing a spherical particle is twofold. First, the particle may be
charged or carry a magnetic moment, allowing easier experimental realizations of a driving
force applied at the filament tip using electric or magnetic fields. Second, the drag force of
a spherical particle scales linearly as the particle radius b, and the characteristic filament
force upon the fluid scales approximately as L/ ln(L/a) (Cox 1970), where L is the filament
length and a is the filament radius. Therefore, it is possible that the flux generated by the
particle is comparable to or larger than the flux due to the filament as long as b/L �
1/ ln(L/a), which is a small value for a slender filament. Previous studies on artificial cilia
only focused on elastic filaments or films, the effect of an attached particle has not been
considered.

We first model the composite cilium numerically using a slender body theory. We
observe that the cilium generates a large net flux at large tilt angles, accompanied by
a buckling instability. The flux generated by the particle is indeed larger than the flux
generated by the filament. The trajectories that the particle traces out depend sensitively
on the buckling direction of the filament. As the buckling direction reverses, the particle

966 A23-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.436


Constrained particle orbiting for fluid pumping
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Figure 1. Schematic of a composite artificial cilium consisting of an elastic filament clamped at the base and
a spherical particle attached at the filament tip. The cilium is driven by an external time-periodic force F 0(t)
acting on the particle. (a) Elastic model, (b) segmental model.

trajectory and the generated net flux show abrupt changes. We also develop a reduced
segmental model with a finite number of degrees of freedom that can reproduce similar
dynamic behaviours. Finally, we discuss a possible experimental realization and estimate
the magnitude of relevant parameters.

2. Model for an artificial cilium

We assume that the driving force acting on the particle is along the y direction with a
simple sinusoidal form, F 0(t) = F0(t)ŷ = A sin(2πt/τ)ŷ, with A the amplitude and τ the
period. We first model an elastic filament and then derive a segmental model using rigid
segments.

2.1. Dynamics of the composite cilium
Consider a slender, inextensible and elastic filament (with the aspect ratio ε = a/L � 1)
and denote the filament position by r(s, t) with the arc length s ∈ [−L/2, L/2]. The unit
tangent vector p = (cos θ, sin θ), with θ the tangent angle between p and x̂ (figure 1) and
the unit normal vector p⊥ = (− sin θ, cos θ). The filament force per unit length is given
by the Euler–Bernoulli elasticity f = −Brssss + (Trs)s, where B is the bending rigidity
and T is the filament tension. The filament force may be derived from the bending energy
formulation with T acting as a Lagrange multiplier to enforce the filament inextensibility.
From a non-local slender body theory (Johnson 1980), the velocity of the filament is given
by

8πμ(rt − Up→f ) = Λ[ f ] + K[ f ], (2.1)

where μ is the fluid viscosity and Up→f is the velocity generated by the particle at the
filament. The local operator Λ[ f ] = [c(I + rsrs) + 2(I − rsrs)] · f , where c = | ln(ε2e)|.
The local operator captures the local drag anisotropy. From its inversion, we get the
perpendicular and parallel anisotropic friction coefficients, ξ⊥ = 8πμ/(c + 2) and ξ‖ =
4πμ/c. In the limit of infinitely slender filaments one recovers the resistive force theory
with ξ⊥/ξ‖ ≈ 2. The integral operator K[ f ] captures the non-local interaction within the
filament, which is interpreted as a disturbance velocity by the filament in the presence of a
no-slip wall in our numerical computation. The filament velocity is then determined by a
balance of viscous drag and the filament force f . We write 8πμ(rt − U) = Λ[ f ], where
U includes Up→f and the contribution from the filament motion.

The filament tip is clamped to the particle surface, and the motion of the particle is fully
determined by the translation and rotation of the filament at s = L/2. The particle position
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rp = (r + bp)s=L/2 with b the particle radius, and its velocity vp = (rt + bθtp⊥)s=L/2. We
compute the disturbance velocity U as

U(s) =
∫ L/2

−L/2
Gδ[r(s), r(s′)] · f (s′) ds′ + 6πμχbGδ[r(s), rp] · vp. (2.2)

Here, to account for the effect of the no-slip boundary, we use the regularized Blake tensor
for a three-dimensional flow Gδ with δ the regularization parameter (Blake 1971; Ainley
et al. 2008); χ is a correction to the free-space Stokes drag (Happel & Brenner 2012), and
χ increases as the particle approaches the no-slip boundary.

To ensure the filament inextensibility, we require rs · rst = 0. Differentiating rt with
respect to the arc length and taking the tangent component, we obtain the tension equation

2cTss − (c + 2)θ2
s T = −8πμU s · p − 6cBθ2

ss − (7c + 2)Bθsθsss + (c + 2)Bθ4
s . (2.3)

The normal component of rst gives the equation of θ , θt = rst · p⊥

8πμθt + (c + 2)Bθssss = 8πμU s · p⊥ + (9c + 6)Bθ2
s θss + (3c + 2)Tsθs + (c + 2)Tθss.

(2.4)

We scale length on L, force on B/L2 and time on the period of the driving force τ . The
resulting elastoviscous number is η = L/(Bτ/8πμ)1/4, which compares the viscous force
with the elastic force. The other two control parameters include the tilt angle θ0 and the
ratio of the particle radius to the filament length, β = b/L.

2.2. Boundary conditions and numerical methods
The orientation of the filament at s = −L/2 is fixed with θ = θ0. The filament also has a
zero velocity at s = −L/2, i.e. rt = 0. Separating the normal and tangent components of
the filament velocity, this condition leads to (Ts + 3Bθsθss)s=−L/2 = 0 and (Bθsss − Bθ3

s −
θsT)s=−L/2 = 0. The force and torque balance equations on the particle are

(−Brsss + Trs)s=L/2 = −6πχμb(vp − U f →p) + F 0(t), (2.5)

(Brss × rs)s=L/2 = 8πμb3ωpẑ, (2.6)

where U f →p is the velocity induced by the filament at the particle centre and captures the
effect of filament motion on the particle motion, 8πμb3 is the rotational drag coefficient
of a spherical particle and the particle angular velocity ωp = (θt)s=L/2. Since both vp
and ωp are determined by the motion of the filament tip, (2.5) and (2.6) are translated
into boundary conditions for θ and T . We solve (2.3) and (2.4) numerically using a
second-order finite difference scheme (Tornberg & Shelley 2004). The coupled tension and
θ equations with the nonlinear boundary conditions are solved using Newton’s method.
More details on the numerical methods can be found in Appendix A.

2.3. Segmental model
We replace an elastic filament with three rigid segments linked by torsional springs at
the joints (figure 1b). The torsional spring exerts a torque proportional to the relative
angle deflection between neighbouring segments. The total length of the segments is
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fixed,
∑3

j=1 Lj = L, and the length ratios γj = Lj/L. The centreline of each segment
rj = rc

j + sjpj, where rc
j is the centre-of-mass position and the unit tangent vector pj =

(cos θj, sin θj). We keep the clamped conditions by requiring that θ1 = θ0 and p3 passes
through the particle centre. Integrating (2.1) for each segment along the arc length and
ignoring the non-local interaction

8πμLjṙc
j = [c(I + pjpj) + 2(I − pjpj)] · F j, (2.7)

where F j is the total filament force upon the fluid. The torque-free condition of segment 3
with respect to J2 is

K(θ2 − θ3)ẑ + σ h
3|J2 + (L3 + b)p3 × (−6πχμbvp + F 0) = 0, (2.8)

where K is the elastic modulus of the spring, the particle velocity vp = ṙc
3 + (L3/2 + b)ṗ3

and the hydrodynamic torque acting on segment 3 about J2 is computed as

σ h
3|J2 = −

∫ L3/2

−L3/2
(s3 + L3/2)p3 × f 3 ds3. (2.9)

The torque balance equation of segments 2 and 3 about joint J1 is

K(θ1 − θ2)ẑ + σ h
2|J1 + σ h

3|J2 − L2p2 × F 3 + [L2p2 + (L3 + b)p3]

× (−6πχμbvp + F 0) = 0, (2.10)

where σ h
2|J1 is the hydrodynamic torque acting on segment 2 about J1, and the last term

computes the torque of the driving force and the viscous drag of the particle. The system is
closed by the constraints that the velocities of neighbouring segments at the joints are the
same. We scale length on L, time on τ , force on K/L and torque on K. The resulting
elastoviscous number η = L/(Kτ/8πμ)1/3. Hereafter, we use dimensionless variables
with the same notation for both the elastic model and the segmental model.

3. Results

3.1. Fluid pumping
The motion of the artificial cilium reaches a steady state after a few periods. When
θ0 = 0, the cilium beating patterns are periodic and symmetric over one period (figure 2a).
The particle follows a symmetric ‘figure-8’ trajectory. As a result, the time-averaged
disturbance flow field shows no net fluid pumping along the y direction (figure 2b).
However, when θ0 < 0, we observe a distinct power (F0 < 0) and recovery stroke (F0 >

0). A typical example is shown in figure 2(c). The filament is stretched out during the
power stroke (red). As F 0 reverses, the filament is bent with large deformation and moves
towards the +y direction during the recovery stroke (blue). The particle traces out an
asymmetric trajectory and the disturbance flow field shows a clear net flux along the −y
direction (figure 2d). The centre of mass of the filament also traces out an asymmetric
trajectory, similar to the natural cilium (Brumley et al. 2014).

The pumping performance can be characterized by the flux of the disturbance flow field
obtained by integrating the Blake tensor over the x–z plane perpendicular to the pumping
direction (Liron 1978). The resulting instantaneous flux due to a point force of unit strength
along the +y direction located at a distance h from the no-slip wall is given by h/πμ.
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Figure 2. Time lapse of the artificial cilium over one forcing period in the steady state and the time-averaged
disturbance flow field with η = 3.5 and β = 0.08 for (a,b) θ0 = 0 (see supplementary movie 1 available at
https://doi.org/10.1017/jfm.2023.436), and (c,d) θ0 = −1.16 (supplementary movie 2). The force amplitude
A = 65. Time runs from red to blue. The cyan lines in (a,c) indicate the initial orientations. The dark dashed
lines show the particle trajectories and the green dashed lines show the centre-of-mass position of the filament.
The colour bars in (c,d) show the magnitude of the flow speed and arrows indicate flow directions.

The net flux Q of the composite cilium consists of the flux generated by the filament Qf
and the flux generated by the particle Qp

Q = Qf + Qp = 1
πμ

〈∫ L/2

−L/2
x(s)fy(s) ds

〉
+ 6b〈χxpvp · ŷ〉, (3.1)

where 〈〉 denotes time average over a period in steady state and the distance of the particle
from the wall xp = (x + b cos θ)|s=L/2. The particle flux Qp ≈ 6b〈xpvp · ŷ〉 = 6b〈xpẏp〉 =
6bS/τ , where S is the area swept by the particle (Osterman & Vilfan 2011). This states that
Qp is proportional to the area enclosed by the non-reciprocal trajectory of the particle.

Figure 3(a) shows the effect of θ0 with fixed force amplitude A = 65. As |θ0| increases
(tilting towards the −y direction), both |Qf | and |Qp| increase. Since the area swept by the
particle is much larger than the area swept by the centre-of-mass position of the filament
(figure 2c), |Qp| is always larger than |Qf |. Surprisingly, for sufficiently large |θ0|, |Qf |
and |Qp| drop abruptly to smaller values. The time lapse of the filament deformation
shows that the abrupt change of Qp is accompanied by a reversal of filament bending
direction. As shown by the two insets in figure 3(a), the filament is bent downwards
during the recovery stroke for θ0 = −1.12 and upwards for θ0 = −0.96. This difference in
the filament deformation leads to a difference in the particle trajectories, and therefore an
abrupt change in Qp. A similar discontinuity is observed when varying the force amplitude
A with fixed θ0 = −0.9 (figure 3b). As A is increased, the flux increases. When A becomes
sufficiently large, both |Qf | and |Qp| jump to larger values with a reversal of the bending
direction.

The filament bending direction is likely determined by deviation of cilium orientation
at the start of the recovery stroke from the initial orientation, which is also the
natural orientation at rest with no external force. We compute the deviation as
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Figure 3. (a,b) Time-averaged flux |Qf | (left axis, dark triangles), |Qp| (left axis, dark squares) and the total
flux |Q| (left axis, dark circles) as a function of (a) the initial tilt angle θ0 and (b) the force amplitude A
with β = 0.08 and η = 3.5. The flux is scaled by B/μL. In (a) A = 65, and in (b) θ0 = −0.9. The deviations
|
θ | = |θ̄m − θ0| are shown on the right axes by the blue diamonds. The insets show the time lapse of the
artificial cilium for different values of (a) θ0 (supplementary movies 3 and 4) and (b) A corresponding to the
filled red and green squares. The initial orientations are marked by the cyan lines. Panel (c) shows |Qp| as a
function of θ0 and A.


θ = θ̄m(t = n) − θ0, where the average orientation in steady state θ̄m = ∫ 1/2
−1/2 θ(s) ds

and n is an integer. The deviation |
θ | is largest for the symmetric case with θ0 = 0
(figure 2a). Figure 3(a,b) shows that |
θ | decreases as the cilium is more tilted (with
fixed A) or as the driving force A decreases (with fixed θ0). The filament changes from
downward bending to upward bending as |
θ | exceeds a critical value around 0.15 in
figure 3(a) and 0.18 in figure 3(b). As an example, the case of θ0 = −1.12 (downward
bending) in figure 3(a) shows smaller deviation than the case of θ0 = −0.96 (upward
bending). A similar observation can be made by comparing the two insets in figure 3(b)
with A = 50.9 and A = 69.8.

We then compute the density plot of Qp as functions of θ0 and A. The values of A and
θ0 are limited to avoid the cilium touching the no-slip wall. As shown in figure 3(c), two
regions with large negative flux are identified at large A and θ0 corresponding to upward
and downward bending. The sharp boundary separating these two regions spans a wide
range for θ0 � −0.8 and A � 55.

3.2. Linear stability analysis
When a filament is under compression at its tip along the tangential direction, the
filament buckles as the compression exceeds a critical value (Landau & Lifshitz 1986).
To investigate whether the tangent component of F 0 is large enough to induce buckling in
our system, especially at large values of |θ0|, we perform a linear stability analysis on the
composite cilium with a tangential compression force Γ acting on the particle.

Consider a small deformation from an initially straight filament with θ0 = 0, then
x ∼ s, p ∼ (1, yx), and p⊥ ∼ (−yx, 1). We use non-dimensional equations and ignore the
non-local interaction. The linearized tension equation is Tss = 0 with Ts = 0 at s = −1/2
and T + 3/2cβχTs = −Γ at s = 1/2. This leads to T = −Γ . We linearize (2.1) as

− αΓ yxx − αyxxxx = yt, (3.2)

where α = η−4(c + 2). The boundary conditions are

y = 0, yx = 0, (3.3)
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in (b) θ0 = −1.0. The flux is scale by K/μ. Insets show the time lapse of the artificial cilia for different values
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indicate initial orientations. The deviations |
θ | = |θ̄m − θ0| are shown on the right axes by the blue circles.
(c) Relative deflection θ3 − θ2 under a constant driving force F0 = 18.0 as a function of time t for different
values of δθ with θ0 = −1.0.

at s = −1/2, and

yxx + β3η4yxt = 0, yxxx − 3/4η4βχ( yt + βyxt) = 0, (3.4a,b)

at s = 1/2. We consider perturbations of the form y(x, t) = φ(x)eλt, and solve the resulting
eigenvalue problem numerically using centred finite differences in the bulk and sided
differences at the boundaries. Figure 4 shows that the real part of the largest eigenvalue
Re(λ) decreases first and then increases as Γ is increased. The system becomes unstable if
Re(λ) > 0. For β = 0, the critical value Γ ∗ ≈ 37.6, which agrees with the result given in
De Canio et al. (2017). The critical value becomes smaller as β is increased. For β = 0.08,
Γ ∗ ≈ 22.6.

We observe a signature of buckling instability in our simulations. As shown in
figure 5(b), computed with θ0 = −1.12 (corresponding to the left inset in figure 3a),
although F0 increases rapidly first during the recovery stroke starting at t = 7.0, the
particle remains almost fixed for a period of time with little change in its y-component
position. Meanwhile, the magnitude of the filament tangent force at s = 1/2, expressed as
Ftang|s=1/2 = [(−rsss + Trs) · p]s=1/2, increases and reaches a maximum at t ≈ 7.1. The
filament then buckles and the particle moves towards the +y direction with Ftang released.
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Therefore, we use F∗ = F0(t ≈ 7.1) to estimate the compression force acting on the
composite cilia as Γ = |F∗ sin(θ0)| ≈ 37.9. We apply the same approximation to the case
of θ0 = −0.96 (the right inset in figure 3a) and obtain Γ ≈ 41.0. Both estimates are larger
than Γ ∗, indicating that buckling instability indeed occurs at large |θ0| and the abrupt
change in the net flux is caused by a reversal of the filament buckling direction.

3.3. Segmental model
In the segmental model, the generated flux is also dominated by the contribution from the
particle, especially at large |θ0|. Similar to the elastic model, abrupt change in Qp is also
observed when varying θ0. Figure 5(a) shows that |Qp| first increases monotonically as |θ0|
increases from 0. For sufficiently large |θ0|, |Qp| suddenly jumps to a smaller value, along
with a reversal of the buckling direction during the recovery stroke: segment 2 and segment
3 buckle upwards (θ2 > θ3, see inset with θ0 = −1.0) when θ0 � −1.0 and downwards
(θ2 < θ3, see inset with θ0 = −1.2) when θ0 � −1.0. An abrupt change in Qp is also found
when the force amplitude A is changed (figure 5b). As A exceeds a critical value around
22.5, segments 2 and 3 switch from a downward buckling to an upward buckling with a
significant increase in |Qp|. Comparing the two cases shown by the insets of figure 5(b)
with A = 13.6 and 20.6, |Qp| is tripled with an apparent increase in the enclosed area by
the particle trajectory. The average orientation of the cilium is θ̄m = (θ1 + θ2 + θ3)/3, and
the deviation from the natural orientation 
θ = θ̄m − θ0. The transition from downward
buckling to upward buckling is accompanied with a pronounced increase in |
θ |.

Finally, to verify that the reversal of the buckling direction is indeed caused by the
deviation from the natural orientation, we perform the following numerical experiment.
We apply a constant driving force F0 = 18.0 along the +y direction and evolve the system
for a time duration of 0.5. The deviation from a straight line is varied: we set θ1(t =
0) = θ0, θ2(t = 0) = θ0 − δθ and θ3(t = 0) = θ0 − 2δθ , where δθ is the magnitude of
the deviation. The buckling direction is characterized by the relative deflection between
segments 2 and 3. As shown in figure 5(c), segments 2 and 3 buckle downwards with
θ3 − θ2 > 0 for δθ � 0.13. An abrupt change occurs when δθ � 0.13, segments 2 and 3
buckle upwards with θ3 − θ2 < 0 for most of the time and reach equilibrium positions as
t → 0.5.

4. Conclusions and discussion

In this work we have studied the dynamics of a spherical particle constrained by an elastic
filament as a simple model of an artificial cilium at low Re. We constructed an elastic
model using slender body theory and derived a reduced segmental model with linked
rigid segments. We found that the particle trajectory is strongly non-reciprocal at large tilt
angle due to the buckling of the filament and a net fluid pumping parallel to the no-slip
wall is generated. The particle trajectory and the induced flux depend sensitively on the
buckling direction of the filament. Using the segmental model, we demonstrated that as
the deviation of the cilium orientation at the start of the recovery stroke from the natural
orientation exceeds a threshold, a reversal of the buckling direction occurs, leading to
abrupt changes in the particle trajectories and the net flux.

The composite cilium we proposed may be fabricated as a whole experimentally at
millimetre scale or larger by moulding silicone elastomers (Hu et al. 2018; Lu et al.
2018; Gu et al. 2020), such as Ecoflex and Sylgard 184. Magnetic microparticles, like
NdFeB, may be embedded within the spherical particle to provide a net moment after
pre-magnetization. The cilium can then be driven by an external oscillating non-uniform
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magnetic field. To check if the parameter ranges for the observed pumping behaviours are
realistic, we perform order-of-magnitude estimates of relevant parameters. We assume the
filament length L = 2 mm, the radius a = 0.1 mm and the particle radius b = 0.2 mm. The
bending rigidity B = πYa4/2 ∼ 10−11 N m2 for Ecoflex, where Y is the Young’s modulus
(Vaicekauskaite et al. 2020). Using numbers reported in previous experiments (Hu et al.
2018), the magnetization, which depends on the mass ratio of the magnetic particles and
the magnitude of the magnetic field, may reach M ∼ 5 × 105 A m−1 for a field strength
around 1 T. The resulting magnetic moment of the particle m = 4πb3M/3 ∼ 10−5 A m2.
To be comparable to the buckling threshold, mδ ∼ 10B/L2, the field gradient δ ∼ 1 T/m,
which is approximately one or two orders of magnitude smaller than the gradient around
common rare-earth magnets and easily achievable.

The hydrodynamic interactions with the no-slip wall have a small effect on the
overall pump performance but affect the transition points between the upward and
downward buckling. We also performed limited simulations with different actuation
profiles. Including a weak second harmonic generates a faster increase of the actuation
force and a larger bending deformation of the filament during the recovery stroke, shifting
the particle closer towards the wall. This leads to a larger swept area and improves
the pump performance. For elastic filaments free to undergo three-dimensional motions,
tangential compression along the filament can induce three-dimensional spinning (Ling
et al. 2018). The filament in our model is confined to planar motion in the x–y plane and
the stability against perturbations in the z direction is not analysed, but we speculate that
the component of the driving force normal to the filament tip may favour motions in the x–y
plane. We only considered a single cilium, and the results may be quite different in a cilium
array due to hydrodynamic interactions. With a phase-dependent driving force, different
synchronization states may arise by varying the ratio of particle radius to the filament
length, leading to a different pump performance (Kotar et al. 2010, 2013; Chakrabarti &
Saintillan 2019; Man & Kanso 2020; Chakrabarti et al. 2022; Kanale et al. 2022).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.436.
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Appendix A. Numerical methods for the elastic model

We solve the elastic model using a second-order finite difference method. We discretize
the arc length with a uniform grid of size 
s, sj = j
s − 1/2 with j = 0, 1, . . . , 1/
s, and
denote the quantities at sj with a subscript j. We discretize time as tn = n
t and denote
with a superscript n the quantities at the current time step tn. Schematically, we write the
non-dimensional θ equation (2.4) as

3θn+1 − 4θn + θn−1

2
t
+ (αθssss − 3ζθ2

s θss − ζTsθs − αTθss)
n+1 = [U s · p⊥]n, (A1)
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where α = η−4(c + 2), ζ = η−4(3c + 2). Denoting the solutions at the kth Newton
interaction with a superscript k, and linearizing (A1) around current guesses,

δθ − 2
tα
3

αθk
ssδT + 2
t

3
(−6ζθk

s θk
ss − ζTk

s )δθs + 2
t
3

[−3ζ(θk
s )2 − αTk]δθss

+ 2
tα
3

δθssss − 2
tζ
3

θk
s δTs = 4

3
θn − 1

3
θn−1 + 2
t

3
[U s · p⊥]n + G[θk, Tk], (A2)

where G[θk, Tk] collects terms evaluated at iteration k. The tension equation (2.3) is
linearized as

2cδTss − (c + 2)(θk
s )2δT + [−2(c + 2)θk

s Tk + (7c + 2)θk
sss − 4(c + 2)(θk

s )3]δθs

+ 12cθk
ssδθss + (7c + 2)θk

s δθsss = −η4[U s · p]n + M[θk, Tk], (A3)

where M[θk, Tk] collects terms evaluated at iteration k. The boundary conditions are
linearized in a similar way. Results from previous time steps are used as the initial
guesses. Solving the resulting linear system for δθ and δT and iterating until converge,
we obtain θn+1 and Tn+1. For most of our simulations, 
s = 10−2, 
t = 5 × 10−4, and
the regularization parameter of the Blake tensor δ = 0.03.
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